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‘PREFACE TO THE FIRST EDITION

I am glad to present the book entitled, ‘A Textbook of Strength of Materials’ to the
engineering students of mechanical, civil, electrical, aeronautical and chemical and also to the
students of A.M.ILE. Examination of Institution of Engineers (India). The course-contents have
?&E’ipéannecl in such a way that the general requirements of all engineering students are

ed. - - o :

During may long experience of teaching to the engineering students for the past 20 years,

I have observed that the students face difficulty in understanding clearly the basic principles,

.fundamental concepts and theory without adequate solved problems along with the text. To

meet this very basic requirement to the students, a large number of the questions taken from

the examinations of the various Universities of India and from other professional and competitive

examinations (such as Institution and Engineers and U.P.8.C. Engineering Service
Examinations) have been solved along with the text in 8.1 units. '

The book is written .in a simple and easy-to-follow language, so that even an average
stud.e_nts can grasp the subject by self-study. At the end of each chapter highlights, theoretical
guestions and many unsolved numerical problems with answer are given for the students to
‘solve them.

, I am thank{ul to my colleagues, friends and students who encouraged me to write this
book. I_ am grateful to Institution of Engineers (India), various Universities of India and those
authorities whose work have been consulted and gave me a great help in preparing the book.
_ I e:)q;‘res}s1 my appreciation and gratefulness to my publisher, Shri R.K. Gupta (a Mechanical

ngineer) for his most co-operative, painstaking attitude and untiring efforts fi ingi
the hook in a short period. g efforts for bringing 0‘_-1t

Mrs. Nirmal l?alnsal deserves special credit as she not only provided an ideal atmosphere
at home for hook writing but also gave inspiration and valuable suggestions.

o Though every care has been taken in checking the manuscripts and proof reading, yet
clam:u_ng 'per-_fectlon is very difficult. I shall be very grateful to the readers and users of this book
for pointing any mistakes that might have crept in. Suggestions for improvement are most

wel;z}me and would be incorporated in the next edition with a view to make the book more
useful.

-AUTHOR

PREFACE TO THE FOURTH EDITION

The popularity of the third edition and reprints of the textbook of Strength of Materials
amongst the students and the teachers of the various Universities of the country, has prompted
the bringing out of the fourth edition of the bock so soon, The fourth edition has been thoroughty -
revised and brought up-to-date. A large number of problems from different B.E. degree
examinations upto 2005 of Indian Universities and other examining bodies, such as Institution
of Engineers U.P.8.C. (Engineering Services} and Gate have been selectéd and have been solved
at proper places in this edition in S.I. Units.

Three advanced topics of Strength of Materials such as stresses due to rotation in thin
and thick cylinders, bending of curved bars and theories of failure of the material have been
added. These chapters have been written in such a simple and easy-to-follow language that
even an average student can understand easily by self-study.

In the chapter of ‘Columns and Struts’, the advanced articles such as columns with
eccentric load, with initial curvature and beam columns have been included.

The notations in this editicn have been used upto-date by the use of sigma and tau for
stresses. -

The objective type multiple-choice questions ave often asked in the various competitive
examinations. Hence a large number of objective type questions with answers have heen added
in the end of the book.

Also a large number of objective type questions which have been asked in most of
competitive examinations such as Engineering Services Examination and Gate with answers
and explanation have been incorporated in this edition,

With these editions, it is hoped that the book will be quite useful for the students of
different branches of Engineering at various Engineering Institutions.

I express my sincere thanks to my collegues, friends, students and the teachers of different
Indian Universities for their valuable suggestions and recommending the book to their students.

Suggestions for the improvement of this book are most welcome and would be incorpo-
rated in the next edition with a view to make the book more useful.

—AUTHOR
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" where o = Stress {also cailed intensity of stress

1

Simple Stresses and Strains

1.1. INFRODUCTION

When an external force acts on a body, the body tends to undergoe some deformation.
Due to cohesion between the molecules, the body resists deformation. This resistance hy which
material of the body opposes the deformation is known as strength of materizl. Within a
certain limit (i.e., in the elastic stage) the resistance offered by the material is proportional to
the deformation brought out on the material by the external force. Also within this limit the
resistance is equal to the external force (or applied load). But beyond the elastic stage, the
resistance offered by the material is less than the applied load. In such a case, the deformation
continues, until failure takes place. :

Within elastic stage, the resisting force equals applied load. This resisting force per unit

- area is called stress or intensity of stress.

1.2. STRESS

The foree of resistance per unit area, offered by a body against deformation is known as
gtress. The external force acting on the body is called the lead or force. The load is applied on
the body while the stress is induced in the material of the body. A loaded member remains in
equilibrium when the resistance offered by the member against the deformation and the ap-
plied load are equal.

|

Mathematieally stress is written as, o =

~—

P = Extornal force or load, and

A = Cross-gectional area.

1.2.1. Units of Stress. The unit of stress depends upon the unit of load (or force) and
unit of area. In M.K.S. units, the force is expressed in kgf and area in metre square (.e., m?2).
Hence unit of stress becomes as kgf/mZ. If area is expressed in centimetre square {i.e.,.cm?),
the stress is expressed as kgf/em?. -

In the 8.1 units, the force is expressed in newtons (written as N) and area is expreased
as m2. Hence unit of stress becomes as N/m® The area is also expressed in millimetre square
then unit of force becomes as N/mm?2. :

1 N/m? = 1 N/(100 em)? = 1 N/10* em?

= 10~* Nfem? or 10-5 N/mm? ( -1—2 - _2_17)
10° mm
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2 STRENGTH OF MATERIALS

1 N/mm? = 10% N/m?. -
Also 1 N/m? = 1 Pascal = 1 Pa.
The large quantities are represented by kilo, mega, giga and terra. They stand for :
Kilo = 10° and represented by ...k
Mega = 10° and represented by ...... M
Giga = 10? and represented by ...... G
_ Terra = 10'2 and represented by ...... T.
Thus mega newton means 10 newtons and is represented by MN. The symbol 1 MPa
stands for 1 mega pascal which is equal to 109 pascal (or 10% N/m?2). _
The small quantities are represented by milli, miero, nana and pica. They are equal to
Milli = 1073 and represented by ...... m '
Micro = 10-° and represented by ...... p
. Nana = 10~ and represented by ......
Pica = 10 and represented by ...... p.
Notes, 1. Newton is a foree acting on a mass of one kg and produces an acceleration of 1 m/s®i.e.,
1 N=1(kg) % I mis2
2. The stress in S.1. units is expressed in N/m? or N/mm?.
3. The stress 1 N/'mm? = 10° N/m? = MN/m?. Thus one N/mm? is equal to one MN/m?2.
4. One pascal is written as 1 Pa and is equal to 1 N/m2.

