Civinnovate

Discover, Learn, and Innovate in Civil Engineering

	https://civinnovate.com/civil-engineering-notes/
	Chapter-1
	Introduction, Approximation And errors of computation
#	Introduction
-	Numerical methods are capable of handling large system of
	equations, non-linearities and complicated geometrics.
-	Numerical methods are extremely powerful pooblem solving took.
-	Generate reliable solutions to mathematical problems.
	Why do we need numerical method?
-	It no analytical eduction exist and it it is difficult to
	obtain or not practical.
	$4x^{2} + 2x + 3 = 0$
	quadratic eqf: qx2+bx+c=0
	- b+ V 52-4ac
	2a.
	$x^2 + 2x^2 - 3 = 0$? no analytical solution.
	$x = e^{-x}$
#	Approximation
	The numbers: $\pi = 3.1415$
	V3 = 1.732050
	4/3 = 1.33333
	cannot be expressed by finite number of digits.
	These may be approximate by such sumbary which
	These may be approving a poroximate by each numbers which represent the given number to a certain degree of accuracy
	is called approximation.
	a calla approximation.

https://civinnovate.com/civil-engineering-notes/ $\pi = 3.1415$ So, √3 = 1.7320 And and 4/3 = 1.3333 -11 - 18 Errors Of Computation # An error represents inaccuracy and imprecision (not exact) of a numerical calculation or computation. Types of Error 1. Inherent error in data before processing! 2. Rounding error error by round of => 8.5 -> 9 explain Truncation error 3. Absolute, Relative and Percentage errors. 4. Absolute, helative and Percentage errors If x is the true value $q_{1} q_{2}$ quantity and x' is its approximate value then $1 \times -x^{1}$ is called the absolute error. - Denoted by E_{q} i.e. $E_{q} = 1 \times -x^{1}$ Relative error is defined by, $Er = \lfloor \chi - \chi' \rfloor$ - Perantage error is $E_p = 100 Er$ = $100 \pm |\chi - \chi'|$

https://civinnovate.com/civil-engineering-notes/

Q. Round off the numbers 865250 and 37.46235 to 4 significant figures and compute Ea, Er, Ep in each case. => X = 865250 x' = 865200 3/ 18 $\varepsilon_{a} = |x - x'|$ 50 -0 = $E_r = |\chi - \chi'|$ 11 -5.778 × 10-5 $E_p = 100 E_r$ = 5.778 x10³/. at it is in 6-11-1 ラ X = 37.46235 x' = 37.46 12-21 Eq = 110 0.00235 -2-21 Er = 6.272 × 10-5 = Ep = 100 Er 6.272 × 10-3 % -

æ. Date Page \leq

1.	Inherent Error
	It is an error found in a program that cause
	it to fail regardless of what uses does and is commonly
	it to fail regardless of what uses does and is commonly unavoidable This error requires the programmer to modify
	the indo to correct the ISSUE. This is invited to
	error in data before processing.
2.	Rounding error
	Roundoff error occurs because of the computing device's
	inability to deal with cortain numbers. such numbers need to
	he rounded off to some near approximation which is dependent
	on the word size used to represent numbers of the device.
	State State 2
3 .	Truncation Error.
	It refers to the error in mothod, which occurs
	because some series (infinite on finite) is trancated to a lewer
	number of terms. Such errors are exentially algorithmic errors
	and we can predict the extent of the error that will
	occur in the method.
	i s y i i
	, K
	· · · · · · · · · · · · · · · · · · ·

https://civinnovate.com/civil-engineering-notes/ classmate Date 207 4-02-02 Chapter-2 Page Solution Of Non-linear Equations. 11 Mills Non-linear Equation Solver J Bracketing Graphical Open Method (Non-brackets) + Bisection method +> Newton Raphson L> Falsi method Ly Secant 1> Bisection Method Bolzano method V exact root Ł 1) \$(2)=0 11) F(x1). F(x2) <0 root lies bet? x1 and x2 2 xo n/2 1 011-1 (11) f(x0). F(x2)<0 requiredroot not lies bet - no and n. \$10. 8 (1.5) Bolzano method Also called Most simplest and reliable method for finding solution of non-linear equations. Let x, and x2 be two points between which root lies $\chi_0 = \chi_1 + \chi_2$ then Now, there exist following three conditions 1) If $f(x_0) = 0$ then x_0 is the exact root of given equation. 2) If $f(x_0) \cdot f(x_2) < 0$ then there is a root between x_0 and x2. f(xo). f(x,) <0 then there is a root between xo and x. 3) initial guess x, and x, must bracket the root. Here, two

					range	-w ar	d the be	+ 2 50,-2+0-1
	mode 7.	lable -		$= \frac{B+b}{2}$	civileengine	ering-not	es/	classmate
BE FINI	A = 8	14B-10:	E	me) = E2-4E	-10	$(\log d)$	(F	Page C
0 = 7 2	- C=	D34 4 D-10					2-42-1	0-D. Wing
S.				me rrect u	equation ato 3	decima		
	bisection	method		dise 0	and sheet	W INM		
	Solution,	F(x)	$=\chi^2$	-4x -10	1		-1	1; -3 to 1
	<u>u</u> r			1º				Call and a
	Heration	24	x2	f(x1)	$F(x_2)$	No		Remarks
13		- 2	-1	2	-5	-1.5	-1;75 _{1/1}	For File Forker
					-			So, $\chi_1 = \chi_1 U$
-				ηο 1 ·)	5.051.7	1.00	inf i	1) 32172 = 70
-	2	-2	-1.5	2	-1.75	-1.75	0.0625	1.1
	3	-1.75	-1.5		-1.75		-0.859	Fo. Fm, KO 21= X1
	0	-1.15		0.0625			-0.402	NE - WE
,_}	5	-1.75		0.0625			-0.1708	
		-1.75	-	0.0625	12 1 1 2 2 2		-0.057244	
_	0			0.0625			2.564×10	
	8	-1.742			-0.057244	1	-	
	9	-1.742			-0.0273			
	0	1-1.742	-1.19	2.564×10-3	-0.0129	- (- 19)	-4.919xp	Alto
		-1:742	-1.14(2-369210	-4.919x10	-1.7415	-1-17775x1	s tool -
and a	A - 22	- 110	10			8.1	anto ij	Lad And
	1. (=) 5	11 12:11	10.,	C = D - 1	10 -10 11	EFrl	(+ p)/2	KF = \$ = 46-107
	6 = -	<u>۸</u>				<u>x + 1</u>		north call
				, (= -	5, D = -	.1 -	Fo. 1	F, <0 (false)
water lur		= . Mio			6 . 6 34	1214	$= n \pi$	So, ropt, does not lie
		= F(x)			12 11	in H) = (,v	bet - No to X2
		1.	• '	4 - 4 ⁺ - 1	0	2 3	14 (,)	1)+ 11.45
2		1						
1 - U	at the state	3	1 -	39 M	21.1 ± 0	4	c i parta	x) 1 313 (8-1
1	L.I. P		÷			1	1.1	12 . Mai terr
	$(s_{i} =)_{i} l$	124-56	18 25	L.	5.0p 1	der,		1.1.1
	· · · · ·							The state

		nttps	://civinnova	te.com/civii-e	ngineering-not	ies/	classmate exp	
						P	Dote C	
Q.	x3 - 2x	+5=0	1 - F.C.	не * К.	-por i ser	al est	ne j Ti je l	
Q.	sinx =	1/x	(save	in radi	an)	111.11	A	
Q	x3-2n-	5 = 0	192 11	AP	B3-28-5:	$bc \pm p^3$.	2D-5:E=LB+	
	let	F(x) =	x3-2x-	5 :	F=E3-2E.	• S '	$f = \frac{1}{2} e^{2f}$	
			n stratt		and the second s		A HERE	
	Iteration	x,	X2	F(x,)	$f(x_2)$	no f	-(x0)	
$\chi_{C^{n-1}}$	()	2	3	-1	16	2.5	5.625	
	Ì	2	2.5	-L > 500	5.625	2.25	1-8906	
	3	2	2.25	-1	1.8906	2.125	0.3457	
e d	() set	2 11/20 5	2.125	4 1 - 1	0-3457	2.0625	-0.3513	
	6	2.0625	2.125	-0.3513	0.3457	2.0931	-8.94 ×10-3	
	6	2.0937	2.125	-8.94× 10-3	0.3457	2.1093	0.1665	
	Ð	2.0937	2.1093	-8.94×10-3	0.1665	2.1015	0.7785	
						, i		
Ε.	1	1.15	1.01	1.163	;	12	1 14 3	
Q.	Sin x =	1/2	21124	da el.	3-	14	jk	
12	let $f(x) = \sin x + \frac{1}{x}$							
x 1 - 1	1 N 1	B	000	ACART) C (E	F	
	l'Erati on	21	22	F(x1)	F(x_)	ro	f(xo)	
8 N	D	-3	-2-10;0		-0.409	-2.5	-0.1984	
6.25	Ø	-3	-2.5	0.1922	-0.1984	-2.75	-0.0180	
(1. e.)	3	-3	- 2.75	0.1922	-0.0180	-2.875	0.0843	
	Θ	-2.875			-0.080	-2.8125	0.0323	
	5	-2.8125		0.0323	-0.0180		6.955 × 10-3	
	6	-2.7812			- 0.0180		- 5.61 × 10-3	
	0		-2.7656			1	6.384 × 10-4	
	®						-2.489 × 10 ⁻³	
1994	e				-2.489×10-3			
				0 3847 10	0	i L il	1	
1	1		1.1 at 1.			1 1 40		

	Υ.	https://civinno	ovate.com/civil-enç	gineering-notes/	1)	ate			
Цġ.	Find at le 0.08%. W	east one ro	n method. [8	2x-5=0 c	with the a	ccuracy of			
2 Q .	Using the sinx = 1/2	bisection m that lies	ethod, find between x	an approx	indte toot 1.5 (meas	ured in radian)			
	carry out	Computations	s upto the	7th stoge.					
	°,	· (_	Fri Carl	it					
30.	Find the	root of the	1092, 6057	$c = x e^{x} usin$	ng the bis	ection method			
	Correct to	4 decimal	places.	1 - + '	4	(5)			
		21 p. 11		e 8.2	· ·	(5)			
4 Q.	find a po	ositive real	root of 21	09,02, = 1.2	using the	bisection			
13	method.	Lost Lop	1.0 Start-	· · · · · · · · · · · · · · · · · · ·	(81.) j	(c)			
	The moon	- 3 ⁺ - 1,1	2 Concernance	éc).	SFF 3.1	Carlo and a second seco			
02	cim a	= 1/2	A T TOXPE -	8101.0	1819.1	(V)			
§ 2.	•	<u> </u>	A	(F	¢			
	D O	N2	F(x,)	$F(x_1)$	20	$f(x_o)$			
Ø	<i>𝒫</i> , ⊥	1.5	-0.1585	0.3308	1.25	0.1489			
2	ل	1.25	-0.1585	0.1489	1.125	0.0133			
B	L	1.125	-0.1585	0.0133	1.0625	- 0.0676			
	1.0625	J-125 F	-0.0676	0.0133	1.09375	-0.02593			
Ś	1.09375	1.125	-0.025931.)	0.0133	1.10937	- 5-98 x103			
6	1.10937		-5.98×10-3	0.0133	11111	3.7635 × 10-3			
Ð	1.10937		-5.98×10-3	3.7635 × 10-3	1.1132	-1.1504×10-3			
	The approximate root is H132								
	1 · · · · · · · · ·		1) Str			<u></u>			
Q.3	$\cos x = x$		osx - (n) * ex			1 3			
	B	D - 171	A	-C	E	FU			
	M	X2	F(x,)	F(x2) - 25	20	F(20)			
	0	1	1		05 2.3	0.05322			
	0.5	1	0.05322	-2:17:2	0.75	-0.85606			
	0.5	075	0.05322	- 0.85606	0.625	- 0.35669			
	0.5	0.625	0.05322	-0.35669	0.5625	- 0.14129			
	+	+				1 Pe			

classmate

		пцрэ.//сімп	inovate.com/civii-	engineening-note	Date	
		762 .	F(x,)	F(x2)	No	f(xo)
	0.5	0.5625	0.05322	-0.14129	0.53125	-0.04151
	0.5	0.53125	0.05322	-0.04151	0.51562	6.475 × 10-3
	0.51562	0.53125	6.475 × 10-3	-0.04151	0.52343	-0.01735
	0.51562	0.52343	6475×10-3	-0.01735	0.519525	-5.385 × 153
	0.51562	0.519525	6.475 × 10-3	-5.385×10-3	0.517572	5.622×10-4
	0.517572	0.519525	5.622×10-4	-5.385×10-3	0.51854	-2-408×103
	0.517572	0.51854	5.622 ×10-4	-2.408 × 10-3		-9.087×10-4
	0.517572	0.51805	5.622 × 10-4	-9.087×10-4		-1.631×10-4
	0.517572	0.517811	5.622 ×10-4	-1.631×10-4		2.003×10-4
	0.517691	0.51781)	2.003 × 10-4			1.935×105
	0.517751	0.517811	1.935 × 10-5			-7.19 x10-5
					17781	
			UAIII			
QJ.	$\chi^3 - 2\chi - \xi$	5-0	en landa	£ . K. M. H	11 pr 10	
. دوی	B	D .	A	" C	£	F
	<u>р</u> Х	mazic rind	F(x) PIKI	F(x2)	20	F(20)
	2	3	-1	16	2.5	5.625
		2.5	- <u>1</u>	5.625	2.25	1-8906
	2	2.25	-1 (x) (1.8906	2.125	0.3451
	2	2.125	-1/ #1 - 1/K"	0.3457	2 4425	- 0.3513
		2.125	- 0.3513	0.3457	2.0931	-8.94 × 103
	2.0625	2.125	- 8.94 ×10-3		2.1093	0.1665
	2.0937	2.125	- 8.94 × 10-3		2.1015	0.1185
	2.0937		- 8.94 × 10-3			
	2.0937	2.1015			2.0976	
	2.0937	2.0976	-8.94× 10-3			
	2.0937	2.0956	-8.94×10-3			
	2.0937	2.09465	-8.94× 10-3	1.099 × 10	-3 2.0941	7 - 4.201×10
		. The approx	x'imate root	tis 2.09417	upto 3 d	decimal places.
				2	1	

classmate

Date

=) from one side 2) Falsi Method =) moves do ses to actual m 11) 14 1 シス AT! required [] root 11 whe (1.) line joining the points $(x_1, f(x_1))$ and $(x_2, f(x_2))$ is 11/21 13151 $y - y_1 = y_2 - y_1 (x - x_1)$ $x_2 - x_1$ or, $y-y_1 = F(x_2) - F(x_1) (x - x_1)$ $x_2 - x_1$ The line cuts the x-axis at when x= x, y=0, so, have we $f(x_2) - F(x_1) = -F(x_1)$ No-x1 $\chi_2 - \chi_1$ $\chi_0 - \chi_1 = -F(\chi_1)(\chi_2 - \chi_1)$ or, $F(x_2) - F(x_1)$ 2. X0 = $\chi_1 - F(\chi_1) \times (\chi_2 - \chi_1)$ $F(\chi_2) - F(\chi_1)$

 $A = B^{3} - 2B - 5 : C = D^{3} - 2D - 5 : E = B - A(D-B) : F = E^{3} - 2E - 5$ https://civinnovate.com/civil-engineering-notes/

14

	0 6	ise position	n. Correct up	nto 3 decim	al places	
	B	D	A	<u>c</u>	E	<u>Ŧ</u>
	1 21	×2	F(x,)	$F(\chi_2)$		f(x0)
	2	3	-1	16	2.0588	- 0.3907
	2.058		-0.3907	16	2.0812	-0.1473
	2.0812		-0.1473	16	2.0896	-0.0549
	2.0896		-0.0549	16	2.0927	-0.02036
	2.0927		-0.02036	16	2.0938	- 7.613×10-3
	2.0938		- 7.613×10-3	16		- 3.0898 × 10-3
	2.0942	3	- 3.0898x 10-3	16	2.09.44	-1.4.451210-3
	2.	The appre	ximate root	ls 2.094	4	
				17 - A	. č. –	
9.4	find a	positive re	al rest of x	log10x = 1.2	using bised	tion method
	B	D	1 A l	(, ç)	E	۴
	x 1	122	F(x,)	f(x2)	xo	t(xo)
	2	3	-0.5979	0.2313	2.5	-0.2051
	2.5	3	- 0.2051	0.2313	2.75	8.164 × 10-3
	.5	2.75	-0.2051	8.164 × 10-3	2.625	-0.0997
2	625	2.75	-0.0997	8.164 × 10-3	2.6815	-0.04612
	6875	2.75	-0.04612	8.164×10-3	2.11875	-0.01905
	71875	275	-0.01905	8-164×10-3	2.73437	- 5.46 × 10
	73437	2.75		8.164 × 10-3	2.74218	1.342 × 10-3
2.	73437	2.74218	- 5.46 × 10-3	1.342 × 10-3	2.73827	-2.067 X10
+	13827	2.74218	-2.067 × 10-3	1.342 × 10-3	2.740225	-3.672 × 10
2.	40225	2.74218	-3.672×10-4	1.342 × 10 ⁻³	2.741202	4.852 × 10-
++		2.7412.02	- 3.672 × 104	4.852 × 10-4	2-74071	5.878 × 10-
2.1	40225	La construction and the	1. 1. 1.	5.878 × 10-5	2.74046	-1.557 × 10-
2.1 2.7		2.74071	-3.012X 10			
2.1 2.7 2.7	10225	2.74071 2.74071			2.74058	
2.1 2.7 2.70 2.70 2.70	10225 4046	2.74071 2.7407) 2.74071	-1.557 × 10-4	5.878×10-5	2·74058 2·74064	-9. 558 X10
2.1 2.7 2.70 2.70 2.70	10225 4046 14058	2.7407)	-1.557 X 10-4 -5-328 X 10-5	5.878×10-5	2.74064 2.74067	-5.322 × 10 -9.558 × 10 2.520 × 10 to 4 decimal