1.3. STRAIN

When a body is subjected to some external force, there is some change of dimension of
the body. The ratio of change of dimension of the body to the original dimension is known as
strain. Strain is dimensionless.

" Strain may be :

1. Tensile strain, 2. Compressive strain,

3. Volumetric strain, and 4. Shear strain.

If there is some increase in length of a body due to external force, then the ratio of
increase of length to the original length of the body is known as tensile strain. But if there is
some decrease in length of the body, then the ratio of decrease of the lengih of the body to the
originaldength is known as compressive strain. The ratio of change of volume of the body to the
original volume is known as velumetric strain. The strain produced by shear stress is known
as shear strain.

1.4. TYPES OF STRESSES

The stress may be normal stress or a shear stress.

Normal stress is the stress which acts in a direction perpendicular to the area. It.is
represented by o (sigma). The normal stress is further divided into tensile stress and compressive
stress. )

1.4.1. Tensile Stress. The stress induced in a body, when subjected to two equal and
opposite pulls as shown in Fig. 1.1 (z) as a result of which there is an increase in length, is
known as tensile stress. The ratio of increase in length to the original length is known as
tensile strain. The tensile stress acts normal to the area and it pulls on the area.

SIMPLE STRESSES AND STRAINS

Let P ="Pull {or force) acting on the body,
A = Crogs-sectional area of the body,
L = Original length of the body,
dL = Increase in length due to pull P acting on the body,
o = Stress induced in the body, and
e = Strain {i.e., tensile strain).

Fig. 1.1 (o} shows a bar subjected to a tensile force P at its ends. Consider a section x-x,
which divides the bar info two parts. The part left to the section x-x, will be in equilibrium if
P = Resisting force (R). This is shown in Fig. 1.1 (b). Similarly the part right to the section x-x,
will be in equilibrium if P = Resisting force as shown in Fig. 1.1 (¢). This resisting force per unit
area is known as stress or intensity of stress.

X
P i P
X @
P R
b . » Resisling force (R)
——
! ()]
b P
Resisting force (R) 4 >
‘_
; (e}
P ‘""""F“’, P
*+—| R i B —*
<——-—E——>
P
Fig. 1.1
: Resisting force (R)  ( Tensile load (P) (o P=R)
D Cross-sectional area A .
£ (LD
o= — . .-.L L.
or "
And tensile strain is given by,
. Increase in length dL (12)

Original length | L
-1.4.2, Compressive Stress. The stress induced in a body, when subjected to two equal
and opposite pushes as shown in Fig. 1.2 (e} as a result of which there is a decrease in length
of the body, is known as compressive stress. And the ratio of decrease in length to the original
length is known as compressive strain. The compressive stress acts normal fo the area and it
pushes on the area. )
Let an axial push P is acting on a body is cross-sectional area A. Due to external push P,
let the original length L of the body decreases by dL.
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. STRENGTH OF MATERIALS .SIMPLE STRESSES AND STRAINS . . 5
» Consider a rectangular block of height &, length L and width unity. Let the bottom face
: o b AB of the block be fized to the surface as shown in Fig. 1.4 {a). Let a force P be applied
P ' le—— tangentially along the top face CD of the block. Such a force acting tangentially along a surface
- i ; is known as shear force. For the equilibrium of the block, the surface AB will offer a tangential
;( (@ L _ reaction. P equal and opposite to the applied tangential force P.
P V : P p
{_—I Resisting force (R) ) . b — c D —— c
[<—~ . : A Resistance
!‘. )] . X rmrmimmimimim i mmem e X X - X—X p— X
— b P b Resistance
) L ——
Resisting force {R) ——» . . ‘L
_—"L—
i © . < i
{ : : A e— P B A — p B
o — v P . e L » ' :
+—| R iR , £ (@ (B} ©
N ' - ' o Fig. 1.4
Fig. 1.2 Consider a section x-x (parallel to the applied force), which divides the block into two
L. b i : . " parts. The upper part will be in equilibrium if P = Resistance (R). This is shown in Fig. 1.4 (b).
Then compressive stress 1? g-lve g 2 Push(P) P : Similarly the lower part will be in equilibrium if P = Resistance (R} as shown in Fig. 1.4 {¢).
Resisting Force (B) A‘;s @ -1 ‘ ;‘: This resistance is known as shear resistance. And the shear resistance per unit area is known
Area (A) ea : ¥ as shear stress which is represented by . '
i in is given by, ! L )
And compressive strain 18 gl ) ¥ £ ‘ S _ Shear resistance R
_ Decrease in length _ dL ‘ ] 2 "Shear stress, t = ~ Sheararea A
= Original length L | 4 L .
1.4.3{ Shear Stress. The stress induced in a 1'?ody, w:}en sgt:sj'ectzci 2(:1 ‘::;)1 f;i‘;‘?ig a{lg . s N LP a . (¢ R=Pandd= L‘x D18
Vo (e : i the resisting section L ; x :
osite forces whi ing tangentially across S Th g
21;1:1 result of which the body tends to shear off across LIS SECLIDE, 15 ktr;OWI; assss }::;i;t;iiz tan? Note that shear stress is tangential. to the area over which it acts.
. : s the stre .
. corresponding strain 18 known as shear strain. The shear stress ) _ As the bottom face of the block is fixed, the face E';*%L'% ﬁ b
gential to the area. [t is represented by <. : F ABCD will be distorted to ABC,D, through an angle ¢ as a 7 ! 7 D
result of force P as shown in Fig. 1.4 (d). T
b7 ] And shear strain (¢) is given by, _ nl ,
P A /! !
\ _ N—’ . il ‘ 4= Transversal displacement l ,? >
u & - Distance AD ‘A /
s i 7 7y TrIL7FTrerT
ke or g=2DL_& (1.4) ‘ L "
: : =1 CAD  h ‘ - Fig. 1.4 @)
pe m — § . 1.5, ELASTICITY AND ELASTIC LIMIT . '
o \N k : When an external force acts on a body, the body tends to undergo some deformation. If
the external force is removed and the body comes back to its origin shape and size (which

means the deformation disappears completely), the body is known aselastic body. This pi‘opérty,
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6 o - STRENGTH OF MATERIALS

by virtue of which certain materials return back to their original position after the removal of
the external force, is called elasticity. :

The body will regain its previous shape and size only when the deformation caused by
the external force, is within a certain limit. Thus there is a limiting value of force up to and
within which, the deformation completely disappears on the removal of the force. The value of
stress corresponding to this limiting force is known as the elastic limit of the material.

If the external force is so large that the stress exceeds the elastic limit, the material
loses to some extent its property of elasticity. If now the force is removed, the material will not
return to its origin shape and size and there will be a residual deformation in the material.

1.6. HOORE’S LAW AND ELASTIC MODULII

Hooke’s Law states that when a material is loaded within elastic limit, the stress is
proportional to the strain produced by the stress. This means the ratio of the stress to the
corresponding strain is a constant within the elastic limit. This constant is known as Modulus
of Elasticity or Modulus of Rigidity or Elastic Modulii.

1.7. MODULUS OF ELASTICITY (OR YOUNG'S MODULLUS)

The ratio of tensile stress or compressive stress to the corresponding strain is a con-
stant. This ratio is known as Young’s Modulus or Modulus of Elasticity and is denoted by E.

. _ Tensile stress

Tensile strain

Compressive stress
Compressive strain

ag
or =
e B

1.7.1. Modulus of Rigidity or Shear Modulus. The ratio of shear stress to the
corresponding shear strain within the elastic limit, is known as Modulus of Rigidity or Shear
Modutus. This is denoted by C or G or N. : '

(1.5}

‘ '.‘.
C (or G or N) = hearstress _ ©
Shear strain ¢

Let us define factor of safety also.

(1.8}

1.8, FACTOR OF SAFETY

It is defined as the ratio of ultimate tensile stress to the working (or permissible) stress.
Mathematically it is written as
Ultimate stress

Factor of safety = —M8M8M89 ——
4 Permissible stress

H(LTY

1.9. CONSTITUTIVE RELATIONSHIP BETWEEN STRESS AND STRAIN

1.9.1. For One-Dimensional Stress System. The relationship between stress and
strain for a unidirectional stress (.., for normal stress in one direction only) is given by Hooke's
law, which states that when a material is loaded within its elastic limit, the normal stress
developed is proportional to the strain produced. This means that the ratio of the normal

SIMPLE STRESSES AND S';FHAINS

4
i
7

stress to the corresporéding strain is a constant within the elastic limit. This constant is repre-
sented by F and is knéwn as modulus of elasticity or Young's modulus of elasticity.

o
Normal S fress — = Constant  or —=F
Corresponding strain e
where o = Normal stréss, ¢ = Strain and F = Young’s modulus
or e= % L7 (AN
. The above equation gives the stress and strain relation for the normal stress in one
direction.

1.9.2. For Two-Dimensional Stress System. Before knowing the relationship be-
tween stress and strain for two-dimensional stress system, we shall have to define longitudi-
nal strain, lateral strain, and Poisson’s ratio. ‘

1. Longitudinal strain. When a body is subjected to an axial tensile load, there ig. an
increase in the length of the body. But at the same time thereis a decrease in other dimensions
of the body at right angles to the line of action of the applied load. Thus the body is having
axial deformation an@ also deformation at right angles to the line of action of the applied load

(i.e., lateral deformation).

The ratio of axial deformation to the original length of the body is kmown as longitudinal
{or linear) strain. The longitudinal strain is also defined as the deformation of the body per

unit length in the direction of the applied load.
Let L = Length of the body,
P = Tensile force acting on the body,
&7, = Increase in the length of the body in the direction of .

Then, longitud

8L
inal strain =~
nal stralin L

2. Lateral strain. The strain at right angles to the direction of applied load is known as

lateral strain. Letar

\ctangular bar of length L, breadth b and depth d is subjected to an axial

tensile load P as shown in Fig. 1.5. The length of the bar will increase while the breadth and

depth will decrease.
Let

5L = Increase in length,
&b = Decrease in breadth, and
8d = Decrease in depth.

Then longitudinal strain = % [1718)]
bd )
and lateral strain = %Q or -r 1.7 (CH
o b
T
d| i 1o Hd-8d)  —d L
4= (b - 8b) -] 4 L »
lt - L+ 8L —»
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Note. (i) If longitudinal strain is tensile, the lateral strains will be compressive.
(i) If longitudinal strain is compressive then lateral strains will be tensile.
(¢ii) Hence every longitudinal strain in the direction of load is accompanied by lateral strains of
the opposite kind in all directions perpendicnlar to the load.
3. Poisson’s ratio. The ratic of lateral strain to the longitudinal strain is a constant for
a given material, when the material is stressed within the elastic limit. This ratio is called
Poisson’s ratio and it is generally denoted by u. Hence mathematically,

Lateral strain

Poisson's ratio, p = . LT (]

Longitudinal strain
or - Lateral strain = it x Longitudinal strain

As lateral strain is opposite in sign to longitudinal strain, hence algebraically, lateral
strain is written as

Lateral strain = — p x Longitudinal strain o LWLTEN
4. Relationship between stress and strain. Consider a
two-dimensional figure ABCD, subjected to two mutually perpen- rz
dicular stresses o, and o, A D
Refer to Fig. 1.5 ().
Let o, = Normal stress in x-direction — e
0, = Normal stress in y-direction G G
Consider the strain produced by ;. B r
The stress o, will produce strain in the direction of x and l
also in the direction of y. The strain in the direction of x will be Oz
longitudinal strain and will be equal to % whereas the strain in Fig. 1.5 (a)

the direction of y will be lateral strain and will be equal to — n x EETI' (- Lateral strain

=— u x longitudinal strain)
Now consider the strain produced by o,
The stress o, will produce strain in the direction of ¥ and also in the direction of x. The

strain in the direction of y will be longitudinal strain and will be equal to E’E% whereas the

strain in the direction of x will be lateral strain and will be equal to — u x %.

Let ¢, = Total strain in x-direction
ey = Total strain in y-direction

Now total strain in the direction of x due to stresses o, and g, = % -B 7
Similarly total strain in the direction of y due to stresses o, and o, = % - %

g G
e = -El ~u "EQ” : LT @]
=2y 01 L7 (G0

1o

| 9
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The above two equations gives the stress and strain relationship fo; .the two-dimen-
sional stress system. In the above equations, tensile stress is taken to be positive whereas the
compressive stress negative.

1.9.8. For Three-Dimensional Stress System. Fig. 1.5 (b) shows a thre‘e-dimens_ional
body subjected to three orthogonal normal stresses oy, 0,, 05 acting in the__ directions of x, y and
z respectively.

Consider the strains produced by each stress sepa- ¥
rately. _ - T
The stress o, will produce strain in the direction‘of x
and also in the directions of ¥ and z. The strain in the direc-

‘ C i 1,5
tion of x will be 21 whereas the strains in the direction of y P : —
% I g ’}l- ____________ 4-?
and z willbe — u El ; ‘ Gy L
. . Oy ,
Similarly the stress o, will produce strain % in the z
Fig. 1.5 (b)

direction of ¥ and strain of — p ?—gw in the direction of x and y

each.
: a; .
. Oy . N e 1
Also the stress o, will produce strain E"“ in the direction of z and strain of — u x = n

. the direction of x and y.