-	alm ~ =	1.2 [Fals	i method]		1 1 1 1	
g	Licylon	$\chi_0 = \chi_1 -$	$F(X_1)(X_2 - X_1)$	1	€ 1. 2° [
			$F(x_2) - F(x_1)$			
	B	D	A	C	E	F
1	2,	X2	$f(x_1)$	$F(x_2)$	20	F(xo)
	2	3	- 0.5979	0.2313	2.7210	- 0.01709
L.	2.720	3	- 0.01709	0.2313	2.7402	-3.84 × 10
	2:7402	3	- 3.84 × 10-4	0.2313	2.74063	- 8.692×10
	2.74063	3	- 8.692 × 10-6	0.2313	2.74064	- 3.136 × 10-7
			1 X	t and	10 201	3. 6
	Hence, the	required	root ic 2	·74064 (a	rnectupts 4	decimal place
		2	-3	7	1.3	-3.81801
	31	A 2	F(x,)	$F(x_2)$	xo	f(x _o)
-	1.3	2	-3.87807	7	1.5495	- 3. 22824
	1.5495	2	- 3.22824	7		-1.66886
	1.69169	2		7	1.69169	-0.64415
					1.77264	- 0.22025
	1.75104		-0.64475	7		1
		2	-0.64475	7		-0-0720
	1.75104	2	- 0.22025	7	1.77899	
	1.75104	2.		•	1.77899	
	1.75104 1.77204 1.77899	2 2 2	- 0.22 025 - 0.07201	7 7	1.77899	-0.02323
	1.75104 1.77204 1.77899 1.78124	2 2 2 2	- 0.22 025 - 0.07201 - 0.02323	7 1 7	1.77899 1.78124 1.78196	- 7.48 x1
	1.75104 1.77204 1.77899 1.78124 Hence, the	2 2 2 2 required ro	- 0.22 025 - 0.07201 - 0.02323	7 1 7	1.77899 1.78124 1.78196	-0.02323
3	1.75104 1.77204 1.77899 1.78124	2 2 2 2 required ro	- 0.22 025 - 0.07201 - 0.02323	7 7 7 7 7 7	1.77899 1.78124 1.78196 4.000 3 de	- 7.48 x

				(F	Page
3>			£.**		
ij	Secont M	le thod.			ion check
	1	f(x)			garnu pardaina
			*+++(21)	- Faste	
		A21 + (* 2)	/ ;	- Itera	ation less.
				· · · · · · · · · · · · · · · · · · ·	73=20
		×3 K	x2 21	-> re	$\chi_1 = \chi_2$
			required root		$\left(\begin{array}{c} \chi_1 = \chi_2 \\ \chi_2 = \chi_0 \end{array}\right)$
		/	o al		<u> </u>
-			C PL L L	1111 7 10	r 9 h l
		$x_3 = x_2 - \frac{1}{2}$	$(x_{2})(x_{2}-x_{1})$	E = D -	(/D-R)
			f(22)-f(21)	1412) (A) A 2 (A)	C-A
			0 1 0	al color a source	
Q.	Find root	$\sigma_{1} x^{5} - 3x^{3}$	-1 rusing seco	nt method.	·
	В	-	A .		Em
	X,	X2	f(x1)	F(x2)	120
	1	2	-3	7	1.3
	2	1.3	7 201	-3.81807	1.54955
	1.2	1.54955	-3.87807	- 3. 22826	2.7893
	1.3			102.736	1.5873
	1.549 55	2.7893	- 3-22826		
		2.7893 1.5873	- 3-22826	-2.9215	1.6205
	1.549 55			-2.9215 -2.5914	1.6205
	1.54955	1.5873	102.736	+	1.8811
	1.54955 2.7893 1.5873	1.5873 1.6205	102.736 - 2.9215	-2.5914	1.7509
	1.54955 2.7893 1.5873 1.6265	1.5873 1.6205 1.8811	102.736 - 2.9215 - 2.5914	- 2. 5914 2.5846	1.7509
	1.54955 2.7893 1.5873 1.6265 1.8811	1.5873 1.6205 1.8811 1.7509	102.736 - 2.9215 - 2.5914 2.5846	-2.5914 2.5846 -0.6476	1.8811 1.7509 1.7169
	1.54955 2.7893 1.5873 1.6265 1.8811 1.1509	1.5873 1.6205 1.8811 1.7509 1.7769	102.736 - 2.9215 - 2.5914 2.5914 2.5846 -0.6476	- 2.5914 2.5846 - 0.6476 - 0.1170	1.8811 1.7509 1.7169 1.7826

		https://civinnovate.co			Page						
0.	Find the	root a eq-	2 ³ -22-5=0	using secan	t method conver						
	upto 4 decimal places.										
	4	,									
		$f(\mathbf{x}) = \mathbf{x}^3 - 2$									
	$x_1 = 2$ and $x_2 = 3$										
				$F(\chi_2)$	1						
	x,	xz	F(x1)		2050						
	2	3		16	2.05882						
	3	2.05882	16	-0.3908	2.08126						
	2.05882	2.08126	- 0.3908	- 0.1472	2.09482						
	2.68126	à.09482	-0.1472	2.99 × 10-							
	2.09482	2.09454	2.99×10-3	-2.25 × 10							
	: The required root is 2.09455 correct up to 4 decimal place										
r											
O .											
	upto 4										
			1	T	٤,						
	u,	N2.	F(x1)	$f(x_2)$	26						
	1	2	1.718	13.77	0.8575						
	2	0.85751	13.77	1.0215	0.76602						
	0.85751	0.76602	1.0215	0.64797	0.60733						
	0.76602	0.60733	0.64797	0.11483	0.57315						
	0.60133	0.57315	0.11483	0.0167	0.567126						
	0.57315	0.56732	0.0167	5.39 × 10-4	0.567126						
\ +'	0.56732	8.567126	5.39 × 10-4	2.656 × 10-6	0.567125						
				ŀ	- ind pl						
	the	required noot	18 0.567125	- correct up to	5 decimal pla						
			s /								
		•									

classmate Date Page

Q.	Find the positive root of x4-2=10 correct up to 3 decimal places,								
	using sec	ant method.		6 1 9 -	1				
	х,	X 1	+(x1)	f(x2)	20				
	1	2	-10	9	1.7142				
	2	1.7142	41	-3.077	1.8385				
	1.7142	1.8382	- 3.077	-0.412	1.8577				
	1.8385	1.8577	-0.412	+0.0539	1.85555				
	1.8577	1.85555	+ 0.0539	-7.77 ×10-4	1.85558				
			ell care	10					
	The required root is 1.85558 correct upto 4 decimal places.								
-30.0	Open Method.								
3 HY									
AND.	Newton Raphson Method -long process 15 loltial guesc								
Derivation Nuesita Remesita	frx)	N .	, 	· · · · · ·	to taken away				
ments.			# 2×1, 15001) - 20 3	from root.				
pense		• · · · · · · · · · · · · · · · · · · ·							
	Charles and			$\zeta_{i} \in I$	H				
		Aut	; f(x,)	. 12	12				
		1	ind	J 2 5 5	1.1.2				
	-	123		72	17:20				
		required							
.1.1	1 Karre		State Level 1	r H Ni	11				
-	Consider a graph as in figure.								
		- ,		proximate root	of fex) = 0. Draw				
	tangent	at x=x1	as in the.						
			• •	n dives the	2nd approximation				
		slope q ta			- approximation				
		$\tan \alpha = f(n)$							
			-XL	7					
	anh			of they at m	= X ₁				
		0 dial in	rope	TOT					

	htt	ps://civinnovate.co	m/civil-engineering-	notes/					
		$\frac{\chi_2}{\chi_1} = \chi_1 - \frac{1}{2} C \chi_1$	m/civil-engineering-r						
	N2	$= x_1 - \frac{1}{1-1}$							
			47						
			e Newton - R		ula.				
	The nex	,,	ton would t	2.					
		13 = 72			1.11.1				
			f'(x2)		Sein				
	In general,								
	$\chi_{n+1} = \chi_n - f(\chi_n)$								
	f'(n)								
Q.	find the	positive ro	nt on x4-7	-14 . (000)					
	let $F(x) = x^{4} = x = 1$								
		11/22 -	X-10		near				
x2=x1	$F(x) = 4x^{3} - 1$								
	2,	H	C	D					
	2	f(x,) 4	F1(x1)	$\chi_2 = \chi_1 - f($	$(x_1)/(x_1)$				
	1.8709		31	1.8709					
	1.8527	0.3809	25.1945	1.8557					
	, 8721	2.835 × 10-3	24.5613	1.8555					
	10				2 Y				
	Hen	ce, the heg	wined root	12 1.8555	correct upt				
					Willer T				
				decimal place	28.				
			1						
					1.1				
					1				
	[1							

https://civinnovate.com/civil-engineering-notes/ Classmate Date _____ Page _____ Q1 Find the root of the equation f(x)=x2-3x+2 of x=0 wing NR method. Q2 Calculate a red root of non-linear eq? xsinx + cosx=0 wing NR method. correct upto 4 decimal places [8] Find the reciprocal of 3 using NR method. [8] Q3. Reciprocal of 3 i.e. $x = \frac{1}{3}$ or, x2 = 1/2 [": squaring on both cicles) $\frac{\partial y}{\partial y} = x^2 - \frac{1}{2} \qquad \text{contrary} \qquad \text{(a)} = \frac{1}{2} = \frac{1}{2} \qquad \text{contrary} \qquad \text{(b)} \qquad \text{(c)} \qquad \text{(c$ president is set with the to (x) = 2x whence is used with 1 09 Evaluate the required root of fox) = 4 store - ex, using NR method Q5 Wing NR method, find the real root of xlog10x = 1.2. Correct up to 31 5 decimal places. d Leerb LleA 41 1- 1 1- 1114 1. . . . 1.1- 8 + 1 = [1/A] 11 d 2 d 1 1 11-1 - Are . 9 pully in 11 1+1 11.47 6 11 -5 - 11 : 1315 - 10 + 1 - 1

https://civinnovate.com/civil-engineering-notes/ Chapter - 3 Solution of System of Linear algebraic equation linear Equations Solver J Iterative Method. Elimination method / Direct method - Jacobi's Iterative -> gaus elimination - Gauss Skidal L) Gauss Jordan. 1> Elimination method: a) Gauss elimination Apply Gauss elimination method to solve the equations x+4y-z=-5; x+y-6z=-12; 3x-y-z=4 Solution = A = Applying $R_2 \rightarrow R_2 - R_1$ $R_3 \rightarrow R_3 - 3 R_1$ $\begin{bmatrix} A/B \end{bmatrix} = \begin{bmatrix} 1 & 4 & -1:-5 \\ 8 & -3 & -5:-7 \end{bmatrix}$ 2:19 - 13 Applying $R_3 \rightarrow R_3 - \frac{(-13)}{(-3)}R_2$, we get 4 -1 : -5 -3 -5 : -7 [A/B] = 1 ٥ D 23.67 : 49.33 0

	https://civinnovate.com/civil-engineering-notes/					
	Now,					
	x + 4y - z = -5					
	0.x - 3y - 5z = -7					
	0.x+0.y+23.67z = 49.33					
	By backward substitution, we get.					
	Z = 2.084					
	y = -1.14					
	x=1.645 Any					
Q.	Solve :					
	10x - 7y + 3z + 54 = 6					
	-6x + 8y - z - 4u = 5					
	3x + y + 4z + 11u = 2					
	5x-9y-22+44=7 by gauss elimination method.					
#	Gauss Ellmination with Piroting:					
~	D					
1)	Partial Pivoting					
Q.	solve the following system of equations. Using partial pivoting					
	technique.					
	$2x_1 + 2x_2 + x_3 = 6$					
	$4\chi_1 + 2\chi_2 + 3\chi_3 = 4$					
	$\chi_1 \neq \chi_2 + \chi_3 = 0$					
	Original system:					
-	2 2 1 2 7 Interchange largest $-(\dot{y})$ 2 3 2					
	$= \begin{bmatrix} 4 & 2 & 3 & 1 \\ 2 & 3 & 1 & 4 \end{bmatrix}$					

https://civinnovate.com/civil-engineering-notes/ $R_2 \rightarrow R_2 - \frac{2}{4}R_1$ 2 $\begin{bmatrix} 4 & 2 & 3 & : 4 \\ 0 & -\frac{3}{2} & +\frac{1}{2} & : -1 \\ 0 & 1 & -\frac{1}{2} & : 4 \end{bmatrix}$ $R_{3} \rightarrow R_{2} + \frac{2}{3}R_{1}$ $= \begin{bmatrix} 4 & 2 & 3 & : & 4 \\ 0 & -\frac{3}{2} & \frac{1}{4} & : & -1 \\ 0 & 0 & \frac{-1}{3} & : & \frac{19}{3} \end{bmatrix}$ $4x_1 + 2x_2 + 3x_3 = 4$ $0 \cdot \chi_1 - \frac{3}{2}\chi_2 + \chi_3 = -1$ $0.x_1 + 0.x_2 - \frac{1}{2}x_3 = \frac{10}{3}$ $x_3 = -10$ $x_2 = -1$ $2x_1 + x_2 + x_3 - 2x_y = -10$ ٥. 4x1 + 2x3 + xy=8 $3x_1 + 2x_2 + 2x_3 = 7$ $\chi_1 + 3\chi_2 + 2\chi_3 - \chi_4 = -5$

	https://civinnovate.com/civil-engineering-notes/
	Complete Pivoting. $ \begin{bmatrix} 5 & 8 & 1 & : 3 \\ 6 & 9 & 27 & : 4 \\ 7 & 10 & 7 & : 5 \end{bmatrix} $
	Gauss Jordan
٥.	Apply Gauss Jordan method to solve the equation.
	x+y+z=9
	2x - 3y + 4z = 13
	3x + 4y + 5z = 40
	1
	$\begin{array}{c c} [A:B] = & 1 & 1 & 1 & 2 \\ \hline 2 & -3 & 4 & -13 \\ \hline 3 & 4 & 5 & -40 \end{array}$
	$\begin{array}{c} R_2 \rightarrow R_2 + \frac{2}{1}R_1 \\ R_3 \rightarrow R_3 - 3R_1 \end{array}$
	T. 1 19: 9 1 19:
	0 -5 2 : -5
	0 1 2 : 13
	$R_3 \rightarrow R_3 - \frac{1}{5} R_2$
	= 1 1 1 2
	0 -5 2 :-5
	0,0 2.4:12
	$R_1 - 9R_1 - (\frac{1}{2} \cdot 4)R_3$
	$R_2 \rightarrow R_2 - (\frac{2}{2}, y) R_3$
	= [0 ; 4]
	0 -5 0 :-15
	0 0 2.4 12
	$K_2 \rightarrow (R_2/_5)$
	R3 -> K3/2.4

- upper interinge https://civirlnowate.com/civil-engineering-notes/ - Diagonal zoone Rule. 0 0 : 1 1 10:3 0 : 5 0 1 0 Hence, required sal 10: x = 1 9=3 z = 5 by Gauss Joodan: Solve Q. 10x - 7y + 3z + 5y = 6 -6x +8y -2 - 44 = 5 3x + y + 4z + 11u = 25x - 9y - 2z + 44 = 7. 1 : 6 5 3 [A: B] -7 = 10 -1 -4 8 : 5 -6 3 : 2 1 4 11 -2 4 :7 5 -9 $R_2 \rightarrow R_2 + \frac{6}{10} R_1$, $R_3 \rightarrow R_3 - \frac{3}{10} R_1$, $R_4 \rightarrow R_4 - \frac{5}{10} R_1$ 3 .5 .: 8 -7% 10 = 19/5 + 4/5 -1 : 43/5 0 31/10 31/10 19/2 : 54 0 -11/2 -7/2 3/2 0 : $R_3 \rightarrow R_3 - \frac{31}{10} \times \frac{5}{19} R_2$ $R_y \rightarrow R_y + \frac{11}{2} \times \frac{5}{19} R_2$ 3 4/5 -7 5 6 10 1 = 43/5 19/5 0 93/38 196 -<u>259</u> 38 0 0 : -89 0 0 625 Vig : $R_{4} \rightarrow R_{3} + \frac{893}{893} R_{3}$

classmate

Date

Page 10 -7 3 5 **5** 0 19/5 4/5 -1 : 43/5 2 93/38 196 - 259/38 0 0 0 0 19-9247: 923/93 0 $R_1 \rightarrow R_1 - \frac{93\times5}{923}R_4$, $R_2 \rightarrow R_2 + 93_{923}R_4$ $R_3 \rightarrow R_3 - \frac{93}{923} \times \frac{196}{19} R_4$ 10 • $R_1 \rightarrow R_1 - 38 \times 3R_3 , R_2 \rightarrow R_2 - \frac{38}{93} \times \frac{4}{5} R_3$ -7 B 1915 O 0 : 10 22 0 0 : 76/5 0 0 93/38 0 0 923/93:923/93 0 0 0 $R_1 \rightarrow R_1 + \frac{5 \times 7}{19} R_2$ ٥ : 50 = 10 0 0 19/5 0 0 0 93/38 0 $\begin{array}{c} 0 & : 76/5 \\ 0 & : -651/_{38} \\ 923/_{93} & : 923/_{93} \end{array}$ 0 0 D 0 $R_1 \rightarrow R_{10}$, $R_2 \rightarrow \frac{5}{19}R_2$, $R_3 \rightarrow \frac{3}{93}R_3, R_4 \rightarrow \frac{93}{923}R_4$ 0 0 0 5 : 1 1 0 ٥ 0 ٥ 0 0 = 0 0:5 1 0 0:4 1 0 0 0 :+7 0 1 ł. 0 0 0 1:1 So, :. x=S : U=1 - y=4 · Z=-7

	https://civinnovate.com/civil-engineering-notes/						
	lower A						
	LU factorization						
	Upper A						
3)	Apply factorization method to solve the eq2: 32+2y+72=4						
	2x + 3y + 2 = 5						
	$3\chi + 4y + 2 = 7$						
	$A = \begin{bmatrix} 3 & 2 & 7 \end{bmatrix} X = \begin{bmatrix} x \\ B \end{bmatrix} B = \begin{bmatrix} y \end{bmatrix}$						
	2 3 1 4 5						
	3 9 1 2 2						
67	$\begin{bmatrix} 3 & 2 & 7 \end{bmatrix} \begin{bmatrix} L_{11} & 0 & 0 \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} & U_{13} \end{bmatrix}$						
+	$2 \ 3 \ 1 = L_{21} \ L_{22} \ 0 \ 0 \ U_{22} \ U_{23}$						
	$\begin{bmatrix} 3 & 4 & 1 \end{bmatrix}$ $\begin{bmatrix} L_{31} & L_{32} & L_{33} \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 4_{33} \end{bmatrix}$						
	: The product of Land U doemot produce						
	cenique solution. So, in order to produce Unique						
	solution factors, we assume diagonal elements						
	Los 4 to be unity.						
	- The clarence with a ball of the						
.,	- The decomposition with L having unit diagonal						
	values is called the Dolittle LU decomposition.						
	- While the other one with U having unit diagonal						
	dements is called crout LU decomposition.						
1	: It has no unique colute o						
te	1. It has no unique solution. So, we assume uii or lii=1						
	Now, equating with $[A]$ we get. $[3 2 7] = [V_{11}]$						
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Classmate

Equating the tratrices,
$\therefore 0_{11} = 3$
.: V12 = 2
. U13 = 7
\Rightarrow L ₂₁ U ₁₁ = 2
$\therefore L_{21} = \frac{2}{3}$
9 U11231 = 3
$\therefore L_{31} = 1$
$L_{21} U_{12} + U_{22} = 3$
$\Rightarrow \frac{2}{3} \times 2 + \frac{1}{22} = 3$
$U_{22} = 5/3$
$L_{21} U_{13} + U_{23} = 1$
or, 2/3 ×7 + U23 =1
$-1 U_{23} = -11/3$
 L31 U12 + L32 U22 = 04
 $\sigma_{1} \perp x_{2} + L_{32} \times \frac{1}{3} = 04$
$L_{32} = + 6/5$
 $L_{31} U_{13} + U_{23} L_{32} + U_{33} = 1$
 or, 1×7+-1/3× 6/5+ U33=1
 $= 0_{33} = -8_{15}$
 Thus,
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 2 & 7 \\ 0 & 5/3 & -11/3 \end{bmatrix}$
$\frac{1}{2/3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$
 L 615 1] [0 0 -8/5]
 writing,
writing, [L][Y]=[B] the given system becomes,
 •
14

Classmat Dat https://civinnovate.com/civil-engineering-notes/ Y 4 6 ٥ Y2 -5 2/3 0 Yz 4/5 1 1 Solving these system, we have, : y1=4 $\frac{2}{3}$ Y₁ + Y₂ = 5 : J2 = 7/3 リ、+ 多 5 + 93 =7 : ys = 15 Now, [U][X] = [Y] У, 2 7 x 3 cr. -11/3 5/3 92 -0 y 8/5 y3 0 Ô 2 Or, 2 3 ٦ 4 X -11/3 5/3 7/3 0 4 --8/5 0 1/5 0 2 02 ·. Z =-1/8 5/3 y - 1/3 Z = 1/3 y = 3/8 ¥ ١ 32+24 +72 = 4 =) x = 7/8 Any .