' 9 Og O3
Total strain in the direction of x due to stresses o, 0, and o, = 57 m = A R

Similarly total strains in the direction of y due to stresses gy, 0, and og

Uy B3 %1
" "8 'E
and total strains in the direction of z due to stresses oy, 0, and o
=9 _,01_ .09
_ “E Yz VE _
Let e,, €, and e, are total strains in the direction of x, ¥ and z respectively. Then
=% _,% _,9% 1.7
L TE M E YT
=92, % % L7 0
= ' Vg
O3 Gy O3z 11T (N
and 83=“§*M?.THE

The above three equations give the stress and strain relationship for the three orthogonal
normal stress system. . _ _ .
Problem 1.1. A rod 150 cm long and of diameter 2.0 cm is subjected tc; an axial pull of
20 kN. '.If the modulus of elasticity of the material of the rod is 2 x 10° N/mm? ; determine :
(i) the stress,
(if) the strain, and:
(iii) the elongation of the rod-
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Sol. Given : Length of the rod, L = 150 cm
Diameter of the rod, =2.0cm =20 mm
Area, A= g (20)% = 100x mm?

Axial pull, P=20KkN = 20,000 N
Modulus of elasticity, E = 2.0 x 10° N/mm?
(i) The stress (o) is given by equation (1.1) as

P 20000
== ——— = 2
) A= 100m - 63.662 N/mm?, Ans
(ii) Using equation (1.5), the strain is obtained as
E=2
€
. 63.662
Strain, e= g, =
T 5. 1of = V000318, Ans.
(iZ) Elongation is obtained by using equation (1.2) as
dL
e=—=,
L

Elongation, dL =e x L
= (0.000318 x 150 = 0.0477 cm. Ans.

Problem 1.2, Find the minimum diamet 3 ich i '
L er of a steel ] L
of 4000 N if the stress in the rod is not to exceed 95 glN/m;. Wi, Whichis wsed to raise & load

Sol. Given : Load, P =4000N
Stress, o = 95 MN/m? = 95 x 105 N/m? {* M™M= Mega= 109
) = 95 Nimm? (- 10°N/m? = 1 N/mm?)
et D = Diameter of wire in mm
Area, =2 pe

4

Now stress = Load _ 7
ea A
4000 4000 x4 4000
95 = = 2 2000x2
EDZ D7 or D?= R OE =53.61

4
D =732 mm. Ans.

Problem 1.3. Find the Young's Modul
o ; brass rod of diemeter 25 ‘
length 250 mm which is sub utus of a of diameter 25 mm and of
is equal to 0.3 mm. subjected to  tensile loadlof 50 kN when the extension of the rod

Sol. Given : Dia. of rod, D = 25 mm

Area of rod, A= g (26)% = 490.87 mm?

F =50 kN =50 x 1000 = 50,000 N
dL =0.3 mm
L =250 mm

Tensile load,
Extension of rod,
Length of rod,

11

AR,
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Stress (o) is given by eguation (1.1), as

P 50,000
==t = 101.86 N/mm?.
o= 4 =907 oSO NmE
Strain (e) is given by equation (1.2), as
dlL. 03
== =—— =0.0012.
€= L T 250

Using equation (1.5), the Young’s Modulus (E) is obtained, as

2

- Stre?s - 101.86 N/mm — 84883.33 N/mm?
Strain 0.0012

= 84883.33 x 10° N/m?% Ans. (-

= 84.883 x 10° N/m? = 84.883 GN/m®. Ans. (-

Problem 1.4. A tensile test was conducted on mild steel bar. The following d

obtained from the test :
(i) Diameter of the steel bar ’ =3cm

1 Nimm?® = 108 N/m?)
10° =G}

ata was

(ii) Gauge length of the bar =20 cm
(it} Load at elastic limif =250 kN
(iv) Extension at a load of 150 kN = (.21 mm

(v} Maximum load =380 kN
(wi) Total extension =60 mm

=225¢cm.

(vii) Diameter of the rod at the fuilure
Determine :(a) the Young's modulus, () the stress at “astic limit,
(c) the percentage elongation, and {d) the percentage decrease in area.

Sol. Area of the rod, A= = D?= = (3) em®

: 2
= 7.0685 cm? = 7.0685 x 1074 m2. [ em® =[W10 mJ }

.,'

() To find Young’s modulus, first calculate the value of stress and strain within elastic
ding to the load at elastic

limit. The load at elastic limit is given but the extension correspon
limit is not given. But a load of 150 kN (which is within elastic limit) and corresponding exten-
sion of 0.21 mm are given. Hence these values are used for stress and strain within elastic

Himit

Load _ 1501000 0. o

Area  7.0685x 107

=21220.9 x 10* N/m?

Increase in length (or Extension)

Original length (or Gauge length)
0.21mm

= S0x T0mm - 0010

- Young’s Modulus,

(- 1kN = 1000 N)

Stress =

and Strain =

| , .
. o Stress 212209x10° _ 95949593 x 10* Nim?
Strain 0.00105
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= 202.095 x 10° N/m2 : (v 10°=Ciga=0G)
= 202.095 GN/m2. Ans.
(b) The stress at the elastic limit is given by,
Stress = Load at elastic limit _ 250 x 1000
Area B m
= 35368 x 10 N/m?
= 353.68 x 10% N/m?2 (v 10% = Mega = M)
= 353.68 MN/m2, Ans.
(¢) The percentage elongation is obtained as,
Percentage elongation

Total increase in length
Orlgmal length (or Gauge length)
__ 60mm
"~ 20x 10 mm
(d) The percentage decrease in area is obtained as,
Percentage decrease in area

x 100

x 100 = 30%. Amns.

(Onglnal area — Area at the failure)

x 100
Original area
(g x 3% - E x 2.252J
= £« 100
g x 32
2 _ 2 _
- (—L_S o J 100 = 8289529, 100 - 43.75%. Aus.

Problem 1.5. The safe stress, for a hollow steel column which carries an axial load of
2.1 x 10° kN is 125 MN/m2, If the external diameter of the column is 30 cm, determine the
internal diameter.

Sol. Given :

Safe stress®, o= 125 MN/m?® = 125 x 105 N/m®
Axial load, P=21x100kN=21x105N
External diameter, D=30em=030m

Let d = Internal diameter

<. Area of cross-section of the column,

A= @2_ g2 T (302 _ 222
2 )= 7 ( ) m

P
Using equation (1.1), o= "

*Safe stress is a stress which is within elastic Hmit.
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8 4x21x10°
or 125 x 105 = 22107 (302 a7 - —"12—5"—10?
E (‘302 _ d?) X x
or. ‘ 0.09 - d2 = 213.9 or 0.09 - 0.02139 = ¢*

‘ T d=,{0.09-0.02139 =0.2619m =26.19 cm. Ans.

Problem 1.6. The ultimate stress, for a hotlow steel column which carries an axial locd

of 1.9 MN is 480 Nimm?. If the external diameter of the column is 200 mm, determme the

internal diecmeter, Take the factor of safety as 4.

Sol. Given :

Ultimate stress, = 480 N/mm?

Axialload, - »  P=19MN=19x10°N {~~ M =105
- = 1900000 N

External dia., D =200 mm

Factor of safety =4

Let d = Internal diameter in mm

Area of cross-section of the column,
oz g X 2_ g2 2
== —d%) = = {2002 - 4%} mm’
_ 1 D ) 2 (
Using equation (1.7}, we get

Ultimate stress
 Factor of safety - Working stress or Permissible stress
= 480
"~ Working stress
480
or - Working stress == = 120 N/mm?
- o = 120 N/mm?
Now.using equation (1.1}, we get
P 120 1500000 1960000 x 4
g=— 9or = = 5
A T (9002 _ g2) (40000 - &%)
1900000 = 4
= S — = 20159.6
or 40000 - d =% 130
or d? = 40000 - 20159.6 = 19840.4
. d = 140.85 m. Ans. 35 kN
Problem 1.7. A stepped bar shown in Fig. 1.6 is subjected to an axi-
ally applied compressive load of 35 kN. Find the maximum and minimum o om
stresses produced. A"
Sol. Given : o som
Axial load, P=35kN=235x103N DIA
Dia. of upper part, D, =2cm =20mm Fig. 16
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- Area of upper part, 4, = E (20%) = 100 7 mm?

Area of lower part, A,= g D, = g {30%) = 225 x mm?

The stress iz equal to load divided by avea. Hence stress will be maximum where area is
minimum. Hence stress will be maximum in upper part and minimum in lower part.

. . 3 .
. Maximum stress o Load = 35x107 =111.408 N'mm?. Ans.
A T 100xm .

Minimum stress

1.10. ANALYSIS OF BARS OF VARYING SECTIONS

A bar of different lengths and of different diameters (and hence of different cross-sec-
tional areas) is shown in Fig. 1.6 (o). Let this bar is subjected to an axial load P.

Section 3

Section 2

Secticn 1
Ay Ag Aq "

L —e— L, —p— L]
Fig. 1.6 (@}

Though each section is subjected to the same axial load P, yet the stresses, strains and
change in lengihs will be different. The total change in length will be obtained by adding the
changes in length of individual section.

Let P = Axial load acting on the bar,

L, = Length of section 1,
A, = Cross-sectional area of section 1,
Ly, A, = Length and cross-sectional area of section 2,
L,, Ay = Length and cross-sectional area of section 3, and
£ = Young’s modulus for the bar.
Then stress for the section 1,
o = Load - P
17 Areaof sectionl A;
Similarly stresses for the section 2 and section 3 are given as,
Ty = g and o= 'ii
3
Using equation (1.5), the strains in different sections are obtained.

g P : ’
. Strain of section 1, e, = fi “AE : ( op = iJ
’ 1 . .
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Similarly the strains of section 2 and of section 3 are,

o2, P .9 P
2= F T aE M STE AR
But strain in section 1 = Chani:;;f‘;?t h Otf secltlon L
: section
dl,
or el = T
1

where dL, = change in length of section 1.
Change in length of section 1, dL, = e /L,

_ P . P
T AE . : e‘=r41_E

Similarly changes in length of section 2 and of section 3 are obtained as :
Change in length of section 2, dly = ¢, L,

Ll ( . ;L}

and change in length of section 3, dL, = ¢,L,

PL, [ P }
_tta ey =t

AE A

.~ Total change in the length of the bar,

PL,_ PL,  PL;

AE " AE " AE

_P|L Ly Ly

=% [A1 + A, + A, ....(1.8)

Equation (1.8) is used when the Young’s modulus of different sections is same. If the

Young’s modulus of different sections is different, then total change in length of the bar is
givenby,

L L L
dL=P| -+ 2 4 3] (1.9}
|:E1A1 E2.A2 E3A3

Problem 1.8. An axial pull of 35000 N is acting on & bar consisting of three lengths as
shown in Fig. 1.6 (b). If the Young’s modulus = 2.1 x 10° Nimm?, determine :

(i) stresses in each section and

(i) total extension of the bar.

dL = dL; + dL, +dL, =

Section 3

. Section 2
Section 1

35000 N LY T 35000 N
+— 2cmDIA 3comDIA ScmDIA [—»
¥

- 20 cm —»le— 25 cm —bi— 22 cm —»

Fig. 1.6 (&)
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Sol. Given :

Axial pull, P = 35000 N
Length of section 1, L; =20 cm = 200 mm
Dia. of section 1, D, =2 cm = 20 mm

- Area of section 1, A;= 27(202) = 100 x mm?

Length of section.2, I, =25 cm = 250 mm
Dia. of section 2, D, =3 em = 30 mm
. Area of section 2, A, = g {30%) = 225 n mm?
Length of section 3, L, =22 cm =220 mm ) N
Dia. of section 3, Dy =5cm =50 mm
. L]
. Area of section 8, 4, = 1 (50%) = 625 n mm?

Young’s modulus,  E = 2.1 x 10° N/mm?,
(1) Stresses in each section

5 . tiom 1 N Axial load
tress in section 1, o= _WArea of section 1
= £ _ 35000 = 111.408 N/mm?2, Ans.
A 100n
P 35000 :
i i =—= = 49.5146 N/mm2, Ans.
Stress in section 2, o, 4, 95w
P 35000
i i = e = = 17.825 N'mm?.  Ans.
Stress in section 3, o T TIo
(if) Total extension of the bar
Using equation (1.8), we get
. PiL, Ly L
o [ e —
Total extension 7 [ A4, + A, A,

35000 ( 200 250 220
= + +
21x10% 11007 225x=m 625xm

L
%1x 10

Problem 1.9. A member form-éd by connecting a steel bar to an aluminium bar is shown
in Fig. 1.7. Assuming that the bars are prevented from buckling sideways, calculate the
magnitude of force P that will cause the total length of the member to decrease 0.25 mm. The

values of elastic modulus for steel and aluminium are 2.1 x 10° Nimm?® and 7 x 10? Nfmm?

respectively.
Sol. Given :
Length of steel bar, L, =30 cm = 300 mm

6+ 3.536 + 1.120) = 0.183 mm. Ans.
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Area of steel bar, A, =5x5=25em?= 250 mm? P

Elastic modulus for steel bar, 5 m x 5 om
E, = 2.1 x 10® N/mm? _f Steel bar

Length of aluminium bar, 0 om

) L, =388 cm = 380 mm -

Area of aluminium bar, 10.om x 16 cm
A;=10x10 =100 cm? = 10000 mm?  38om Alminlum ber

Elastic modulus for aluminium bar,

_ E, =7 x 10* N/mm?
Total decrease in length, dI. = 0.25 mm
Let P = Required force.