CLASSM	ALCE S
Date	
Page	

Ħ	Inverse matrix using Gause Jordan Elimination.
	$AI = IA^{-L}$
	and the second and the second of the second of the
Q.	Find the inverse of the matorix.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
_	Sol^2
	Writing the given matrix side by side with the unit matrix
	of same order, we have, [2 -2 4 : 100]
	2 3 2 : 0 1 0
	-1 1 1:0001
	$R_2 \rightarrow R_2 - \dot{R_1}$
	$R_3 \rightarrow R_3 + \frac{1}{2}R_1$
	T2 -2 4:1007
	0 5 -2 : -1 1 0
	LO O 3:1/2 0 1 J
	$R_1 \rightarrow R_1/2$; $R_2 \rightarrow R_2/5$; $R_3 \rightarrow R_3/3$
	$\begin{bmatrix} 1 & -1 & 2 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{2}{6} & \frac{1}{7} -\frac{1}{6} & \frac{1}{7} & 0 \end{bmatrix}$
	C 1/ 0 -2/]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{bmatrix}$
	$R_1 \rightarrow R_1 + R_2$
	[1 0 0: 1/20 0/ - ×15]
	0 1 0 :-2/15 1/5 2/15
	0 0 1 : 1/4 0 1/3
	Hence the inverse matrix is: $\frac{1}{30}$ $\frac{1}{5}$ $\frac{3}{5}$
	-415 15 715 -1/6 0 1/3 A

	https://civinnovate.com/civil-engineering-notes/	AXMOR
	Eigen Value and Eigen Vector using Power Metho	d.
Imp	Eigen Value and eige	-
Q.	Determine the eigen value and corresponding eigen Ve	ector of
	Determine the eigen rolling power method. [8 marks] the following matorix by power method. [8 marks]	
	1 9 3	
	y 2 7	
	265	
=)		
	$A \times = \lambda \times$ \uparrow Eigen Vector.	
	1 Eigen Vector.	/
	elgen value	
	$\int L 4 3 \int \Gamma 1 = \int L \int C L$	
	42704 highest com	
+		
	= 4 [1/4]	
	1 Y2	
AX' =	= [1 4 3] [1/4] = [5.75]	
	4 27 1 6.5	
	= 9 [0.638]	
	0.722	
	91	
or,	$AX^{2} = \begin{bmatrix} 1 & 4 & 3 \end{bmatrix} \begin{bmatrix} 0.638 \end{bmatrix} = \begin{bmatrix} 6.526 \end{bmatrix}$	
T	4 2 7 0.722 10.996	
	2 6 5 9 91 10.608	
_	= 10.996 [0.5934	1
	10.996 1	T
	0.9647	T
	Ay = 11 + 3 + 50, 5934 + 57 + 100 = 57	17.48
	4 2 7] 1 = 11.126	11.12%
1	2 6 5 0.9647 12.01	1
		~

Classmate Date_____(

			Y	
	or, AX = [1 4 3]	T7.4875/12.		7.329
	4 2 7	11.126/12	01 7 7 10	11.346
	2 6 5		J	11.805
	1 . S & 2 . S .		= 11.80	5 0.6208
	1			0.9611
	0, Ax5= [1 4 37]	0.6208 -	7.4652	11
		0.9611	11.405	
-	2 6 5][1	L 12.008	
		2	= 12.008 0.	6216
			0.	9497
	(I start	1 1	al Mart L	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	0, AXE = [1 4 3]	0.6216	1 1.420	
	y 2 7	0.9497	= 11.38	
	265		[[1.94	
			= 11.941	7.4204/11.941
				11.387/11.941
		¥ ¹ · · · ·		
	$\sigma_{1}, AX^{7} = [1 \ 4 \ 3]$	0.6214	7.439	
	427	0.9534	= 11.39	
	265		L 11.96	<u> </u>
		`	= 11.963	
			12	0.9522
			<u> </u>	
	or, $Ax^{8} = 143$	0.6215	= 7.430	5
	4 2 7	0.9522	11.39	
	265]		11.95	
	1 × 1 +	£.)	= 11.956	0.6214
	1 .	5 in 1	Pr.	0.9526
	· "#") - ·	2171	-} (* - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	CAP 2 T. C.	Signal -	100 55 . 0	(*
	C171.1 -		5 7 12	

l

Date Page https://civinnovate.com/civil-engineering-notes/ 7.4321 0.6214 = 3 AX9 = 9 ١ 11. 391 0.9526 7 2 ч 11.958 1 5 6 2 11.958 0.6215 = 0.9525 1 required eigen value 2 = 11.938 and The \$ 0.6215 eigen vector is 0.9525 1 (Jacobi Method) Methods Iterative # 17 14 Jacobi's method, the eq2s: Q. Solve by 5x-y+z=10; 2x+4y=12; x+y+5z=-1, we start with (2,3,0) Suppose (0,0,0) from given. with -) Solution, x = 1 (10 + y - z)= 10+y-zY 4 / 5 y = 12-22 Z = (-1-x-y) YIA. Iteration R 2 g 3 2 ٥ ٥ 1 2.6 -1.2 2 2 . . 2.64 1.7 -1.12 3 2.564 1.68 -1.068 4 2.5496 1.718 -1.0488 2.55336 5 1-7252 -1.05352 2.5557 6 1.7233 -1.0557

classmate https://civinnovate.com/civil-engineering-notes/ Date_ -1.0558 2.5558 1.7221 1.1 7. ... The value of 6th and 7th Iteration is paracheally some, can stop. cue So Hance, x = 2.3558, y= 1.7221, z=-1.0558 # by Jacobi's Iterative method. eg2s. solve. Q. 20x + y - 22 = 17 3x + 20y - Z = -18 111 61 2x - 3y + 202 = 25Nr. 3 seidal Iteration method. Gauss It is an improved version of Jacobi Iteration method modification of Jacobi's method. or Q. Apply Gauss-seidal Iteration method to solve eq2 of 202 + 4 - 22=17 3x+20y-2=-18 2x - 3q + 20z = 25 8012, ŧ M= \$17-\$4+22 20 -18 - 3x + 220 9 = Z = 25 - 2x + 3y20 Restant Va les assume anitiq) quess, let x0=0, y0=0, z0=0 1. 10 1 1pt 12 1 218

	h	ttps://civinn	ovate.co	om/civil-	engineer	ing-notes	5/		Date_ Page_	SSAUSS
	- 11 - ·	X		¥	4	02				
~1	teration	0		0		0				
~	0	0.8	5	-1.02	1	1.611	1	r j [¥] ji	c_{i}^{t} c_{i}	
	1.	1.00		- 0.9	998	0.999	7	418	ýť,	
	2	0.99		-1		1.000	001	6	1	
	3			-0.9	999	1.000	01			
	વ.		00001			1.000				
	5.	0.99		-0.9				, r		of y=fix correspondi
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.	0.995	99	-0.9	999	1.000	102	2.00	1	
				r th		6th		Can	ne So	
	Since	value	of	5 th	and		ate	San	ne su	L
		$\chi = 0.9$	999			- 11 [°]				
		9 = -	0.999	9						
		Z =	1.0000	52						
				- 1			21	. N. 11	1/:	,
		л б.		1-1-1	1.5	, ier er	· • '	•		
			CHI	APTER	-4			i + i M	1.14	
	Interpola	Hon'.		·				- / <u>1</u> - 1 - 1		
		Suppose.	(Le	are a	given	the k	ollow	ing	values	of d=tex
	for a	set of	value	x	·			1.	L ( 2	
			21			xn	ar d'	1.1	< (	
		4 40	9,	y2		yn			1	
	Then ,	the p	rocess	of	finding	g the	e va	lue	740	orrespond
	to anu	value	of .	x= xt	bet	ween	xo	and	xnls	called
\ 	interpol	atton.					÷ .	21	ť ¹¹	
#	Newton	n's int	rpolat	Hon	(foru	oard, l	packu	schud)		
				)						
1)	Newton	Gregor	¥ 4	orwan	d inte	rpolat	on.			
·		. 1.	~ 1	1		~				
	2	x ro	2,	×2		xn				<u> </u>
·	5	x) yo	91	y2		Myn				

nttne://cr	vinnovate.	com/civi	l_enaine	perina-	notes/
1.103.7701	vinnovate.		-cnyin	senng-	10103/

Classmate Dote _____ C

Here, the for are tabulated at equal intervals lie with tabulation  $x_2 - x_1 = x_3 - x_2 = - \dots = x_n - x_{n-1} = h_0$  a constant at equal intervals, a difference table for n-point is expressed as: 1.11 54 to D3 to Nº 1021 F(x) 1 to a XO 40  $\Delta b = b - b = \Delta^{2} b = \Delta b - \Delta b = \Delta^{3} b = \Delta^{2} b$ 290= pi-po xoth tı 1 = = ===== 20+26 12 20+36 13 > 4======== 20tuh 44 . h = Uniform difference in the value of x Here, Abo = ti-to, Ati= 52-ti, Ati= 13-62 Obi = titi - ti " First porward difference" Similarly,  $\Delta^2 t_0 = \Delta t_1 - \Delta t_0 = t_2 - t_1 - (t_1 - t_0)$ = 1/2 - 2/1 + 1/0 " second & forward Difference"  $\Delta^{2} b^{\circ} = t_{1+2} - 2t_{1+1} + t_{1}$  $f(x) = b_0 + P \Delta b_0 + P(P+1) \Delta^2 b_0 + P(P-1)(P-2) \Delta^3 b_0 + \dots + 21$ P(P-1)(P-2) --- (P-(n-1)) Dn to n1 Q. Estimate the value of function at z = 0.16 from the following tabulated te. X 0.3 0.4 0.2 0.1 1.081 1.045 f(x) 1.005 1.020

Date https://civinnovate.com/civil-engineering-notes/ 0.16-0.1 = 0.6 1= 2-20 0.) D3 to 12 to P(x) Sto x 0.01 0.001 0.015 1.005 0.1 0.011 0.025 1.020 0.2 0.036 1.045 0.3 1.081 0.4  $f(x) = f_0 + P \Delta f_0 + P(P-1) \Delta^2 f_0 + P(P-1)(P-2) \Delta^3 f_0$ = 1.005 + 0.6 x 0.015 + 0.6 (0.6-1) x 0.01 + 0.6 (0.6-1) [0.6] 21 31 20.00 1.012856 # = Newton's 2. Backward Interpolation. the table is too long and it the required point IF to the and of the table, use can use Newtonts closed Backward difference formula. Horse, the regulto Gregory reference point is Xn instead of Xo  $4x = 4n + P \bullet \nabla y_n + P(P+1) \nabla^2 y_n + P(P+1)(P+2) \nabla^3 y_n$ 31 +...+ P(P+1)...(P+(n-1)) $P_1$ O2yn