As both the bars are made of different materials, hence total change in the lengths of
the bar is given by equation (1.9).

_ L Ly
aw=r (ElAl ¥ EzAz]

Fig. 1.7

00
or 0.25=P ( 3 380 }

+
2.1x10% % 2500 7 x 10* x 10000
=P(5.714 x 10”7 + 5,428 x 10T} = P x 11.142 x 10-7

.25 0.25 x 107
EETRTT TR AN TRVEI
= 2.2437 x 10° = 224.37 kN. Ans.
Problem 1.10. The bar shown in Fig. 1.8 is subjected to a tensile load of 160 EN. If
the stress in the middle portion is limited to 150 NimmZ, determine the diameter of the

middle portion. Find also the length of the middle portion if the total elongation of the bar
is to be 0.2 mm. Young’s modulus is given.as equal to 2.1 x 10° Nimm?Z,

Sol. Given :

Tensile load, P =160 kN = 160 x- 103 N
Stress in middle portion, = o, = 150 N/mm?

Total elongation, dL = 0.2 mm

Total length of the bar, L = 40 ¢m = 400 mm

Young’s modulus, E = 2.1 x 105 N/mm?
Diameter of both end portions, D, = 6 em = 60 mm_ -
Area of cross-section of both end portions,

Ay = 7 x 602 = 900 x mm?.

160 kN 160 kN
+— 6cmDIA 6cm DIA  }=——sip

e 40 cm |

Fig. 1.8
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Let D, = Diameter of the middle portion
L, = Length of middle portion in mm.
Length of both end portions of the bar,
L, ={400- L,) mm
Using equation (1.1), we have

Load
S ==,
tress Aren
For the middle portion, we have
P R oo
G, = E where A, = i D,
or ' 150 = ‘1:0000
. 2322
4 % 160000
2 - =135 2
D, ~x 150 3568 mm
or - D, = J1358 = 36.85 mm = 3.685 cm. Ans.

-, Area of cross-section of middle portion,
Ay = 5 x 36.85 = 1066 mm?

Now using equation (1.8), we get

Total extension, df. = Lid [ﬁ + &]

E|A, A, )

160000 [(400—L2) Ly :l
or 2= = +

2. 1% 10 900 1066

[~ L,=(400 - L,) and A, = 1066]
02x21x10° (400-Ly) Ly

or

160000  900=x 1066
o 0.2695 = 1066(400 - Ly) +900% L,
900 = x 1066

or 0.2625 x 900r x 1066 = 1066 x 400 — 1066 L, + 900m x L,
or 791186 = 426400 — 1066 L, + 2827 L,
or 791186 — 426400 = L, (2827 - 1066)
or 364786 = 1761 L,

364786

Ly= e = 20714 mm= 20.714 cm. Ams.

1.10.1. Principle of Superposition. When a number of loads are acting on a body, the
resulting strain, according to principle of superposition, will be the algebraic sum of strains
caused by individual leads.

While using this principle for an elastic body which is subjected to a number of direct
forces (tensile or compressive) at different sections along the length of the body, first the free
body diagram of individual section is drawn. Then the deformation of the each section is obtained.
The total deformation of the body will be then equal to the algebraic sum of deformations of the
individual sections.
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Problem 1.11. A brass bar, having cross-sectional area of 1000 mm?, is subjected to
axial forces ag shown in Fig. 1.9.

A B C D .
50 kN 80 kN 10 kN
| > -~ —
20 kN
SO e ——b—— 120m ——¥
Fig. 1.9 .
Find the total elongation of the bar. Take E = 1.05 x 10° Nimm?2.
Sol. Given :
Area, A = 1000 mm?
Value of E = 1.05 x 10° N/mm?
Let dL =Total elongation of the bar. s

The force of 80 kN acting at B is &plit up into three forces of 50 kN, 20 kN and 10 kN.
Then the part AB of the bar will be subjected to a tensile load of 50 kN, part BC is subjected to
a compressive load of 20 kN and part BD is subjected to a compressive load of 10 kN as shown
in Fig. 1.10.

50 kN S50 kN
— =5
A B
20 kN 20 kN
B c
10 kN 10 kN
B D
Fig. 1.10

Part AB. This part is subjected to a tensile load of 50 kN. Hence there will be increase
in length of this part.
Increase in the length of AB
= -.:_.IE' x Ly
__ 50x1000
" 1000 x 1.05 x 10°
= 0.2857. '
_ Part BC. This part is subjected to a compressive load of 20 kN or 20,000 N. Hence there
will be decrease in length of this part.

Decrease in the length of BC

x 600 (+ P,=50,000N, L, = 600 mm)

B 20000
AE %7 1000 x 1.05 x 10°

=0:1904.

% 1000 (~+ Ly=1m= 1000 mm)
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Part BD. This part is subjected to a compressive load of 10 kN or 10,000 N. Hence there
will be decrease in length of this part.

Decrease in the length of BD

P, 10000
=25 """ Tonow Losx10° " 2%
(- L3 =1.2+1=22mor 2200 mm)
= (.2095.
-, Total elongation of bar = 0.2857 - 0.1904 — 0.2095

(Taking +ve sign for increase in length and
—ve sign for decrease in length)

=—~0.1142 mm. Ans.
Negative sign shows, that there will be decrease in length of the bar.

Problem 1.12. A member ABCD is subjected to point loads P 1 Py Pyand P as shown in
Fig 111

b
2

-

w
T

FS

+
D 623 mm’ 1250 mm”~ p—3>

e—— 2500 mm —p

o

]4—_120cm—+]<~«s

Fig. L.11

Calculate the force P, necessary for equilibrium, if P, =45 kN, P, = 450 kN and
P, = 130 kN. Determine the total elongution of the member, assuming the modulus of elas-
ticity to be 2.1 x 10° Nimm?.

Sol. Given :
Part AB: Area, A, =625 mm? and
Length, L; =120 cm = 1200 mm
Part BC : . Area, A, = 2500 mm? and
Length, Ly = 60 cm = 600 mm
T Part CD :  Area, A, =12.0 mm? and
Length, L =80 cm = 900 mm
Value of E =2.1 % 105 N/mm?2

om —i{(— 90 cm\:b}

Value of P, necessary for equilibrium

Resolving the forces on the rod along its axis (i.e., equating the forces acting towards
right to those acting towards left), we get

'P1+P3=P2+P4
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But P, = 45%N,
P =450 kN and £, = 130 kN
: 45+ 450 =P, + 130 or P,=495-130 =365 kN
The force of 365 kN acting at B is split inte two forces of 45 kN and 320 kN (i.e., 365 -- 45
=320 kN).
The force of 450 kN acting at C is split into two forces of 320 kN and 130 kN (i.e., 450 — 320
= 130 kN) as shown in Fig. 1.12.

From Fig. 1.12, it is clear that part AB is subjected to a tensile load of 45 kN, part BC is
subjected to a compressive load of 320 kN and part CD is subjected to a tensile load 130 kN.

A B
45 kN 45 kN

320 kN 320 kN
iy e
B c
130 kN 130 kN
-~ R
€ D
Fig. 1.12

Hence for part AB, there will be increase in length ; for part BC there will be decrease in
length and for part CD there will be increase in length.

Increase in length of AB

rfg L= a% X 1200 (- P = 45 kN = 45000 N)
=0.4114 mm
Decrease in length of BC
o P, 32000 600 (o P =320 KN = 320000)
AE 2500 x 2.1 x 10
= 0.3657 mm
Increase in length of CD
=f .- %x 800 (- P=130KkN = 130000)
AE 1250 x 21x 10° |
= 0.4457 mm

Total change in the length of member
=0.4114 —~ 0.3657 + 0.4457
(Taking +ve sign for increase in length and
—ve sign for decrease in length)

= 0.4914 mm (extension). Ans.

Problem 1.13. A fensile load of 40 kN is acting on « rod of diameter 40 mm and of
length 4 m. A bore of diumeter 20 mm is made centrally on the rod. To what length the rod
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L*,should be bored so that the fotel extension will increase 30% under the same tensile load. Take
E =2 x 10° Nimm?, :

Seol. Given :
40 kN 40 kN
4....._...—.—-..
| 4m »l
Fig. 1.12 (&)
Tensile lead, P=40kN =40,000 N
Dia. of rod, D = 40 mm
Area of rod, A= % (40?) = 400x mm?
le—— (4 —xjm ——plt— xm —»]
L ]I« ID
¢ 4m i
Fig. 1.12 (&)
Length of rod, L=4m=4x1000 = 4000 mm
_ Dia. of bore, d = 20 mm
.. Area of hore, a= z x 20 = 100 7 mm?
Total extension after bore = 1.3 x Extension before bore
Value of £ =2 x 10° N/mm?2

Let the rod be bored to a length of x meter or x x 1000 mm. Then length of unbored
portion = (4 — x) m = {4 — x) x 1000 mm, First calcuiate the extension before the bore is made.
The extension (3L) is given by,

P 40000 x 4000 2
aL =—= X L = = — mm
AE 400mx2x10° =n
Now extension after the bore is made
= 1.3 % Extension before bore
2 R
=18x2-2% 1m _ D)
14 F1d

_ The extension after the bore is made, is also obtained by finding the extensions of the
unbored length and bored length. .
For this, find the stresses in the bored and unbored portions.
Stress in unbored portion
_Load P _ 40000 100

_—______.__,..AL._‘_M_N/ 2
Area A 400m | m

Extension of unbored portion

t
= ?’I'ﬂ % Length of unbored portion
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= ‘ﬂ”?x(‘l-wx))(lOUO:—@—x) mm
wx2x10 . 2
Stress in bored portion E
_Load P 40000 40000

“Area (A-a) (400 100m) 300
Extension of bored portion

. Stress x Length of bored portion

_ 40000
300m x 2 x 10°
Total extension after the bore is made

%x 1000x = 4;_95 mm

Sd-x) 4z ()
2n 6
Equating the equations (i) and {(i7),
26 4-x 4x
== 4 — .
14 2n 6n
or 2.6:4;x+% or 26x6=8x(4-2)+4
or‘ 156 =12 - 3x + 4= or 156~12=x or 36=x

Rod should be bored upto a length of 3.6 m. Ans.

~ Problem 1.14. A rigid bar ACDB is hinged at A and supported in.a horizontal position
by two identical steel wires as shown in Fig. 1.12 (¢). A vertical load of 30 kN is applied at B.
Find the tensile forces T and T, indiced in these wires by the vertical load.

£ B
ra ra LA, |
AT, AT, 1 |m . |A c D B
15, 15,
. [} Py !
A c D B X
M1 m—ble- I M1 m P 5
30 kN
Fig. 1.12 (@)

Fig. 1.12 (d)
Sol. Given : -
Rigid bar means a bar which will remain straight.

Two identical steel wires mean the area of cross-sections, lengths and value of E for
both wires is same.

- A=Ay E =E,andL =L,
Loadat = B=30LkN=30,000N

Fig. 1.12 (c) shows the position of the rigid bar before load is applied at B. Fig. 1.12 (d)
shows the position of the rigid bar after load is applied.
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Let T, = Tension in the first wire
Ty = Tension in the second wire
6, = Extension of first wire
&, = Extension of second wire
Since the rigid bar remains straight, hence the extensions 8, and 8, are given by

8, _AC_1
8; AD 2
2%, =3, w(2)
But §, is the extension in wire EC
4
—& | x L
5 = StressinEC x Ly, [AIJ ! _Tyxly
! E, T B, AxE
_ Ty x Ly ’
1 = -
Similarly 3, A, < E,

Substituting the values of §; and 8, is equation (i),
IixLy _ Toxly
A x By A.2 x E,
But A, = A,, E; = E, and L, = L,. Hence above equation becomes
2'111 = T (i)
Now taking the moments of all the forces on the rigid bar about A, we get
T,x1+Tyx2=80x3 .
or T, + 2T, = 90 . i)
Substituting the value of T, from equation (ii), inte equation (iif), we get
T +2@2T) =90 or 5T =90
90
Tl = 'g‘

2 x

=18 kN. Ans.

From equation (i),
T,=2x18=36 kN, Ans.

Nate. After calculating the values of T and T, the stresses in the two wires can also be obtained
as:

Stress in wire gC.Load Ty
‘Area A
. Ty
ind  Stress in wire FD = =&
Ag

.11. ANALYSIS OF UNIFORMLY TAPERING CIRCULAR ROD

A bar uniformly tapering from a diameter D, at one end to a diameter D, at the other
nd is shown in Fig. 1.13.
Let P = Axial tensile load on the bar
L = Total length of the bar
E = Young’s modulus.

SIMPLE STRESSES AND STRAINS - . B : 2

L. o
»

DA
|<____
U

sl

Fig. 1.13 ~
Consider a small element of length dx of the bar at a distance & from the left end._ Let the
diameter of the bar be D_at a distance x from the left end.