classmate Date _ Page _

$\begin{cases} cr & the given heights in yet above the earth's curred. \\ x & 100 150 200 200 300 350 400 Find value et y 10.63 15.03 15.04 16.02 10.42 19.90 21.27 y when x = 4 y 10.63 15.03 15.04 16.02 10.42 19.90 21.27 y when x = 4 y 10.63 15.03 15.04 16.02 10.04 00 = 0.20 the 450 the 45$	<b>S</b> .	The	table give	s the	distance	in the M	les of the	visible	hert200		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\frac{x}{y} \frac{160}{120} \frac{150}{120} \frac{260}{200} \frac{210}{200} \frac{360}{100} \frac{370}{1000} \frac{460}{1000} \frac{1100}{1000} \frac{11000}{1000} \frac{11000}{$		6	U	J		0			v		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 1	00 150	200	250			Find	value of		
$y = \frac{1}{2 - x_{h}} = \frac{1}{2} - \frac{1}{2} + $		9)	10.63 B.	03 15-04	16-21	18.42 119	1.90 21.27	9	when $x = \hat{4}$		
$\frac{4}{6} = \frac{2}{2} - \frac{2}{20} = \frac{410 - 400}{6} = 0.20$ $\frac{4}{20} = \frac{2}{20}$ $\frac{2}{20} = \frac{2}{20}$ $\frac{2}{20}$		<u>.</u>									
$\frac{450}{100}$	7	yven					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			r =		) = 410		0.20				
$\frac{100}{150} \frac{10.63}{150} \frac{2.4}{150} \frac{13.03}{2.4} \frac{2.4}{150} \frac{13.03}{150} \frac{2.4}{150} \frac{15.04}{2.01} \frac{2.01}{-0.39} \frac{-0.39}{0.15} \frac{15.09}{2.50} \frac{10.90}{1.48} \frac{1.41}{-0.16} \frac{-0.16}{0.08} \frac{0.08}{-0.05} \frac{-0.05}{0.02} \frac{0.02}{0.02} \frac{13.00}{1.48} \frac{1.48}{-0.13} \frac{-0.01}{0.02} \frac{-0.05}{0.02} \frac{0.02}{0.02} \frac{1400}{21.27} \frac{21.27}{1.37} \frac{1.37}{-0.11} \frac{-0.10}{0.02} \frac{-0.01}{0.02} \frac{0.04}{0.02} \frac{0.02}{0.02} \frac{110.20}{1.27} \frac{1.37}{1.37} \frac{-0.11}{0.11} \frac{0.02}{-0.01} \frac{-0.01}{0.04} \frac{0.02}{0.02} \frac{110.20}{0.20} \frac{1.27}{1.37} \frac{1.37}{-0.11} \frac{-0.10}{0.02} \frac{-0.05}{0.02} \frac{0.04}{0.02} \frac{0.02}{0.02} \frac{110.20}{0.20} \frac{1.27}{1.37} \frac{1.37}{-0.11} \frac{-0.10}{0.02} \frac{-0.01}{0.02} \frac{0.04}{0.02} \frac{0.02}{0.02} \frac{110.20}{0.20} \frac{1.27}{1.37} \frac{1.37}{-0.11} \frac{-0.10}{0.02} \frac{-0.01}{0.02} \frac{0.04}{0.02} \frac{0.02}{0.02} \frac{1.27}{1.37} \frac{1.37}{-0.11} \frac{-0.10}{0.02} \frac{-0.01}{0.02} \frac{0.04}{0.02} \frac{0.02}{0.02} \frac{1.27}{1.37} \frac{1.37}{-0.11} \frac{-0.20}{0.20} \frac{0.20}{0.20} \frac{1.00}{0.20} \frac{0.04}{0.02} \frac{0.02}{0.20} \frac{1.00}{0.20} \frac{1.00}$						430	1				
$\frac{100}{150} \frac{10.63}{150} \frac{2.4}{2.01}$ $\frac{100}{150} \frac{13.03}{2.4} \frac{2.4}{2.01} \frac{-0.39}{-0.39}$ $\frac{100}{150} \frac{15.04}{2.01} \frac{2.01}{-0.39} \frac{-0.34}{0.15}$ $\frac{100}{150} \frac{18.42}{1.41} \frac{1.41}{-0.16} \frac{-0.06}{0.02} \frac{-0.05}{0.02} \frac{-0.01}{0.02} $		x	4	<u>Au</u>	12u	∆ ³ u	Δ ⁴ 4	۸s	Nº 4		
$\frac{260}{250} \frac{15.04}{2.01} \frac{2.01}{-0.39} \frac{-0.39}{250}$ $\frac{250}{16.81} \frac{1.13}{1.13} \frac{-0.24}{-0.16} \frac{0.15}{0.02} \frac{-0.01}{-0.05} \frac{0.02}{0.02}$ $\frac{1350}{19.90} \frac{1.48}{1.48} \frac{-0.13}{0.03} \frac{-0.05}{-0.05} \frac{0.02}{0.02}$ $\frac{1400}{21.27} \frac{21.27}{1.37} \frac{-0.11}{-0.11} \frac{0.02}{-0.01} \frac{-0.01}{0.04} \frac{0.02}{0.02}$ $\frac{1400}{21.27} \frac{21.27}{1.37} \frac{+0.20(0.20+1)\times(-0.11)}{21} \frac{-21}{21}$ $\frac{1}{21} \frac{10.20(0.20+1)(0.20+2)}{31} \times (0.02) + 0.20(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.20+1)(0.$		100	10.63	0			nti viz	i i i	<b>-</b>		
$\frac{250}{300} \frac{16.81}{18.42} \frac{1.41}{1.41} - \frac{0.15}{0.16} \frac{0.08}{-0.08} - \frac{0.01}{0.02}$ $\frac{350}{350} \frac{19.90}{1.48} - \frac{0.13}{0.03} \frac{0.03}{-0.05} \frac{0.02}{0.02}$ $\frac{1400}{21.27} \frac{21.27}{1.37} \frac{1.37}{-0.11} \frac{0.20}{0.02} - \frac{0.01}{0.04} \frac{0.02}{0.02}$ $\frac{1}{21}$ $\frac{1}{2$		150	13.03	2.4	2. 5. 1. 2	4 × 1 ×	A day	In the Second	6 4		
$\frac{300}{300} \frac{18.42}{1.41} - \frac{1.41}{0.16} - \frac{0.16}{0.09} - \frac{0.01}{-0.05} - \frac{0.01}{0.02}$ $\frac{1350}{19.90} \frac{1.48}{1.48} - \frac{0.13}{0.03} - \frac{0.05}{0.05} - \frac{0.02}{0.02}$ $\frac{1400}{21.27} \frac{21.27}{1.37} - \frac{1.37}{0.11} - \frac{0.10}{0.02} - \frac{0.01}{0.02} - \frac{0.01}{0.04} - \frac{0.02}{0.02}$ $\frac{1}{21}$		100	15.04	2.01	-0.39						
$350   9.90  1.48  -0.13   0.03  -0.05  0.02$ $460  21.27  1.37  -0.11  0.02  -0.01  0.04  0.02$ $y_{x} = 21.27 + 0.20 \times 1.37 + 0.20 (0.20+1) \times (-0.11)$ $21$ $+ 0.20 (0.20+1) (0.20+2) \times (0.02) + 0.20 (0.20+1) (0.20+2) (0.20+1) (0.20+2) \times (0.04)$ $31  41$ $+ 0.20 (0.20+1) (0.20+2) (0.20+3) (0.20+4) \times (0.04)$ $51$ $+ 0.20 (0.20+1) (0.20+2) (0.20+3) (0.20+4) (0.20+5) \times 0.6$ $61$		250	16.81	1.73	-0.24	0.15	$\Gamma^{(d)} p(g) \to \gamma^{(d)}$	- 1-51 - F	2 194		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		300	18.42	1-61	- 0.16	\$0.0	-6.01				
$\begin{array}{r} y_{\chi} = 21.27 \pm 0.20 \times 1.37 \pm 0.20 (0.20 \pm 1) \times (-0.11) \\ \hline 21 \\ \pm 0.20 (0.20 \pm 1) (0.20 \pm 2) \times (0.02) \pm 0.20 (0.20 \pm 1) (0.20 \pm 2) 0.2 \pm 3) \times \\ \hline 31 \\ \pm 0.20 (0.20 \pm 1) (0.20 \pm 2) (0.20 \pm 3) (0.20 \pm 4) \times (0.04) \\ \hline 51 \\ \pm 0.20 (0.20 \pm 1) (0.20 \pm 2) (0.20 \pm 3) (0.20 \pm 4) 0.20 \pm 5) \times 0.02 \\ \hline 61 \end{array}$		350		1.48	- 0.13	6.03	-0.05	0.02	- <i>1</i> *		
$2!$ $+ 0.20 (0.20+1) (0.20+2) \times (0.02) + 0.20(0.20+1)(0.20+2)0.2+3) \times 3!$ $4!$ $+ 0.20 (0.20+1) (0.20+2) (0.20+3) (0.20+4) \times (0.04)$ $5!$ $+ 0.20(0.20+1) (0.20+2) (0.20+3) (0.20+4) (0.20+5) \times 0.04$ $6!$	-	400	21.27	1.37	-0.11	0.02	-0.01	0.04	0.02		
$2!$ $+ 0.20 (0.20+1) (0.20+2) \times (0.02) + 0.20 (0.20+1) (0.20+2) (0.2+3) \times (0.2+3) \times (0.20+1) (0.20+2) (0.20+3) (0.20+4) \times (0.04)$ $5!$ $+ 0.20 (0.20+1) (0.20+2) (0.20+3) (0.20+4) (0.20+5) \times 0.04$ $6!$					, A	15.01.00	<u>al</u>	,			
$\frac{\pm 0.20 (0.20+1) (0.20+2) \times (0.02) \pm 0.20 (0.20+1) (0.20 \pm 2) (0.21+3) \times (0.20 \pm 3)}{31} $ $\frac{41}{10.20 (0.20+1) (0.20+2) (0.20+3) (0.20+4) \times (0.04)}{51} $ $\frac{51}{10.20 (0.20+1) (0.20+2) (0.20+3) (0.20+4) (0.20+5) \times 0.04}{61} $											
$31 $ $41$ $42 $ $42 $ $52 (0.20 +1) (0.20 +2) (0.20 +3) (0.20 +4) \times (0.04)$ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $ $52 $											
$\frac{1}{5!} + 0.20 (0.20 + 1) (0.20 + 2) (0.20 + 3) (0.20 + 4) \times (0.04)}{5!} + 0.20 (0.20 + 1) (0.20 + 2) (0.20 + 3) (0.20 + 4) (0.20 + 5) \times 0.6}{6!}$			+ 0.20 (0		3.20 + 2)	×(0.02)	+ 0.20(0.20		(1)0·2+3)x		
$5! + 0.20(0:20+1)(0.20+2)(0.20+3)(0.20+4)(0.20+5) \times 0.0$ 6!											
$+ 0.20(0.20+1)(0.20+2)(0.20+3)(0.20+4)(0.20+5) \times 0.0$ $6!$											
Contraction 6! and internal in											
= 21.53 fest.											
		= 21.53 fest.									
					<i>I'</i>			1			

CLASSERIE https://civinnovate.com/civil-engineering-notes/ Difference Interpolation: Central 17 Stirling 1s formula:  $y_{p} = y_{0} + p(\Delta y_{0} + \Delta y_{-1}) + \frac{p^{2}}{2!} \Delta^{2} y_{-1} + \frac{p(p^{2}-1)(\Delta^{3} y_{-1} + \Delta^{3} y_{-1})}{3!}$  $+ p^2(p^2-1) \Delta_{y-2}^{4} + \cdots$ where  $P = n - x_m$ * For P lying between (-1/4 to 1/4) or (-0.25 to 0.25) prejer stirling formula. * calculation up to D⁴ only needed. Bessel's formula: 2)  $\frac{y_{p}}{y_{p}} = \frac{y_{0}}{y_{0}} + \frac{P(P-1)}{2!} \left( \frac{\Delta^{2}y_{-1}}{2} + \frac{\Delta^{2}y_{0}}{2} \right) + \frac{(P-\frac{1}{2})P(P-1)}{3!} + \frac{\Delta^{3}y_{-1}}{3!}$ +  $P(p+1) P(p-1)(p-2) \Delta_{y-2}^{v} + \Delta_{y-1}^{v} + \dots$ 41 2 * For Plying between 1/4 and 3/4, use Bessel's formula * calculation upto <u>14</u> only needed g. find the junctional value at 0.644 porom the table given bion 2 0.62 0.66 0.67 0.63 0.64 0.65 4 1.858928 1.877610 1.896481 1.915541 1.934792 1.95437  $\Rightarrow$  Sol²,

-

-

-

-----

_

classmate Date ____ Page _

			,			1
	A	¥ 4-2	Ay 1	D2y	D3 yrs	Δ ⁴ y
	0.62	1.858928	0.018682	189 x 10-4	0 y-2	0.02 × 10-4 y-2
	0.63	1.877610	0.018871	1.89 × 10-4	0.02 × 10-4	1.34 × 10-4 9-1
Ro	0.64	1-896481	0.01906	1.91 × 10-4	1.36 x 10-4	۲
1	0.65	1.91554	0.019251	3.27 210-4	, 1	, J.
	0.66	1.934792	0.019578	1 1 1 1 1	. i	, ť
	0.67	1.95437	. 1	18 681 - 1	- 1	- K
		-	+	5	p-1	e k
	X	= 0.644				
X	for a	m = 0.6	4 (Selec	f just less H	han x)	
	h	= 0.01				
			11 - (-)	. K	x . * 1. 1. 1. je 1	+x)1 ·
	P :	= 2 - 21	m .	1 7 1 1 5 W		-
		h				-
	:	- 0.4				l' a the se
	Since	P lie	s bet ²	by and 3/	, using B	bessel's formula,
			Salar I P		, the area	·
	yp =	40 + P1	Syo + P(F	2-1) / D2y-1+	$\Delta^2 y_0 + (P$	- 1/2)P(P-1) 13y-1
		•				31
			+ P(P+	1) (P(P-1) (P-	-2) ⁶ ⁴ 4-2	$+\Delta^{q}_{q-1}$
				- 14 1 mm-		2
	19 T	- 1.8964	81 + 0.4×	(0.01906) 4	0.4(0.4-1)	(1.89×10-4+1.91×104
				1 2	c 2! · · ·	2
X		+ (0.4	-1/2 ) 0.4 (	0.4-1) (0.0	2 × 10-4)	( ₂ 5
			3!		1	
			+ 0.4 (	0.4+1) 0.4 (0	.4-1) (0.4-2)	) ( 0.02×10-4+1.34×10
		y i la li	. / 1 t		ALL A TH	(K) + 2
			04082817		×) +	
						e // 1 -

https://civinnovate.com/civil-engineering-notes/ classmath a) It nothing said to this. (use his if internal not equal) # Divided Difference : 2nd DD 1st DD f(x) a fo[xo, Z1) = F1-F0 Fo Fo [xo, x1, x2] = Fi[x1, x1]. No  $F_1[x_1, x_1] = \frac{F_2 - F_1}{x_1 - x_1}$ F 6-74]  $\chi_1$ Fz  $F_2[x_2, x_3] = \frac{F_3 - F_2}{x_3 - x_3}$ > F, [x, x2, x3] = F2[2] 22 Fz FIEX >  $F_3(x_{30}x_4) = \frac{F_4 - F_3}{x_{40} - x_4}$ 23 74 F2 [2, x3, x4]= file xy F_ [x 74 $f(x) = f[x_0] + f[x_0, x_1](x - x_0) + F[x_0, x_1, x_2](x - x_0)(x - x_1)$ + ..... + F [xo, x1, x2 ..... xn] (x-xo) (x-xi) .... (x, xn) the values Q. Given 13 17 511 tl 5 7 X 2366 1452 5202 392 150 F F [9] using Divided Dipperence table: Evaluate yther 2nd DD 3rd DD dd tet x ·F 392 -150 =121 5 150  $\frac{265-121}{11-5} = 24$ 32-24=1 7-5 392 7 265 1452 11 457-265 = 32 42-32 =1 457 2366 13 709 - 457 = 42>709 5202 17 2=9 +6 F(9) = 810---

https://civinnovate.com/civil-engineering-notes/ classmate Date (1) (11 · 16) (18 · 1) (18 · 16 3rd DD 4th DD F[x0, 7, , x2, x3] F[x0,x1,x2,x3,x4]  $F[\chi_1, \chi_2, \chi_3, \chi_4]$ Lagrange Interpolation. F(x) = 13Fo(x)+ 19F(x)+ 129F2(x)+ 139F3(x)+ 14 Fi(20)+---where, (x-x1)(x-x2) (x-x3) (x-x4) Lo = (210-X1) (x0-X2) (x0-X3) (x0-X4) 1 lula  $L_{1} = (\chi - \chi_{0}) (\chi - \chi_{2}) (\chi - \chi_{3}) (\chi - \chi_{4})$  $(\chi_{1} - \chi_{0}) (\chi_{1} - \chi_{2}) (\chi_{1} - \chi_{3}) (\chi_{1} - \chi_{4})$ Given the values: () 13 K 117 R 7 x 5 1452. 2366 5202 392 100 5 FC9) wing Lagrange Interpolation Estimate Lo(3- (9-7)(9-11)(9-13)(9-17) (5-7) (5-11) (5-13) (5-17) = 9

classmat

(x-x0) (x-x2) (x-x3) (x-x4)  $L_1(\alpha) =$ (x1-x0) (x1-x2) (x1-x3) (x1-x4) (9-5)(9-11)(9-13)(9-17)(7-5)(7-11)(1-13)(1-17)8 15 = (9-5) (9-7) (9-13) (9-17)  $l_2(x) =$ (11-5) (11-7) (11-13) (11-17) 8 -9  $L_3(x) = (9-5)(9-7)(9-11)(9-17)$ (B-5)(B-7) (B-11) (B-17) = -]  $L_{y}(x) = (9-5)(9-7)(9-11)(9-13)$ (17-5) (17-1) (17-11) (17-13) 45  $F(9) = F_0(x) l_0(x) + F_1(x) l_1(x) + F_2(x) l_2(x) + f_3(x) l_3(x)$ + Fy (x) Ly (x)  $\frac{-1 \times 150 + 8 \times 392 + 8 \times 1452 + (-1) \times 2366}{15}$ + 1 x 5202 810 ~ ★

https://civinnovate.com/civil-engineering-notes/ classmate Date Demerity N. Y. the It another Interpolation value were inserted, then interpolation co-efficient were required to be recalculated. # Least square method of fitting linear and non-linear curve for data and continuous function. 2000 ·11 : 61 1 n Zziyi - Zziyi b =  $a = \frac{\sum q_1 - b \sum z_1}{p_1 + p_2}$ =) The process of establishing a relationship between two Shid Mr. A .. & Fit a str. line to the following set of data 1º fr A 4912 17 4 5 3 l A 2 67 3 8 9 4 5 15 2.11 Sol?, xi x12 2141 yi 3 3 1 8 4 4 A rate 2 15 5 3 9 4 6 16 29 40 5 8 25 15 55 90 26

classmate https://civinnovate.com/civil-engineering-notes/  $b = n \sum x_i y_i - \sum x_i \sum y_i$  $n \leq x_i^2 - (\leq x_i)^2$  $= 5 \times 90 - 15 \times 26$ 5 × 55 - (15)² 1.20 =  $q = \sum y_1 - b \sum x_1$  $= \frac{26}{5} - \frac{1 \cdot 20 \times 15}{5}$ = 1.60 The linear eq2 is: . · 4= 1.6 + 1.2× # Fitting transactional eq2: -> The non-linear eq2 bet? the variables is transactional eq2. It may be power function expressed as y = axb or any other non-lineas. 1.T 12 Q. Fit the given data using power method eq2. 11 5 3 4 x 1 2 12.5 2 4.5 8 0.5 Ч =) Sol2, power model eq2 is: y= axb The

Date ____ Page ___ https://civinnovate.com/civil-engineering-notes/ Taking natural log (In) on both sides.  $\frac{y=ax^{b}}{1e \ln y=\ln (ax^{b})}$  $= \ln a + \ln x^{b}$ INN C a, Loy = Loat blox Marine Y = A + bXA (1) where Y= Lny 114 A=lna X=lnx 100 This is now in linear form. Now, expressing in table for different summation. g. Fit the given data. y= a + bx 2 2 2 1 1 1 - 1 - 1 Exe dent  $y_i$  $Ln x_i(X)$  $Ln y_i(Y)$  $\chi^2$  $\chi Y$ 0.50-0.69310020.69310.69310.48030.4803 ri 1 2 1.5040 1.2063 1.6522 2.0794 1.9215 2.8827 4.5 1.0986 3 4 1.3862 8 1.6094 2.5257 2.5901 4.0648 5 12.5 9.08 4.7873 P 6.1091 6.1988 y = a + bx and a sum any site and the fat is found to prove  $\frac{n \sum XY - \sum X}{n \sum x^2} - (\sum X)^2$ b = = 5 × 9.08 - 3.08 4.7873 × 6.1091 5x 6.1988 - (4.7873)2 2.00029 2 Contraction of the print + 1 0 MU 1

https://civinnovate.com/civil-engineering-notes/ - b ZX: ) , and a state ΣY; A = 6.1091 - 2.00029 × 4.1873 : 5 (1) - 0,69337 -: A = ln a a = exp(A) = 0.49988 . We abtain power function eq ? as:  $y = 0.49988 \pi^{2.00029}$ = 0.5  $\pi^{2}$ and - - - - - for ! 0.49988 20.5 2.000292 2 9. Obtain a relation of form y = a ebx for the following date by the method of least square. 0.0 0.5 1.0 1.5 2.0 2.5 2.5 x The given Curve is y=aebz Taking natural log (ln) on both sides; lny = lna + ln ebx 4 or, loy = loa + bx loe; which is of the form Y = A + Bx where, Y= Iny A= ha B= blne

classmate Date _ Page _

				V	
	X	miling (Y)	(ship 22)	Mine mar X .	L B.C.
	0.0	-2.3025	0.D	0	
	0.5	- 0.7985	0.25	- 0,3942	2- //
	1.0	0.7654	1.0	0.765	4
	1.5	2.2137	2.25	3.320	S
	2.0	3.6975	4.0	100 7.39	5 P
	2.5	5.1971	6.25	12.95	]27
+	7.5	8.1727	13.75	24.	0744
-+	115	0112		X P	
	B =	nZal	-Zaey	5 × 5	
	U =		- (EX)2 ud		
			744 - 7.5×8		
		6 x 13	.75 - (7.5)2	L	
		2.99623		a + Y at	
			s. s.	· 12	
	b =	B		10	-
		Inc		d à	
-		2.99623	136	N - X	
-				¢ţ.	
-	1/1	= SY -	BEXi	· · ·	<i>y</i>
	25.0	2 <b>0</b> .0	<u>, D</u>	1 2.0	1
	15/57	= 8.1727	- 2.9962	3 × 7.5	-
	2:01:0	6	7 C. A	6	-
	1-20	= 01 - 2.28	3317 -02	÷6 /	- £')
	IT SU	Sarran C	a.a.o	1.4.2.0	Ĩ+
1	st it it	A=Ina		2 P. P.	21
		A = 0.1			
-	-		0612 -	121 -	9 -
	The	required cu	the less	e z d	
		4 = A	ebx	- 0 1 F	/
		·	e	96232	
		·· y =	420	71.0	

classmate https://civinnovate.com/civil-engineering-notes/ fit the following set a data into a curve. C Q. qx 4 = 6+2 5 4 3 2 2 1 0.833 0.2 0.75 0.667 4 0.5 firen, 4 = ar 1 ... btx xy = qx - by00  $a - \left(\frac{y}{x}\right)b$ 4 = 01 toom y=a+bx. Y = a + BXCr, where ¥=# B = -bX = 4/2 • x2 x X XY 9 0.5 0.25 1 0.5 0.25 0.667 0.3335 0.1112 2 0.2224 0.25 3 0.75 0.0625 0.1875 2.5×10-3 4 0.2 0.05 0.01 5 0.833 0.1666 0.02757 0.1.3877 15 2.95 2-0576 0.80 1.3001 0.4539 B  $\frac{n\Sigma Xy - \Sigma X \Sigma y}{n\Sigma X^2 - (\Sigma X)^2}$ 1 5 x 0.8086 - 1.3001 x 2.95 = 5x0.4539 - (1.3001)2 0.35858 2

-

CLASS	mate .
Date	
Page	$- \bigcirc$

	b = -B = -0.3585
	12 DEDAD OPENI OF
	$a = \sum y - B \sum x_i$
	ALPHON AND A AND A AND A
	= 2.95 - 0.3585 x 1.3001
	TELLS ITTEL ISC
	= 0.4967
	1.3*5' - 1.4 5 11 - 11
	Hence, the required curve 1s:
	Y' = Planer - Marr. DEF / P
	CETOB #X - TOTON &M
_	= 0.4967x
	-0.3585 + x ++
4	$1 \leq d - p \leq a p$
g.	Temperature of metal strip was measured at Various time.
	Interval with following data.
	alst .K.
	time (t) min $1$ $2$ $3$ $4$
	Temp (T) 70 83 100 124.
	if the relation T and t is in form T= be"+a
	if the relation T and I is in form T= bety + a Find the temperature (T) at t= 6.
	Sol=,
	the given eq ² is: $T = be^{t/4} + a^{2} be^{t/4}$
	or, T = bX + a
	where $X = e^{t/4}$

		https://civinno	ovate.com/civil-engineerin	g-notes/	Date Page
	1 4.4	T (g)	$\left(e^{\frac{1}{2}}\right) = X$	X ²	Xy
	t(x)	70	1,2840	1.6486	89.88
	1	83	1.6487	2.7182	1 36 . 8421
	2	100	2.1170	4.4816	211.7
	3	124	2.7182	7.3886	337.0568
	7	317	7.7679	16.237	775.4789
			1-	reference -	1/89
	b =	h ZXy	- EX E4		
		h ZX2	- ΣΧ ΞΥ - (ΞΧ) ²	23 27	611
		= 4×775	- 4789 - 7.7679	× 377	
		4 X I	6.237 - (7.7679	3)2	
		= 37.63	61	÷	
			production a		
	٩	= <u>24</u>	- b Σx		
		h	b		
	· / · · ·	= 377	- 37.6361 x	7.7679	Contens"
		Ч		1.14 Alex 1	1. 1 million
		= 21.16			
	Aha			20 (1)	11514
L + 1º T	The c	yven relat	on is:	N / 1 , 1	11
ht s	<u> </u>	1= b e	t/q + q	34 11	
			.6361 et/4 + 21	.1616 +	11
	4+ .	t=6,		74	
	7,0	T = 37.636	$1e^{6/4} + 21.1616$		:10
		= 189.	8348 . 6	Non Cont	
			#		
			1 5 4 4 A	- F C-	
			1 · Y al	* 10.21	

	https://civinnovate.com/civil-engineering-notes/
8	Fit the 2nd order polynomial with data.
	a true back upt of the to the
	x 1 2 3 4 11 1 2 3
	y 6 11 18 27 2 4 26 1 18 2
-)	Sol ² ,
	Second order polynomial is given as:
	Second order polynomial is given as: $y = a + bx + cx^2 - A$
	While taking E for different data, Ey = n.a + b Ex + c Ex - 10
	$\Sigma y = n a + b \Sigma x + c \Sigma x^2 - B$
	Now, multiplying, $eq^2 \oplus by x$ , $\sum xy = a \sum x + b \sum x^2 + c \sum x^3 - 2$
	Again, multiplying eg2 @ by x,
	Ø
	$\Sigma x^2 y = 0 \Sigma x^2 + b \Sigma x^3 + C \Sigma x^4 - 3$
	AN INT THIS IS IN THIS
	Expressing in tabular form for different summations.
	i are stranged, and track completer and as when
	$x$ $y$ $x^2$ $x^3$ $x^4$ $xy$ $x^2y$
	1 Grant 1 - 24 april 1000 1266 da pril 6 100
	2 11 4 8 16 22 44
1-1/1	31 18 19 127 181 54 162
11	4 27 16 64 256 108 432
	10 62 30 100 354 190 644
plan st	Now, $eq^2$ ( $0$ , $0$ , $3$ ) becomes,
	62 = 49 + 10b + 30c
6.	190 = 10a + 30b + 100 c
1.1	644 = 30a + 100 b + 354 C
	On colving,
	a = 3
	b = 2
	c = 1

classaute https://civinnovate.com/civil-engineering-notes/ eg² (A) becomes, So . 2nd order polynomial Eq2 15. The  $y = 3 + 2bt + 1x^2$ =  $x^2 + 2x + 3$ * Curve Fitting : Cubic Spline : # 33 92 yn-1 9n y:+ 31 1 ż, à2 2, xi 21+1 n-1 Since, we have explained the about different methods of Interpolation. And it seems Hat the Interpolation technique le practicable not for number of more datas. Thus, we lighted towards the curve fitting technique where single polynomial equation has been fitted to the given set of tabulated data This method gives us the rough approximation of the data mil Thus, to minimize this error cubic spline is developed where every consecutive points chows a unique quadractive curve cor simply abic curve).

classmate Page

# Conditions for cubic spline: i) F(x) is linear outside the (x1, x1) and called natural cubic spline. r sida 2) F(x) is cubic at each sub-interval 3) P(x) and P(x) are continuous at each point. 4) If F(x) is a 2nd degree and F"(x) is linear at each interval and if F'(x) is constant then F"(x) is zero for 1st and last point. -1 -1-141  $\frac{Functional value:}{bisiti(x) = \frac{k_i}{6} \left[ \frac{(x - x_{i+1})^3}{(x_i - x_{i+1})} - \frac{(x - x_{i+1}) + (x_i - x_{i+1})}{6} \right]$ Formula!  $\frac{-K_{i+1}\left[(\chi - \chi_{i})^{3} - (\chi - \chi_{i})(\chi - \chi_{i+1})\right]}{6\left[(\chi_{i} - \chi_{i+1})^{3}\right]}$ + yi (x-x1+1) - yi+1 (x-x1) (x1-x1+1)P where, k represents the f''(x). nterval is equal: K_{i-1} + 4K_i + K_{i+1} = 6 [ y_{i-1} - 2y_i + y_{i+1} ] (h²) 1) It interval is equal: ashere, 1=2,3,4, ---. (n-1) 2) If interval is not equale  $K_{i-1}(x_{i-1}-x_i) + 2K_i(x_{i-1}-x_{i+1}) + K_{i+1}(x_i-x_{i+1})$  $= 6 \begin{bmatrix} y_{i-1} - y_i - y_{i-1} - y_{i-1} \\ x_{i-1} - x_i \\ where i = 2, 3, 4, ... (n-1)$ 

an XI dix Berat https://civinnovate.com/civil-engineering-notes/ () Find f(1.5) for following data 4 3 1 X 5 and the orthing Ц where a is at equal interval theu, we have, when i=2.  $K_1 + 4K_2 + K_3 = 6 [y_1 - 2y_2 + y_3]$  $k_1 + 4k_2 + k_3 = 6[1 - 4 + 5]$ Or,  $4K_2 + K_3 = 12 - 12$ 0 1=3, When  $K_2 + 4K_3 + K_4 = 6 [y_2 - 2y_3 + y_4]$  $K_2 + 4K_3 = 18 - 2$ solving, O, O, we get, t2 = 2 K3 = 4  $f_{1,2}(x) = k_1 \left[ (x - x_2)^2 - (x - x_2)(x_1 - x_2) \right]$ i, i+1 6 (x_1 - x_2)  $\frac{-k_2}{6} \left[ \frac{(\chi - \chi_1)^3}{\chi_1 - \chi_2} - (\chi - \chi_1)(\chi_1 - \chi_2) \right]$ + 4, (2-22) - 42 (2-21) N1-22  $f_{1,2}(x) = -\frac{1}{3} \left[ -(x-1)^3 - (x-1)(1-2) \right] + (x-2) - 2(x-1) - 2(x = \frac{1}{3} \left( \chi^{3} - 3\chi^{2} + 3\chi - 1 + (-\chi) + 1 \right) - (\chi + 2 + 2\chi - 2)$ 

https://civinnovate.com/civil-engineering-notes/ 1311AND Page  $f_{1,2}(x) = \frac{1}{3}(x^3 - 3x^2 + 5x)$  for  $1 \le x \le 2$  $\therefore f(1.5) = 1 [1.5^3 - 3x(1.5)^2 + 5*(1.5)]$ - The printer is and the plant is a start  $f_{1,2}^{1}(x) = \frac{1}{3}(3x^{2} - 6x + 5)$  $\therefore f_{1,2}^{1} (1.5) = 1 (3 \times 1.5^{2} - 6 \times 1.5 + 5)$ = 0.9166 1913 3 Find f'(1.5) and f"(3) K . r. + 11 3 2 4 <u>x 1</u> u 1 11 to all the a the international the second A 5-12 "16 + 21" (1-2:) + 21" 113 + .... h. p" 6, A - 122 + "1111 - "11) + Sty MA Phi = Phi (11) × 11, s 1. 1. 10 serie is will and a series 1 - 11 , at an ila

classmate https://civinnovate.com/civil-engineering-notes/ CHAPTER-5 Numerical Differentiation and Integration. 11 1 1 - for equally spaced data. 1) Newton's forward Interpolation formula: the formula is given by:  $f(x) = y_0 + P \Delta y_0 + P(P-1) \Delta^2 y_0 + P(P-1)(P-2) \Delta^3 y_0$ 21 31 +---. + P(P-1)(P-2) .... (P-(n-1)) Dⁿyo -0 n1 Also, we have ,  $P = \chi - \chi_0$  $\sigma, x = x_0 + ph - 0$  $p = \chi - \chi_0$  $\frac{dP}{dx} = \frac{1}{h}$ Now, differentiating eq2 O wrt 'P' we get,  $\frac{dy}{dP} = \frac{dy_0 + (2P-1)}{2!} \frac{\delta^2 y_0 + 3P^2 - 6P - 2}{3!} \frac{\delta^3 y_0}{3!}$ + 4p3-18p2+22p-6 D490+----3 41 Now,  $\frac{dy}{dx} = \frac{dy}{dP} \times \frac{dP}{dx}$ At x=xo, P=D, Hence putting p=0 we get,

 $\frac{\Delta y_0 - 1 \ \Delta^2 y_0 + 1 \ \Delta^3 y_0 - 1 \ \Delta^4 y_0 + 1 \ \Delta^5 y_0}{2 \qquad 3 \qquad 4 \qquad 5}$  $= \frac{1}{b^{2}} \int \Delta^{2} y_{0} - \Delta^{3} y_{0} + \frac{11}{12} \Delta^{4} y_{0} - \frac{5}{5} \Delta^{5} y_{0}$ dy dx2 + 137 \$ go + ----7 e) Derivatives using backward difference formula:  $y = y_n + P \Delta \nabla y_n + P(P+1) \nabla y_n + P(P+1)(P+2) \nabla_n^3 y_n + .... 2! 3!$  $\frac{dy}{dx} = \frac{1}{2} \left[ \nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n$ + 1 Ryn + ....  $\frac{d^{2}y}{dx^{2}} = \frac{1}{b^{2}} \left[ \nabla^{2}y_{n} + \Delta \nabla^{3}y_{n} + 11 \nabla^{3}y_{n} + 5 \nabla^{5}y_{n} \right]$  $+ 137 \nabla^{6}y_{n} + \dots$ Derivatives using antral difference formula strirling formula. 3)  $= \frac{1}{1} \begin{bmatrix} \Delta y_0 + \Delta y_{-1} - 1 & \Delta^3 y_{+1} + \Delta^3 y_{-2} + 1 & \Delta^5 y_{-3} + \Delta^5 y_{-3} \\ - & b \end{bmatrix} \begin{bmatrix} 2 & 6 & 2 & 30 \end{bmatrix} 2$ 11 f ---- $\frac{\Delta^2 g_{-1} - 1}{12} \frac{\Delta^4 g_{-2}}{90} + \frac{1}{90} \frac{\Delta^6 g_{-2}}{90} - \frac{1}{12}$ 

CLASSMAT Q. Given that : 1.3 1.5 1.4 46 1.1 1.0 1.2 x 9.451 9.750 9.129 10.031 8.781 8.403 7.989 4 1.1 h = 0.1find dy and dzy at dx2 dx (a)  $x = 1 \cdot 1$ (b) x = 1.6 The difference table is: Sant ist f シ [Forward Substitution]  $(4) \chi = 1.1$ 04 Δ5 13 ۵6  $\Delta^2$ Δ x 4 -2×10-3 +2×10-3 1×10-3 6×10-3 - 0.036 1.389 0.414 1.0 -1×10-3 4×10-3 3× 10-3 -0.03 -> 1.1 0.378 8.403 3×10-3 2×10-3 -0.026 0.348 1.2 8.781 5×10-3 - 0.023 9.129 0.322 1.3 9.451 1.4 0.299 -0.018 0.281 9.750 1.5 1.6 16 (0.03) (a) For 2=1.1 [ Δyo - 1 Δ²yo + 1 Δ²yo - 1 Δ² yo + 1 Δ⁵yo dy dx -1 0° yo 1113  $\begin{bmatrix} 0.378 + 0.03 + 4 \times 10^{-3} + 10^{-3} + 3 \times 10^{-3} + 2 \times 10^{-3} + 2$ 3.9518 =

Date_____

 $\frac{d\dot{y}}{dz^{2}} = \frac{1}{h^{2}} \begin{bmatrix} \Delta^{2}y_{0} - \Delta^{3}y_{0} + 11 & \Delta^{4}y_{0} - 5 & \Delta^{5}y_{0} \\ 12 & 6 \end{bmatrix}$   $= \frac{1}{12} \begin{bmatrix} -0.03 - 4x 10^{-3} + 11 \times 10^{-3} - 5x 3x 10^{-3} \\ (0.1)^{2} & 12 & 6 \end{bmatrix}$ 191 A 10 1 13 -3.7416 121 x=1.6 [ Backward substitution J 6) 75  $\nabla^3$ 26 74 V2 1 0 Y x 7.989 1.0 0.414 8.403 1-1 -0.036 8.761 0.378 1.2 6×103 +-0.03 0.348 9.129 1.3 - 0.026 4×10-3 -2×10-3 0.322 9.451 1.4 3× 10-3 -1× 10-3 1× 103 -0.023 0.299 9.750 1.5 5×10-3 2×10-3 3×103 -2×10-3 -0.018 0.281 1.6 10.031 ->  $\begin{bmatrix} \nabla y_n + 1 \nabla^2 y_n + 1 \nabla^3 y_n + 1 \nabla^4 y_n + 1 \nabla^5 y_n \\ 2 & 3 & 4 & 5 \end{bmatrix}$ dy = dx+ 1 0°yn ]  $\begin{bmatrix} 0.281 + - 0.018 + 5 \times 10^{-3} + 2 \times 10^{-3} + 3 \times 10^{-3} \\ 2 & 3 & 4 & 5 \end{bmatrix}$ : + 2× 10-3 2.751  $\frac{d\hat{q}}{dx^2} = \frac{1}{h^2} \begin{bmatrix} \nabla^2 y_n + \nabla^3 y_n + 11 & \nabla^4 y_n + 5 & \nabla^5 y_n + 137 & \nabla^6 y_n \end{bmatrix}$  $= \frac{1}{(0.1)^2} \begin{bmatrix} -0.018 + 5 \times 10^{-3} + 11 \times 2 \times 10^{-3} + 5 \times 3 \times 10^{-3} + 187 \times 2 \times 10^{-3} \\ 12 & 6 & 180 \end{bmatrix}$ - 0.1144 -

	https://civinnovate.com/civil-engineering-notes/
	20 seconds at an interval of 5 seconds. Find the initial
	acceleration using the entire data:
	$\frac{\text{Nime (t) sec!}}{\text{Velovity V (mk)}} = \frac{0.5}{0.3} \frac{10}{14} \frac{15}{69} \frac{20}{228}$
	relocity citrist
	Duddel har maked by bake & les
	The difference table is:
~~	$t \vee \Delta \Delta^2 \Delta^3 \Delta^4$
	$\rightarrow 0$ 0 3 8 36 24
	* 5 0 11 111 12
, in a second se	15 60 150
	20 228
	and the set of the set
	An initial acc. (ie dv) at t=0 is required we we
~~	Newton's forward formula:
	$ \frac{dv}{dt} = \frac{1}{t} \begin{bmatrix} X v_0 - 1 & \Delta^2 v_0 + 1 & \Delta^3 v_0 - 1 & \Delta^4 v_0 + \dots \\ 2 & 3 & 4 & 0 \end{bmatrix} $
-101-	$\left(at\right)_{t=0}$ h $\left(12377\right)$
	$= \frac{1}{5} \begin{bmatrix} 3 - 8 + 36 - 24 \\ 2 & 3 & 4 \end{bmatrix}$
	= 1
	PHT C - OT
	Hence, the initial acceleration is 1 m/2
	and the provident of the state
	teal set set
	Multiple - Conversion - Source - Janse - Janse
	18170-1- = C
And and a second second	

classmate Date_ Page_

	slide	in a	machin	e Move	s alon	g a f	ixed s	braight
Yo	d. Its	distance	xcm	alona	the c	od is a	Hiven H	ulou h
V	artous	Values	m the	Hmo	+ core	nde	Pind L	he willing
a	the	slides a	nd it	ander	<u> </u>	undern d		the veloci
6						unen t	= 0.3	<u>s.</u>
t	0		1 1	whole is		utp	- the di-	1 .) "
1		.13 31.62	0.2	0.3	0.4	0.5 0	.6	ú.
~	50	15   51.02					2-24	
			1	x [ F 2 1	1 1.	1981 1		
t		8	D2				∿د	
٥	90.19	32-3 1.49				0-0.27	0.29	3
0.1		27.2 1.25		0.02		0.02	2	
0.2		87x1 D.77				l		
6 0.3	33.6	94x 0.31	-0.45	0.02	Julio a	1.27.21		1.
0.4	33.0	gy -0.1y 2+1 2) -0.57	-0.43	)			d he	1
0.5	5 33.0	81 -0.57						
0.6		24 24		2.5 1 80	30	)	F .	r
		W15		5-31-21				
	ts the	derivat	ives a	- 1	1			e of the
	ble,	b.1, to =	shiiling	re requ 's form	ired re			e of the
ta (dz	ble ; h = ( ) = t	We use 0.1, to = $\int \Delta_{10} + \Delta$	shiriling	re requ 's form Dro=0.3	ired re-	ar the	middu	
ta (dz	ble , h = (	we we $b \cdot l$ , $t_0 = \frac{1}{2}$	shiriling 0.3, 0.3,	The required is form $\Delta x_0 = 0.3$ $\Delta^3 x_1 + 2$	$\Delta^3 x - 2 + 2$	1 05 30	middu -2+Δ ⁵ μ 2	<u>=</u>
ta (dz	h = 0 $h = 1$ $h = 1$ $h = 1$	we use $b \cdot 1 , t_0 = \frac{1}{2}$ $\begin{bmatrix} \Delta_{10} + \Delta_{10} \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 0.3 \end{bmatrix}$	shing 0.3, 0.3, 0.3, 0.4, 0.1, 6	The required is form $\Delta x_0 = 0.3$ $\Delta^3 x_1 + 2$	$\Delta^3 x - 2 + 2$	at the $\frac{1}{30}$ $\frac{5}{30}$ $\frac{1}{2}$ + 1	middu -2+Δ ⁵ μ 2	= - + + e =
ta (dz	h = 0 $h = 1$ $h = 1$ $h = 1$	we use $b \cdot 1 , t_0 = \frac{5 \cdot 1}{2}$ $\int 2 \cdot \frac{5 \cdot 1}{2}$	shiriling 0.3, 0.3,	The required is form $\Delta x_0 = 0.3$ $\Delta^3 x_1 + 2$	ired re-	1 05 30	middu -2+Δ ⁵ μ 2	<u>=</u>
ta (dz	h = 0 $h = 1$ $h = 1$ $h = 1$	we use $b \cdot 1 , t_0 = \frac{1}{2}$ $\begin{bmatrix} \Delta_{10} + \Delta_{10} \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 0.3 \end{bmatrix}$	shing 0.3, 0.3, 0.3, 0.4, 0.1, 6	The required is form $\Delta x_0 = 0.3$ $\Delta^3 x_1 + 2$	$\Delta^3 x - 2 + 2$	at the $\frac{1}{30}$ $\frac{5}{30}$ $\frac{1}{2}$ + 1	middu -2+Δ ⁵ μ 2	<u>=</u>
$\frac{dz}{dt}$	$\frac{ble}{h} = 0$ $\frac{ble}{b} = 1$	we use $b \cdot 1 , t_0 = \frac{5 \cdot 1}{2}$ $\int 2 \cdot \frac{5 \cdot 1}{2}$	shing 0.3, 0.3, 0.3, 0.4, 0.1, 6	The required is form $\Delta x_0 = 0.3$ $\Delta^3 x_1 + 2$	$\Delta^3 x - 2 + 2$	at the $\frac{1}{30}$ $\frac{5}{30}$ $\frac{1}{30}$ $\frac{5}{30}$ $\frac{1}{30}$ $\frac{1}{30}$	middu -2+Δ ⁵ μ 2	<u>=</u>
$\frac{dx}{dt}$	$\frac{h}{h} = 0$ $\frac{h}{1} = 0$	we we $5 \cdot 1 , t_0 = \frac{5 \cdot 33}{5 \cdot 33}$	shinding 0.3, 0.3, 0.3, 0.4, 6 1+0.77 2 2 2 2 2 2 2 2 4 5 2 4 5 2 4 5 2 4 5 2 5 4 5 7 2 5 7 4 5 7 7 2	The required is form $\Delta x_0 = 0.3$ $\Delta^3 x_1 + 2$	$\frac{1}{2}$	$\frac{1}{30} = \frac{1}{30}$	middu -2+Δ ⁵ μ 2	<u>=</u>
$\frac{dx}{dt}$	$\frac{ble}{h} = 0$ $\frac{ble}{b} = 1$	we we $5 \cdot 1 , t_0 = \frac{5 \cdot 33}{5 \cdot 33}$	shiriling 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3,	The required is form $ \Delta x_0 = 0.3 $	$\frac{d^3 x - 2}{2} + \frac{1}{30}$	$\frac{1}{30} = \frac{5}{30}$ $\frac{1}{30} = \frac{5}{30}$ $\frac{1}{30} = \frac{5}{30}$ $\frac{1}{30} = \frac{5}{30}$	middu -2+Δ ⁵ μ 2	<u>=</u>
$\frac{dx}{dt}$	$\frac{h}{h} = 0$ $\frac{h}{1} = 0$	we we $5 \cdot 1 , t_0 = \frac{5 \cdot 33}{5 \cdot 33}$	shinding 0.3, 0.3, 0.3, 0.4, 6 1+0.77 2 2 2 2 2 2 2 2 4 5 2 4 5 2 4 5 2 4 5 2 5 4 5 7 2 5 7 4 5 7 7 2	$\frac{1}{12} = \frac{1}{12} $	$\frac{d^3 \times -2}{2} + \frac{1}{30}$	$a = \frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$ $\frac{1}{30}$	middu -2+Δ ⁵ μ 2	<u>=</u>
$\frac{dx}{dt}$	$\frac{h}{h} = 0$ $\frac{h}{1} = 0$	we we $5 \cdot 1 , t_0 = \frac{5 \cdot 33}{5 \cdot 33}$	shing 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.1, 0.3, 0.1, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3	$\frac{1}{12} = \frac{1}{12} $	$\frac{d^3 x - 2}{2} + \frac{1}{30}$	$\frac{1}{30} = \frac{5}{30}$ $\frac{1}{30} = \frac{5}{30}$ $\frac{1}{30} = \frac{5}{30}$ $\frac{1}{30} = \frac{5}{30}$	middu -2+Δ ⁵ μ 2	<u>=</u>

classmate https://civinnovate.com/civil-engineering-notes/ Hence, the required velocity is 5.33 cm/sec and acceleration is - 45.59 cm/2 # Hhere a the elevation above a datum line of seven points of road are given below: 1500 900 1200 1800 300 1 600 X 0 205 193 201 135 183 149 157 ч 1 of the road at the middle point. gradient find the Q. Using Bessel's formula, find f'(7.5) from the following table: X 7.48 7.47 7.49 7.50 7.51 7.52 7.53 0.198 0.195 h(n)0.193 0.201 0.203 0.208 0.208 So12,  $\frac{dy}{dx} = \frac{1}{h} \left[ \Delta y_0 - \frac{1}{4} \left( \Delta^2_{g-1} + \Delta^2_{y_0} \right) + \frac{1}{12} \Delta^3_{y-1} + \frac{1}{14} \left( \Delta^4_{y-2} + \Delta^4_{y-1} \right) \right]$  $\frac{-1}{120} \frac{\Delta^{5}y-2}{240} - \frac{1}{240} \left( \Delta^{6}y-3 + \Delta^{6}y-2 - \frac{1}{240} \right)$ S. Find FICIO) from the following data: 5 A 11 27 34 +(x) -13 23 899 17315 35606 Solution, -) Here the values of x are not equispaced, we shall Newton's divided difference formula. The divided we

							G	2098	
7:82	ercno	table	ls:		ere esta	5 :	10-17	at a	
x	F(x)		19 DD	2nd DD	3rd D	D .	4 m DC		
3	-13		Ig	16	0.99	8	0.00	2	
5	23	1.4	146	39.96	1.00	3	· p	11	
	899	12	1025	69.04					
7	173	5	2613	19 - Arn	h 43	.d.,.1.,	$\mathbf{n} \in \mathcal{G}$		
9	356	06	in the second	F .0 1	1.15		/	1	
,			2		-			11	
F(x	) = ,F	(20,)	(1) + (2	$x - x_0 - x_1$ )f	(x0, x1, )	(2) +	[372-	2x (20	+ x1 + x2
				$(1 + \chi_2 \chi_0)$					
	+	_		0+x, + x2 +					+ 23 ×0
		+	71, 73+ 2	(x2) - (x0	24 2 + 2	1, 222	3 + 25	x_),	(2X3X
				(0x2) - (x0 )」 \$ (x0, :				<del>*_</del> )>	(2X3X)
								<del>x_)</del> >	(2X3X)
Pu	itting	+ ?	X0 X1 X3		x1, x2, X3	,Xy	)	<del>, «, )</del> )	(2X3X
٩٩	•	+ 1 Ko=3	1 x1=5	)] \$ (20,5	$x_1, x_2, x_3$ $x_3 = 21$	,Xy and	) x=10		(2X3X)
ľ.	we	+ $x_0 = 3$ obtain	$\chi_0 \chi_1 \chi_3$ , $\chi_1 = s$ in,	$J \ddagger (x_0, \cdot)$ , $x_2 = \mu$ , $x_2$	$x_1, x_2, x_3$ $x_3 = 21^{10}$	אע . מחם	) x = 10	. fola	(2X3X)
ľ.	we	+ $x_0 = 3$ obtain	$\chi_0 \chi_1 \chi_3$ , $\chi_1 = s$ in,	)] ‡ (xo, ; , x ₂ =12, x	$x_1, x_2, x_3$ $x_3 = 21^{10}$	אע . מחם	) x = 10	. fola	(2X3X)
ľ.	we	$+ \frac{1}{2}$ $\frac{1}{2}$ $$	$x_0 x_1 x_3$ , $x_1 = s$ in, $2 \times 16 + s$	$] ] f (x_0, \cdot)$ , $x_2 = \mu$ , $x_2$ , $x_2 = \mu$ , $x_2$ , $x_2 = \mu$ , $x_2$	$x_1, x_2, x_3$ $x_3 = 21^{10}$	אע . מחם	) x = 10	. fola	(2X3X)
ľ.	ເມຍ (ມຍິ	$+ \frac{1}{2}$ $\frac{1}{2}$ $$	$x_0 x_1 x_3$ , $x_1 = s$ in, $2 \times 16 + s$	$J \ddagger (x_0, \cdot)$ , $x_2 = \mu$ , $x_2$	$x_1, x_2, x_3$ $x_3 = 21^{10}$	אע . מחם	) x = 10	. fola	(2X3X)
¹ CI0	ເມຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມ	+ 2 $x_0 = 3$ obta 8 + 1 232	$x_0 x_1 x_3$ $x_1 = 5$ $x_1 = 5$ $x_2 = 5$ $x_3 = 5$ $x_4 = 5$ $x_5 =$	$] ] f (x_0, \cdot)$ , $x_2 = \mu$ , $x_2$ , $x_2 = \mu$ , $x_2$ , $x_2 = \mu$ , $x_2$	$x_1, x_2, x_3$ $x_3 = 21^{10}$	, אני מחם אורס.	) x = 10 0002	- frita 2112	
1010	ເມຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມ	+ 2 $x_0 = 3$ obta 8 + 1 232	$x_0 x_1 x_3$ $x_1 = 5$ $x_1 = 5$ $x_2 = 5$ $x_3 = 5$ $x_4 = 5$ $x_5 =$	)] ‡ (xo, f , x₂=⊥, r 23× 0.998	$x_1, x_2, x_3$ $x_3 = 21$ $x_3 = -426$	, × 4 and \$4.0.1	) x = 10 0002	e gola al e a e conta	
¹ CI0	ເມຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມ	+ 2 $x_0 = 3$ obta 8 + 1 232	$x_0 x_1 x_3$ $x_1 = 5$ $x_1 = 5$ $x_2 = 5$ $x_3 = 5$ $x_4 = 5$ $x_5 =$	)] ‡ (xo, f , x₂=⊥, r 23× 0.998	$x_1, x_2, x_3$ $x_3 = 21$ $x_3 = -1426$	, × 4 and \$4.0.1	) x = 10 0002	e gola al e a e conta	
¹ CI0	ເມຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມີຍ (ມ	+ 2 $x_0 = 3$ obta 8 + 1 232	$x_0 x_1 x_3$ $x_1 = 5$ $x_1 = 5$ $x_2 = 5$ $x_3 = 5$ $x_4 = 5$ $x_5 =$	) ] ‡ (xo, f , x₂=⊥, r 23× 0.998	$x_1, x_2, x_3$ $x_3 = 21$ $x_3 = 426$	, × 4 and \$4.0.1	) x = 10 0002	e gola al e a e conta	
¹ CI0	ωe ) = 1 - =	+ 2 $x_0 = 3$ o b h a 8 + 1 232	$x_0 x_1 x_3$ $x_1 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_3 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_3 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_3 = 5$ $x_2 = 5$ $x_3 = 5$ $x_4 =$	) ] ‡ (xo, f , x₂=⊥, r 23× 0.998	$x_1, x_2, x_3$ $x_3 = 21$ $x_3 = -1426$	, ~ 4 and 	) x = 10 0002	e gola al e a e conta	
¹ CI0	ωe ) = 1 - =	+ 2 $x_0 = 3$ o b h a 8 + 1 232	$x_0 x_1 x_3$ $x_1 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_3 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_3 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_3 = 5$ $x_2 = 5$ $x_3 = 5$ $x_4 =$	) ] ‡ (x ₀ , ; , x ₂ = ⊥, r 23× 0.998	$x_1, x_2, x_3$ $x_3 = 21$ $x_3 = -1426$	, ~ 4 and 	) x = 10 0002	e gola al e a e conta	
¹ CI0	ωe ) = 1 - =	+ 2 $x_0 = 3$ o b h a 8 + 1 232	$x_0 x_1 x_3$ $x_1 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_3 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_3 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_3 = 5$ $x_2 = 5$ $x_3 = 5$ $x_4 =$	) ] ‡ (x ₀ , ; , x ₂ = ⊥, r 23× 0.998	$x_1, x_2, x_3$ $x_3 = 21$ $x_3 = -1426$	, × 4 and ≥1	) x = 10 0002	e gola al e a e conta	2
¹ CI0	ωe ) = 1 - =	+ 2 $x_0 = 3$ o b h a 8 + 1 232	$x_0 x_1 x_3$ $x_1 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_1 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_2 = 5$ $x_3 = 5$ $x_4 =$	) ] ‡ (x ₀ , ; , x ₂ = ⊥, r 23× 0.998	$x_1, x_2, x_3$ $x_3 = 21$ $x_3 = -1426$	, × 4 and ≥1	) x = 10 0002		2

https://civinnovate.com/civil-engineering-notes/

6	imate
Date	
Page	
C.de-	

Maxima and Minima. Newton's forward Interpolation formula is:  $y = y_0 + P \Delta y_0 + P(P-1) \Delta^2 y_0 + P(P-1)(P-2) \Delta^3 y_0 + \dots$ 21 31 Differentiating it wrt 'P' we get Differentiating it wrt 'P' we get dy = Ayo + 2P-1 A²yo + 3P²-6P+2 A³yo + ----dP 2 6 for maxima or minima dy =0  $\Delta y_0 + 2P - 1 \quad \Delta^2 y_0 + 3P^2 - 6P + 2 \quad \Delta^3 y_0 = 0$ Substituting the value of  $\Delta y_0$ ,  $\Delta^2 y_0$ ,  $\Delta^3 y_0$  from the difference table, we colve this quadratic for P. Then the corresponding values of x are given by  $x = x_0 + ph$  at which y is maximum or minimum. Q. From the table below, for what value of x, y is minimum 3 4 5 x 0.205 0.240 0.259 6 y 7 8 0.262 0.250 Solution, The difference table is: 0.224 =

https://civinnovate.com/civil-engineering-notes/  $\Delta^2$  Har  $\Delta^3$  as  $2^{-1}$ y ∆y x 0 -0.016 0.035 0.205 3 0.240 0.019 -0.016 1×10-3 4 -0.015 1×10-3 0.003 0.259 5 -0.014 produkt and down the 0.262 6 -0.012 0.250 7 -0.026 0.224 8 h=1  $p=\frac{21-20}{h}$ Taking Xo=3, Newton's forward difference formula. Dyo + 2Pil D²yo + 3P²-6P+2 D³yo = 0 6 or, 0.035 +  $2(x-3) - 1 \times (-0.016) + \left[\frac{1}{2}(x-3)^2 - (x-3) + \frac{1}{3}\right]$ = 0 xo  $0.035 = 0.016x + 0.048 - 8x10^{-3} = 0$ Cr, WER ASH  $\chi = 5.6875$ P = 2.6875 10 Now, y = 0.205 + P(0.035) + P(P-1) + (-0.06) - 0 $(\mathcal{F})$ = 0.205 + 2.687 × 0.035 + 2.687(2.687-1) (-0.016) - 4 = 0.2628Se . 12.  $Minimum \quad x = 75.6875$ ... y = 0.2628. 4 Man Allen + MATT, Provide

https://civinnovate.com/civil-engineering-notes/ classmate Date Numerical Integration: (1)Newton's Cote # Formula : let F(x) dx where f(x) is determined I = (b by Interpolation tochnique. Newton 's from Interpolation As we know provid formula,  $g(x) = g_0 + P \Delta y_0 + P(P-1) \Delta^2 y_0 + P(P-1) R^2 y_0 + ...$ 21 31and, P= x-x0 h À  $\frac{dP}{dx} = \frac{1}{h}$ dx = h dPor, When x=x0, p=0 When  $x = x_0 + nh$ , p = n4 20 Bth Zotzh Nothh  $\rightarrow \mathbf{x}$ Notnh :. I = n. . . call f(x) dx xo  $\frac{1}{20+nb} \left[ \frac{y_0 + P_{\Delta y_0} + P(P-1)}{21} \Delta^2 y_0 + \frac{P(P+1)(P-2)}{31} \right]$ = dr

https://civinnovate.com/civil-engineering-notes/ classmate  $= h \int_{C} \left[ \frac{y_0}{2} + \frac{P \Delta y_0}{2} + \frac{P(P-1)}{2} \frac{\delta^2 y_0}{2} + \frac{P(P-1)(P-2)}{3} \frac{\Lambda^3 y_0}{2} + \frac{1}{2} \frac{1}{3} \right]$ dP  $I = h \left[ ny_{0} + \frac{n^{2}}{2} \Delta y_{0} + \left( \frac{n^{3}}{3} - \frac{n^{2}}{2} \right) \frac{\Delta^{2} y_{0}}{2!} + \left( \frac{n^{4}}{4} - \frac{n^{3}}{3!} + \frac{n^{3} y_{0}}{3!} + \frac{n^{2}}{3!} \right) \frac{\Delta^{3} y_{0}}{3!} + \frac{n^{2}}{3!}$ which is the general expression for numerical integration and is called "General Newton - Cotes Formula". 831 Sec. 1 Trapezoidal Rule (2 point rule): Imp As we know,  $I = \int_{x_0}^{x_0 + nh} f(x) dx$ neren  $= h \left[ n \frac{1}{40} + \frac{n^2}{2} \frac{1}{40} + \frac{(n^3 - n^2)}{3} \frac{n^2}{2} \frac{1}{21} + \frac{(n^4 - n^3 + n^2)}{4} \frac{n^3}{31} \frac{1}{31} \right]$ + - Kinned of the D Now putting n=1, in eq2 () and neglecting 2nd higher order difference, we get, an d  $I = \int_{x_1}^{x_1} f(x) dx$ = h ( yo + Ayo)  $h\left(y_0+y_1-y_0\right)$ h  $(2y_0 + y_1 - y_0)$  $-h\left(\frac{y_0+y_1}{2}\right)$ where h = b - a

https://civinnovate.com/civil-engineering-notes/

Similarly,  $I = \int_{x_1}^{x_2} f(x) dx$  $= h\left(\frac{y_1+y_2}{2}\right)$ Ond so on. This is simple trapezoidal rule. Composite trapezoidal rule # Hence, the given interval [a, b] is further sub-divided into in equal parts. This is done to improve accuracy and non-linear functions an be better explained by this method than simple one. can the integral can be given by:  $1 = \int_{a}^{b} f(x) dx$ Then =  $\int_{x_0}^{x_1} t(x) dx + \int_{x_1}^{x_2} t(x) dx + \dots + \int_{x_0}^{x_0} t(x) dx$ 31 1 1 Xa X xn

https://civinnovate.com/civil-engineering-notes/ classmate  $I = \frac{h}{2} \left[ \frac{y_0 + y_1}{1 + h} \left[ \frac{y_1 + y_2}{1 + h} \right] + \frac{h}{2} \left[ \frac{y_{n+1} + y_n}{1 + h} \right]$ · I = h [ (go+ 4n) + 2 (y1 + y2 + y3 + ... + yn-1)] This is composite trapezoidal rule. Simpson's 1/3 rule (3 point) As we know,  $I = \int_{f(x) dx}^{x_0 + nh} f(x) dx$ WILL RE 2  $= h \left[ n y_0 + \frac{n^2}{2} \Delta y_0 + \left( \frac{n^3}{3} - \frac{n^2}{2} \right) \frac{\Delta^2 y_0}{\alpha l} \right]$  $-\left(\frac{n^{4}}{u}-n^{3}+n^{2}\right)\Delta^{3}y_{0}+\cdots$ Putting n= 2) and neglecting 3rd and higher order  $\frac{difference}{I} = \begin{pmatrix} \chi_2 \\ f(\chi) \\ d\chi \end{pmatrix}$  $= h \left[ 2y_0 + 2(y_1 - y_0) + \left( \frac{8}{3} - \frac{y}{2} \right) \left( \frac{y_2 - 2y_1 - y_0}{3} \right)$ h [ 2y0 + 2y1 - 2y0 + 1 y2 - 2y1 + 1 y0]  $\therefore I = \frac{h}{2} \left[ \frac{y_0 + 4y_1 + 4y_2}{2} \right]$ This is simple simpson's 1/3 rule.

https://civinnovate.com/civil-engineering-notes/ # composite Simpson's grule: the total Interval is further divided into in a Here, and n must be even. interval  $\frac{1}{x_{0}} = \int_{x_{0}}^{x_{2}} f(x) \, dx + \int_{x_{1}}^{x_{0}} f(x) \, dx + \dots + \int_{x_{n-2}}^{x_{n-2}} f(x) \, dx + \dots + \int_{x_{n-2}}^{x_{n-2}} f(x) \, dx$  $= \frac{h}{2}(y_0 + 4y_1 + y_2) + \frac{h}{2}(y_2 + 4y_3 + y_4) + \dots + h[g_{n_1}]$  $: I = h \left[ (y_0 + y_n)_+ 4 (y_1 + y_3 + y_5 + - - y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + y_4 + y_6 + ... + y_{n-1})_+ 2(y_2 + ... + y_{n-1})_$ This is composite simpson's 1/3 formula. # Simpson's 3/2 rule (4-point) As we know poom Nowton's cote formula Putting n=3 and neglecting 4th and higher order,  $I = \begin{pmatrix} x_3 \\ y \end{pmatrix} \begin{pmatrix} x \end{pmatrix} dx$ :. I = 2h [yo + 3y, + 3y2 + y3] This is simple simpson's 3/8 rule.

https://civinnovate.com/civil-engineering-notes/ # composite 3/8 rule in a second second 1.1 'n' must be multiple of 3. K del  $I = \int b f(x) dx$  $= \int_{0}^{2} f(x) dx + \int_{0}^{2} f(x) dx + \dots + \int_{0}^{2} f(x) dx$  $I = 3b \left[ (y_0 + y_0) + 3(y_1 + y_2 + y_4 + y_5 + y_4 + y_8 + ... + y_{n+1}) \right]$ + 2 (y3+ y6+ yg+ 1, + yn-3)] This is composite simplon's 3/8 formula. I the second of the Q. Evaluate 16 dr by using 1) Trapezoidal rule 2) Simpson's 1/3 rule , Mrs -3> Simpson 's 3/2 rule. · h = 10-a 1=1 6-0 = 1,0 + 1 Suppose n=6 + 1 ((s)) + ((s)) + () Divide the interval (0,6) into 6 parts each of width n=1. The values of  $f(x) = \frac{1}{1+x^2}$ y 1 0.5 02 0.1 0.0588 0.0385 0.027

https://civinnovate.com/civil-engineering-notes/ classmate Trapezoidal rule,  $\int_{0}^{6} \frac{dx}{1+x^{2}} = \frac{1}{2} \left[ (y_{0} + y_{0}) + 2(y_{1} + y_{2} + y_{3} + y_{4} + y_{5}) \right]$ By Trapezoldal rules 1) = 1 [(1+0.027) + 2(0.5+0.2+0.1+0.05)]+ 0.0385) :.I = 1.4108 # 11/11 By Simpson's 1/3 rule 2)  $I = \int_0^6 dx$  $= \frac{h}{3} \left[ (y_0 + y_6) + 4 (y_1 + y_3 + y_5) + 2 (y_2 + y_4) \right]$  $= \frac{1}{2} \left( \frac{1}{10.027} + \frac{40.5}{0.058} + 0.1 + 0.0385 \right) + 2(0.2 + 0.0588)$ stoulous a 1-3662 * 1) Trapezorial In 3) By Simpson's 3/8 rule, ally is strangenil a  $\frac{1}{\sqrt{2}} = \int_{0}^{6} \frac{dx}{1+x^{2}}$ dui à 2' magnit (?  $= \frac{3h}{8} \left[ (y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2y_3 \right]$  $= 3 \left[ (1+0.027) + 3(0.5+0.2+0.0588 + 0.0385) \right]$ 2 (0.1) milli= 1.3571 11 (s.e) institut st should x41 - (1) + p (11) 10 - 11 MA 1 3 r à. and the La 7-0 1

https://civinnovate.com/civil-engineering-notes/ classmate Q. Evaluate the Integrial  $\int_{0}^{1} \frac{\chi^{2}}{1+\pi^{3}} dx$ , using Simpson's 1/3 rd rule compare the error with the exact value. > solution, 1 1 1 let as divide the interval (0,1) into 4 equal parts so, that h = b - a = 1 - 0 = 0.25USES MARKET AREA 0.25 0.50 0.75 1.00 0 x 4 O 0.06153 0.22222 0.39560 0.5 121 - 11 11  $I = \int_0^1 \frac{\chi^2}{1+\chi^3} d\chi$  $= \frac{b}{2} \left[ (\frac{y_0}{y_0} + \frac{y_4}{y_1}) + 2(\frac{y_2}{y_2}) + 4(\frac{y_1}{y_1} + \frac{y_3}{y_3}) \right]$ = 0.25 [0.5 + 0.44444 + 1.82852] = 0.23108 # Also,  $\int_{D}^{1} \frac{x^{2}}{1+x^{3}} dx$  $= 1 | \log (1+x^2) |^1$ 1 loge 2 Ξ = 0.23/05 Thus, the error = 0.23108 - 0.23105 + 0.00003 * =

classmate https://civinnovate.com/civil-engineering-notes/ Q. Use the Trapezoidal rule to estimate the Integral  $\int_0^2 e^{\chi^2} d\chi$  taking the number of 10. intervals. Here,  $f(x) = e^{x^2}$  and n = 10, h = b - a = 0.2 million =) So13 1.2 1.4 1.6 0.8 1.0 x 0 0.2 0.4 0.6 4.2206 7.0993 12.93 2.1782 1.4333 1.8964 y 1 1.0408 1.1735 1.8 2.0 54.5981 25.5337 Ans: 17.0621 Q. Use Simpson's 1/3rd rule to find 10.6 e-x2 dx by taking seven ordinates. =) Sol², Divide the interval (0,0.6) into 6 parts each of width  $f(x) = e^{-x^2}$ h = 0.1N= 6

https://civinnovate.com/civil-engineering-notes/ classmate Romberg. Integration: 6 C 1 the Newton's Lote Quadrature formula it is observed that from its integration can be improved by: 111 - 31 + - 6 (2.) +1) Increasing the no. of sub-intervals (making h small) **'**) Increasing the order of Integration polynomial. 11) Formula  $\frac{I_{1}^{*} = I_{2} + I(I_{2} - I_{1})}{J_{2}^{*} = J_{3} + I(I_{3} - J_{2})}$  $I_1^{**} = I_2^{*} + \underline{1} (I_2^{*} - I_1^{*})$ .: Best Estimate = More accurate + 1 (More accurate - less accurate) Q. Evaluate (1 dz using Romberg Integration Take h = 0.5, 0.25, 0.125So12, h= 0.5  $\therefore f(x) = 1$ 1+22 0 0.5 1 1 0.8 0.5 α 4 Using. Trapezoidal rule we have:  $I_1 = \frac{b}{2} \left[ (1+0.5) + 2*0.8 \right]$ = 0.715 ±

https://civinnovate.com/civil-engineering-notes/ Taking h= 0.25 it is ful of sology 0.5 0.75 0 0.25 T X 0.5 1 0.9911 0.8 0.64 4 11:11  $I_2 = \frac{h}{2} \left[ (1+0.5) + 2*(0.9411+0.8+0.64) \right]$ = 0.782775 4 12 121 Taking h= 0.125 0.25 0.375 0.625 0.75 0.875 × 0 0.125 2:0 0.9911 0.8767 1 0.9846 D.8 0.7191 0.64 0.5663 0  $J_3 = h [(1+0.5) * + 2 * (0.9845 + 0.9411 + 0.8767 + 0.84)]$ 0.7191+0.64+0.5663) = 0.7847  $I_1^* = I_2 + I(J_2 - I_1)$ = 0.7852  $I_2^* = I_3 + \frac{1}{2}(I_3 - I_2)$ = 0.78536  $I_1^{**} = I_2^{*} - (I_2^{*} - I_1^{*})$ x + 1 = 0.785413 ŧ

https://civinnovate.com/civil-engineering-notes/ classmate otherwise change -> limit -1+01 me range # gaussian Integration: into -10 - This method is used for non-equal interval of scorpe. formula is expressed as:  $\int_{-1}^{1} f(x) dx = W_1 f(x_1) + W_2 f(x_2) + \dots + W_n f(x_n)$   $= \sum_{i=1}^{n} W_i f(x_i) = 0$ Gaussian where, wi = weight and xi = abscissae Table (161) 1 5 A  $\frac{x_1}{x_1 - \frac{1}{\sqrt{2}}} \quad \text{and} \quad x_2 = \frac{1}{\sqrt{3}}$ Weight (W:) n wli = Wz = 12  $n_{1} = -\sqrt{3} \frac{3}{5}$   $n_{2} = 0$   $n_{3} = \sqrt{3} \frac{3}{5}$  $W_1 = 5/9$ 3 W2 = 8/9  $W_3 = 5/q$ Q. Evaluate: Using 2 point formula:  $\int_{-1}^{1} e^{x} dx$ => solution; Using Gaussian two point formula, We have,  $I = \omega_1 f(x_1) + \omega_2 f(x_2)$  $= 1 * + (-\frac{1}{\sqrt{3}}) + 1 * + (\frac{1}{\sqrt{3}})$ = 0-43 + 0/13 = 0.5613 + 1.7813 : I = 2.3426 #

-		
$\frown$	Date	
~	Page	(

#	changing the limit of integration:
Q .	Evaluate fl dx wing 3-point Gaussian gaadrature formula
=	Solution
	$\therefore \chi = (b-q) u + (b+q) = \int \int interval not in -1 to L.$
	$= \frac{(1-0)}{2} \frac{y}{4} + \frac{1+0}{2}$
	= 14 + 1 2 - 2
	$\therefore x = 1 (u+1)$
	2. Constitute of
	dx = 1
	du 2
	When $x=0$ in $O$ ,
	$0 = \frac{4}{2} + \frac{1}{2}$
	When x=1 in eq20
	$l = \frac{4}{2} + \frac{1}{2}$
	-'. 4=1
	$\therefore I = \int dx = \int^{\perp} du/2$
	$I = \int \frac{dx}{1+x} = \int \frac{d4/2}{1+\frac{1}{2}(4+1)}$
	= (1 dy)
	-1 3+4
	= $W_1 g(u_1) + W_2 g(u_2) + W_2 g(u_3)$
	5 5

https://civinnovate.com/civil-engineering-notes/ classmate  $+ \frac{8}{9}\left(\frac{1}{3+0}\right) + \frac{5}{9}\left(\frac{1}{3+1}\right)$ 3+(-13/5) = 0.2496 + 0.29629 + 0.14718 = 0.69807 CACH in the fit industry this get which proved that is a contract. CHAPTER-7 Sola of Partial Differential Eq2s. S. p. 9 Classification of partial differential eq= (Elliptic parabolic and Hyperbolic) The general lineas pole partial differential eg? of the second order in two dindependent variables is of the form.  $\frac{A(x,y)}{\partial x^{2}} + \frac{B(x,y)}{\partial x^{2}} + \frac{C(x,y)}{\partial y^{2}} + \frac{B(x,y)}{\partial y^{2}} + \frac{B(x,y$ where A, B, C are the co-officients may be constants or Depending on the values of these co. efficients may be classified into one of the 3-types of eq2s namely, the Elliptic, it B2-4AC<0 Parabolic, if B2-4AC =0 Hyperbolic, if B2-4AC >0 Numeral And C. Linking 10111

classmate

Eg: Classify the following eq=:  $\frac{4}{\partial y^2} + \frac{2}{\partial x} + \frac{2}{\partial y} = 0$  $\frac{\partial^2 u}{\partial x^2}$  +  $\frac{u}{\partial x^2 }$   $\frac{\partial^2 u}{\partial x \partial y}$ Solution, thic eq= with general linear portial differential comparing. eq2 We find; A=1, B=4, C=4 : B2-4AC = 42 - 4x1 x4 = 16-16 = 0 B2 - 4AC = 0 So, the eq2 is parabolic. Elliptec Egns : 1) Laplace eqn.  $\nabla^2 U =$  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ = 0 Poisson's eq2: 2)  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = F(x, y)$ 3) Laplace Eq2. 5 point formula - standard 1-1,j 1+1 ) 1,5 1, 1-1

https://civinnovate.com/civil-engineering-notes/ classmate Fi-1, j + Fi, j+1 + Fi+1, j + Fi, j-1 - 4 Fi, j = 0  $\frac{F_{i,j} = 1}{4} \left( \frac{F_{i+1,j} + F_{i-1,j} + F_{i,j+1} + F_{i,j+1}}{4} \right)$ Q. Consider a steed plate of size 15 cm x 15 cm. If two of the sides are held at 100's and the other two sides are held at o's what are the steady state temperature at interior points assuming a grid size of 5cm x 5cm ⇒ solution: 100 100 100 FZ 0, pri 40 atria sil 100 Fy 100 F3 LA LEVET : Charles 014 PL A St . white A LA The system of equation is as follows: At point 1 :  $F_2 + F_3 - 4F_1 + 100 + 100 = 0$ At point 2: F1 + Fy - 24F2 + 100+ 0=0 At point 3: F1+F4-4F3+100+0=0 At point 4:  $F_2 + F_3 - 4F_4 + 0 + 01 = 0$ 1.0  $-4F_1 + F_2 + F_3 + 0 = -200$  $f_1 - 4f_2 + 0 + f_4 = -100 - 0$  $F_1 + 0 - 4F_3 + F_4 = -100 - 00$  $0 + F_2 + F_3 - 4F_4 = 0 - 0$ Solving (D, (D, (D, (D)) we get  $f_1 = 75$ ,  $f_2 = 50$  (1)  $F_3 = 50$ ,  $F_4 = 25$ 1 + p(D - 1 + 1

https://civinnovate.com/civil-engineering-notes/ # Poisson's Eq-Solve the Poisson's eq²  $\nabla^2 F = 2x^2y^2$  over the square domain  $0 \le x \le 3$  and  $0 \le y \le 3$  with F = 0 on the boundary and h=1 =) Solution: 00 0 - - y=3 0 Fr F 9=2 Fy Fz g=10 2 × 2 ×= 3 The system of eqts is as follows: At point 1:  $0 + 0 + F_2 + F_3 - 4F_1 = 2 \cdot 1^2 \cdot 2^2$ . i.e.  $F_2 + F_3 - 4F_1 = 8 - 0$ At point 2:  $0 + 0 + F_1 + F_4 - 4F_2 = 2 2^2 2^2$ 1.e  $F_1 - 4F_2 + F_4 = 32 - 0$ At point 3:  $0 + 0 + F_1 + F_4 - 4F_3 = 2 \cdot 1^2 \cdot 1^2$ ie  $F_1 + F_4 - 4F_3 = 2 - 3$ At point 4: 0+0+  $F_2 + F_3 - 4F_4 = 22^2 I^2$ -0 ie  $F_2 + F_3 - 4F_4 = 8$ Rearsanging the eq2 10 to (1) we get.  $-4F_1 + F_2 + F_3 = 8$  $F_1 - 4F_2 + F_4 = 32$  $F_{1} - 4F_{3} + F_{4} = 2$ fy + F2 - 4 Fy = 8

https://civinnovate.com/civil-engineering-notes/ Date_____ Solving these eq? by elimination method, we get  $f_1 = -\frac{22}{4}$ ,  $f_2 = -\frac{43}{4}$ ,  $f_3 = -\frac{13}{4}$ ,  $f_4 = -\frac{22}{4}$ 9. Solving the above problem by yours-seidal literation method. By rearranging the eq2s, we have,  $F_1 = 1$  ( $F_2 + F_3 - 8$ )  $F_2 = 1 (F_1 + F_2 - 32)$  $f_3 = 1 (f_1 + f_4 - 2)$  $f_{4} = \frac{1}{4} (f_{3} + f_{3} - 8)$  $F_1 = F_4$   $F_1 = \frac{1}{4}(F_2 + F_3 - 8)$  $f_2 = \frac{1}{4} (2F_1 - 32)$ F3 = 1/4 (2F1-2) Assuming starting values as 12=0=13 lteration! ti=-2, f==-9,f==-1.5  $\frac{|t_{1}-37|}{8}, \quad t_{2}=-\frac{165}{16}, \quad t_{3}=-\frac{45}{16}$ toration batar

classmate Date_ Page

	8
Q	Solve the elliptic eq= yxx + Uyy=0. for the following
	square mesh with boundary values:
	500 1000 500
	2000 A 144 45 46 B 2000
	1500 41 42 49 1000
	0 500 1000 500 0
J	$50^{\circ}$
	ut 0, , 42 ,
	mesh points. since the boundary values of a are symmetrical
	about AB.
a	$u_7 = u_1$ , $u_8 = u_2$ , $u_3 = u_9$
	Also, the values of a being symmetrical about CD
	$\therefore U_3 = U_1 , U_6 = U_4 , U_9 = U_7$
	a = 03 = 01
-	
	Thus, It is sufficient to find the values U1, U2, U4, US
_	Now,
	We carry out the Iteration process using the standcu
	fermulae.
	$u_1^{(n+1)} = 1 \left[ 1000 + u_2^{(n)} + 500 + u_4^{(n)} \right]$
	4
	$U_{2}^{(n+1)} = \frac{1}{4} \left[ U_{1}^{(n+1)} + U_{3}^{(n)} + 1000 + U_{5}^{(n)} \right]$
	4 - 1
	$U_{24}^{(n+1)} = \int 2000 + U_{5}^{(n)} + U_{1}^{(n+1)} + U_{7}^{(n)} ]$
+	$0_{34} = \frac{1}{4} \left[ 2000 + 0_{7}^{2} + 0_{7}^{(1)} + 0_{7}^{(1)} \right]$
	$U_{s}^{(n+1)} = \frac{1}{n} \left[ U_{q}^{(n+1)} + U_{c}^{(n)} + U_{2}^{(n+1)} + U_{g}^{(n)} \right]$
	9 L

U, (n+1) = https://civinnovate.com/(civil-enginteesting) notes/ Uy (n)]  $U_2^{(n+1)} = \int [U_1^{(n+1)} + U_1^{(n)} + 1000 + U_5^{(n)}]$  $U_4^{(n+1)} = \frac{1}{4} \left[ 2000 + U_5^{(n)} + U_1^{(n+1)} + U_1^{(n)} \right]$  $U_{5}^{(n+1)} = \frac{1}{11} \left[ U_{4}^{(n+1)} + U_{4}^{(n)} + U_{2}^{(n+1)} + U_{2}^{(n)} \right]$ Now, we find their initial value in the following order:  $U_{s} = \frac{1}{4} \left[ 2000 + 2000 + 1000 + 1000 \right]$ diagonal formula = 1500 (std formala.) 01 1000 Uy Ur U. 2000  $U_1 = 1 [0 + 1500 + 1000 + 2000]$ 108 <del>Ug</del> 07 1000 5000 10000 Con for = 1125 (Diagonal formula)  $U_2 = 1$  [1000 + 1125 + 1500 + 1125] = 1188  $U_{y} = \int [1125 + 2000 + 1125 + 1500]$ = 1438 Nov, 1st iteration, (at n=0)  $u_1' = \frac{1}{1000 + 1188 + 500 + 1438} = 1032$  $U_2' = \int \left[ 1032 + 1125 + 1000 + 1500 \right] = 1164$ 

Classmate Page _____

	Iteration U, U, U, U, U, U, U,
	0 10.72 1164 1414 1301
	1 1020 1082 1338 1251
	2 982 1063 1313 1201
	the state of the s
	oling pixed the working collection
Q.	Colum the loology and the loop for the former of the forme
ц.	Solve the laplace eq2.
	Unx + (Uyyer O bentind) 2.1
	given that:
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0
	0 07 08 09 17
	0 8.7 12.1 12.5
	8. 12. 1. 5
	$U_{1}^{(n+1)} = 1 \Gamma O + U_{2}^{(n)} + 11 \cdot 1 + U_{4}^{(n)}$
	$0_{1}^{\prime} = 1 0 + 0_{2}^{\prime} + 11 \cdot 1 + 0_{4}^{\prime}$
	$u^{(n+1)} = 1 T U^{(n+1)} + U^{(n)}_{0} + 17 + U^{(n)}_{5} 7$
	4 (n+1) r (n+1) d al (n+1) (n) 7
	$V_3 = 1 V_2 + 21.9 + 19.1 + V_6$
	4 4 (1.(1)) (1.(1))
	$U_{4}^{(n+1)} = 1 \left[ 0 + U_{5}^{(n)} + U_{1}^{(n+1)} + U_{7}^{(n)} \right]$
	4 4 7

https://civinnovate.com/civil-engineering-notes/ classmate Date  $U_{s}^{(n+1)} = \frac{1}{11} \left[ U_{4}^{(n+1)} + U_{5}^{(n)} + U_{2}^{(n+1)} + U_{8}^{(n)} \right]$  $U_{\mathbf{s}}^{(n+1)} = \frac{1}{11} \left[ U_{\mathbf{s}}^{(n+1)} + 21 + U_{\mathbf{s}}^{(n+1)} + U_{\mathbf{g}}^{(n)} \right]$  $U_{7}^{(n+1)} = \int_{U_{7}} \left[ 0 + U_{8}^{(n)} + U_{4}^{(n+1)} + 8.7 \right]$  $U_{g}^{(n+1)} = I \left[ U_{7}^{(n+1)} + U_{g}^{(n)} + U_{\zeta}^{(n+1)} + 12.1 \right]$  $U_{g}^{(n+1)} = \int \left[ U_{g}^{(n+1)} + 17 + U_{g}^{(n+1)} + 12 \cdot 5 \right]$ Now, find the initial values,  $U_{c} = 1 [0+17+21+12.1]$ = 12.5 (Standard formula)  $U_1 = 1 [0 + 12.5 + 0 + 17] = 7.4 (diagona) formula)$  $U_3 = 1$  [12.5 + 18.6 + 17 + 21] = 17.28 (D.F)  $U_2 = 1 [7.4 + 17.28 + 17 + 12.5] = 13.55$ (c.F)  $U_{7} = \frac{1}{10} \begin{bmatrix} 0 + 12 \cdot 1 + 0 + 12 \cdot 5 \end{bmatrix}$ = 6.15 (D.F)Uz - 1 [0+12.5 + 7.4+6.15] = 6.52 (D.F)

a second and the second of the second sec

https://civinnovate.com/civil-engineering-notes/ classmate  $U_g = \frac{1}{4} \left[ \frac{12.5 + 9}{4} + \frac{12.1 + 21}{12.1 + 21} \right] = 13.63$  (D.F)  $U_8 = \frac{1}{4} \begin{bmatrix} 6.15 + 12.5 + 12.1 + 13.65 \end{bmatrix} = 11.12 (S.F)$  $U_{G} = \frac{1}{4} \left[ 12.5 + 21 + 17.28 + 13.65 \right] = 16.12 \quad (S. =)$ Calculation in tabular form: Ibrahom UI U2 Uz Uy Us UG UJ US Us 7.79 13.64 12.84 6.61 11.88 16.09 6.61 11.06 12.238 17.83 6.58 7.84 16.64 11.84 6.58 16.23 11.19 2 14.30 .

	CLASSM	ste
5	Date	
F	Page	

#	Solution of Elliptic Equation by Relaxation Method:						
	1 102 104 1						
	$\nabla^2 U = 0$						
	$U_{1} = \frac{1}{4} \begin{bmatrix} U_{5} + U_{3} + U_{2} + U_{6} \end{bmatrix} \qquad $						
	1 ()= + 1) + 1) + 11 + 11 + 11 + 11 + 11 +						
	$\therefore \ U_5 + U_3 + U_6 - 4U_1 = 0$						
	It is be the residual at the mesh point A, then						
	$f_1 = U_5 + U_3 + U_2 + U_6 - 4U_1 - 0$						
	Similar maldual at the section of the						
	Similarly residual at the point B, is given by						
	$f_2 = 0_1 + 0_4 + 0_7 + 0_8 - 40_2$ and so on.						
	)						
Ø.	Solve by Relaxation method. The square region with squa						
	mesh as shown in figure.						
	Une line line -						
2000							
	$2000 CU_1 U_2 D O$						
	1000-0						
	500 0						
	Standard 5- point formula for the given eq2 is:						
	Standard 5- point formula for the given egit is:						
	Standard 5-point formula for the given eg2 is:						
	$U_1 = 1 \int 2000 + U_2 + U_3 + 500 \int$						
	$U_1 = \frac{1}{4} \left[ 2000 + U_2 + U_3 + 500 \right]$						
	$U_1 = 1 \int 2000 + U_2 + U_3 + 500 \int$						
	$U_{1} = \frac{1}{4} \left[ 2000 + U_{2} + U_{3} + 500 \right]$ $U_{2} = \frac{1}{4} \left[ U_{1} + 0 + U_{4} + 0 \right]$ $\frac{U_{2}}{4}$						
	$U_{1} = \frac{1}{4} \left[ 2000 + U_{2} + U_{3} + 500 \right]$ $U_{2} = \frac{1}{4} \left[ U_{1} + 0 + U_{4} + 0 \right]$ $\frac{U_{2}}{4}$						
	$U_1 = \frac{1}{4} \left[ 2000 + U_2 + U_3 + 500 \right]$						
	$U_{1} = \frac{1}{4} \left[ 2000 + U_{2} + U_{3} + 500 \right]$ $U_{2} = \frac{1}{4} \left[ U_{1} + 0 + U_{4} + 0 \right]$ $\frac{1}{4}$ $U_{4} = \frac{1}{4} \left[ U_{3} + 500 + 1000 + U_{2} \right]$ $\frac{1}{4}$						
	$U_{1} = \frac{1}{4} \left[ 2000 + U_{2} + U_{3} + 500 \right]$ $U_{2} = \frac{1}{4} \left[ U_{1} + 0 + U_{4} + 0 \right]$ $\frac{1}{4}$ $U_{4} = \frac{1}{4} \left[ U_{3} + 500 + 1000 + U_{2} \right]$ $\frac{1}{4}$						
	$U_{1} = \frac{1}{4} \left[ 2000 + U_{2} + U_{3} + 500 \right]$ $U_{2} = \frac{1}{4} \left[ U_{1} + 0 + U_{4} + 0 \right]$ $\frac{1}{4}$ $U_{4} = \frac{1}{4} \left[ U_{3} + 500 + 1000 + U_{2} \right]$ $\frac{1}{4}$						

Date https://civinnovate.com/civil-engineering-notes/  $U_1 = \frac{1}{4} \left[ 2000 + 0 + 1000 + 500 \right] = 875$  std formula.  $U_{4} = \frac{1}{2} [1000 + 500 + 1000 + 0] = 625$  std formula Un = 1 [625 + 0 + 875 + 0] = 375 stod formula NO0, Hence, the calculation of residual at U1, U2, U3, U4 are r = 2000 + 375 + 1000 + 500 - 4× 875 = 375 12 = 875 + 625 + 0 + 0 - 4× 375 = 0  $r_3 = 1000 + 875 + 2000 + 625 - 4 \times 1000$ = 500 ry = 1000 + 375 + 500 + 1000 - 4×625 375 Now, the modified values of U1, U2, U3 and U4 are:  $U_1 = 1$  [ 2000 + 375 + 1000 + 500] - Roand no - .969 = · 875 + 94 Tresidue  $U_2 = \frac{1}{U} \left[ 0 + 0 + 625 + 875 \right]$ = 375 +0

classmate https://civinnovate.com/civil-engineering-notes/ Date 1000 + 875 + 625 + 2000 V3 = 1125 -= 1000 + 125  $\frac{1}{4} \begin{bmatrix} 1000 + 1000 + 500 + 375 \end{bmatrix}$ 04 = 719 -625 + 94E Again modified value of U, U2, U3, U4 are:  $U_1 = \frac{1}{4} \left[ 2000 + 300 + 375 + 1125 \right]$ 41 1 GV 0 . 1000 -= 969 +31 [0+0+ 719+ 969] U2 = = 422 375+47 7 1000 + 2000 + 969 + 7197 U3 = 1172 = 1125 + 47 -1000 + 500 + 1125 + 375] Uy = **150** -719+31 =

1

classmate Date Page .

1	
5×30	$1000 \pm 1000 \pm 700 = 94$
str	$r_1 = 2000 + 422 + 1172 + 300 - 4 \times 1000 = 94$
	$r_2 = 1000 + 0 + 750 + 0 - 4 \times 422 = 62$
	$r_3 = 1000 + 1000 + 2000 + 750 - 4 \times 1172 = 62$
	ry = 1172 + 500 + 1000 + 422 - 4x730 = 94
	Modified values of U1, U2, U3, U2 are
	$v_1 = 1023.5$
	= 1000 + 23.5
5~	Uz = 437-5
N.	= 422 + 15-5
-1	A THE FAIL FLOOR FOR THE FLOOR AND A
	03 = 1187-5 = 1172 + 15.5
1	U7 = 773.5 = 750 + 23.5
	The residue is.
-~	n, =
	$r_2 =$
••••••••••••••••••••••••••••••••••••••	
	r3 =
	ſų =
	terro a state a
-1_	
1	
t	
-	

https://civinnovate.com/civil-engineering-notes/ # solution of 1- Dimensional Heat eg2 by Eschmidt method (Parabolic eq2) -> One - dimensional heat eq2 is given by:  $\frac{\partial y}{\partial t} = \frac{c^2}{2} \frac{\partial^2 y}{\partial t^2} - 0$ where  $c^2 = \frac{k}{8}$  is the diffusivity of the substance the contraction fronting in Consider a rectangular meth in the x-t plane with spacing h along & direction and K along time t direction denoting (2,t) = (ib.jk) as simply i, j we get  $\frac{\partial u}{\partial t} = \frac{U_{i,j+1} - U_{i,j}}{K}$  $\frac{\partial^2 u}{\partial x^2} = \frac{u_{1+1}}{1} - \frac{2u_{1+1}}{1} + \frac{2u_{1+1}}{1} - 0$ tA Ui,j+1 (j+1) th level 1 kn-kh-1 th level in Ui-1, j Ui, Ut thi With  $eq^2$  (1) and (11),  $eq^2$  (1) becomes  $U_{i,j+1} - U_{i,j} = \frac{kc^2}{b^2}$  ( $U_{i+1,j} - 2U_{i,j} + U_{i-1,j}$ ) Ui, j+1 - Ui, = ~ (Ui+1, j - 20i, j + Ui+1, j) Ui, j+1 - Ui, = ~ Ui+1, - 2~Ui, + ~ Ui-1=j

the second s

Classmall Page

and the second

-

	Uisj+1 = 2 Uit193 + (1-22) Uisj + 2 Uit93 - 0
×	This formula enables us to determine the values of u the (i+j+1)th mesh point.
-	It is a station but the headless selected at the
	It is a relation bet? the function values at the two time
-	levels j+1 and j and therefore is called a 2-level formul Eq2 (1) is called schmid explicit formula which is valid
	only for 0 < x < 1/2
-	In particular care when I le . a a
	In particular case when $d = \frac{1}{2}$ , eq ² () becomes,
	$v_{i,j+1} = \underbrace{v_{i+1,j}}_{2} - \underbrace{0}$
	known as Bendre - Schmidt recurrence
	relation.
g.	Red Hered
<u> </u>	Find the value of u(x,t) satisfying the parabolic of
	at $3x^2$ and the boundary conditions 410,t)=0:
	u(8,t) and $u(x,0) = 4x - 1$
	2 at the point oc=1
	t = 1;
	$t = \frac{1}{8}j$ $j = 0, 1, 2,, 5$
=>	solution,
	Head $eq^2$ , $\partial u = c^2 \partial^2 u = 0$
	$\frac{\partial U}{\partial x} = \frac{\partial x^2}{\partial x^2}$
	OX*

Comparing with heat eq2.  $c^2=4$ , h=1,  $K=\frac{1}{8}$ then,  $\alpha = Kc^2 = 1$  $b^2 = 2$ for  $\alpha = \frac{1}{2}$ We have,  $U_{i,j+1} = U_{i+1,j} + U_{i-1,j} - A$ : 4(0,t) = 0 = 0(8,t) $(1(x,0) = 4x - 1x^2$  $V_{i,0} = 4_i - 1_i^2$ Now putting i=0,1,....,7, we have, 0, 3.5, 6, 7.5, 8, 7.5, 6, 3.5 - m 4 5 6 7 .3 g 2 L 111 0 0 0 D 3 t 0 D 1 5 6.5 7 5.5 5 2.75 2.75 0 0 2 4.625 6 6.5 6 4.625 2.3 0 3 D 2.5 4.25 5.5625 6 5.5625 4.25 2.3125 O 4 2.3125 0 3-9375 5.125 5.5625 5.125 3.9375 2.125 0 2.125 5 0