D, -D,
Then D =D - 7 x

D -0y

=D —kx where k =

Area of cross-section of the bar at a distance x from the left end,

4,=5D7=2 (D kP

4
MNow the stress at a distance x from the left end is given by,
Load
g, = Y
- P 1P
= 5
E(DL _kxt T (D, - k.x)
4‘ N
The strain e, in the small element of length dx is obtained by using equation (1.5).
e = Stress o,
*“ E E
4P 1 4P

= z K== )
(D, -kx)? E nED;-kx)
Extension of the small elemental length dx
= Strain. dx =e_. dx _
P S D)
x E(D|~k.x)
Total extension of the bar is obtained by integrating the above equation between the
limits O and L.
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- Total extension,

L 4P.dx 4P (L
[ fPdx AP e,
LEE(D;—k-x)Z EE‘L D, - ka2 . de

_4P & (Dl B.) % 5%(-F)
TRE (k)

. _
4P [Pk 4p 1
TaE | CLx{~&) | T mEE (D1 -k.2) |
_ 4P 11

T nER | D -k.L D,-kx0

_ 4P [_1___i]
" nEh | D1-k. L D

Substituting the value of £ = D, -

.dx [Multiplying and dividing by (~ %))

Z in the above equation, we get. -

Total extension,

4PL (D,-Dy)  4PL

“%E.D,-Dy) " DD, — nEDD, ~(1.10)
If the rod is of uniform diameter, then D, - D, =D
. . 4PL
. Total extension, dl. = ——=
D «{1.11)

Problem 1.15. A rod, which tapers u'mformly from 40 mm diameter to 20 mm diameter
in a length of 400 mm is sub_]ected to an axial load of 5000 N. If E = 2.1 x 10° Nimm?2, ﬁnd the
. extension of the rod.

Sol. Given :

Larger diameter, D; =40 mm
Smaller diameter, D, =20 mm
Length of rod, L = 400 mm
Axial load, P=5000N

Young’s medulus, " E =21 % 10° N/mm?
Let dL = Total extension of the rod

SIMPLE STRESSES AND STRAINS : . o7

Using equation (1.10),

4PL _ 4 % 5000 x 400
#E DDy mx21x10% x40 %20
= 0.01515 mm. Ans.

Problem 1.16. Find the modulus of elasticity for a rod, which tapers uniformly from 30
mm fo 15 mm diameter in a length of 350 mm. The rod is subjected to an axial load of 5.5 RN

and extension of the rod is 0.025 mm,

di =

Sol. Given :

Larger diameter, D, =30 mm-

Smaller diameter, D,=15 mm*

Length of rod, L =350 mm

Axial load, P=55kN = 5500 N

Extension, dL = 0.025 mam

Using equation (1.10}, we get
4PL .

=% DD, ‘
4PL 4 x 5000 x 350
or . E=:cD1D2dL=nx30xl5x0.025

= 217865 N/mm? or 2.17865 x 10°* N/mm? Ans.

1.12. ANALYSIS OF UNIFORMLY TAPERING RECTANGULAR BAR

A bar of constant thickness and uniformly tapering in wulth from one end to the other
end is shown in Fig, 1.14,

—A—_\

- -

X —¥

?

M.

Fig. 114
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Let P = Axial load on the bar

L = Length of bar

a = Width at bigger end

4 = Width at smaller end

E = Young’s modulus

t = Thickness of bar
Consider any section X-X at a distance x from the bigger end.
Width of the bar at the section X-X

(a-blx
=qa - A
=g - kx Wherek=a£b
Thickness of bar at seetion X-X = ¢
= Arvea of the section X-X
= Width x thickness
= (g - kx)t
.~ Btress on the section XX
Load P
T Area  (a- k)t
Extension of the small elemental length dx
= Strain x Length dx
_ Stress < dx ( Strain = Stress]
E : E
)
k), ( Stﬁ}
R S
T Ela- kot ©

Total extension of the bar is obtained by integrating the above equation between the
limits 0 and L.
~. Total extension,
L P P L _dz
dL = J‘G Ela - kx)t de=m Et Jo (Ct', kx)

P L 1
=—E—t-10§e (a—kx}o X "% =—m[loge(aﬂkL)-logea]

=Py 1 KL = o g [ —2—
= Togp, 1108 @~ 108, (= RL)] = gt 08e | ST

JE——
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-_PL log, 2
T Etla-B) b
Problem 1.17. A rectangular bar made of steel is 2.8 m long and 15 mm thick. The rod

is subjected to an axial tensile load of 40 kN. The width of the rod varies from 75 mm af one end
to 30 mm at the other. Find the extension of the rod if E = 2 x 10° N/mm?.

(112

Sol. Given :

Length, L =2.8 m = 2800 mm
Thickness, t=15mm

Axial load, P=40%kN = 40,000 N
Width at biggerend, o=75mm

Width at smaller end, & =30 mm
Value of E = 2 x 10° N/mm?

Let dL = Extension of the rod.
Using equation (1.12), we get
' PL a
dL = ————log, -
Ea-b) e}

__ 40000x2800 (E ]
2 x 10% x 15(75 - 30) 30
= {(0.8296 x 0.9163 = 0.76 mm. Ans.

Problem 1.18. The extension in o rectangular steel bar of length 400 mm aﬁd thickness
10 mm, is found to be 0.21 mm. The bar tapers uniformly in width from 100 mm to 50 mm. If E
for the bar is 2 x 165 Nimm2, determine the axial load on the bar.

Sol. Given :

Extension, dL = 0.21 mm

Length, L = 400 mm -
Thickness, t =10 mm

Width at bigger end, a = 100 mm

Width at smaller end, & =50 mm

Value of E = 2 x% 10 N/mm?

Let P = axial load.

Using equation (1.12}, we get

o)
dL = _ b) 3 b

Eta
P x 400 100
0.21= (_J
o 2x 10° x 10(100 - 50)/ [\ 50
=10.000004 P x 0.6931
2 ST PP N
0.000004 x 0.6931

= 75.746 kN. Ans.
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1.13. ANALYSIS OF BARS OF COMPOSITE SECTIONS

A bar, made up of twe or more bars of equal lengths but of VZZZ777
different materials rigidly fixed with each other and behaving
as one unit for extension or compression when subjected to an
axial tensile or compressive loads, is called a cotnposite bar. For
the composite bar the following two points are important :

1. The extension or compression in each bar is equal. Hence
deformation per unit length i.e., strain in each bar is equal.

2. The total external load on the composite bar is egual to .
the sum of the loads carried by each different material, lP

7A

|
1

M
S~

Fig. 1.15 shows a composite bar made up of two different Fig. 1.15
materials. :
Let P = Total load on the composite bar,

L = Length of composite bar and also length of bars of different materials,
A, = Area of cross-section of bar 1,
A, = Area of cross-section of bar 2,
E, = Young’s Modulus of bar 1,
E, = Young's Modulus of bar 2,
P, = Load shared by bar 1,
P, = Load shared by bar 2,
o, = Stress induced in bar 1, and
0, = Stress induced in bar 2.

Now the total load on the composite bar is equal to the sum of the load carried by the two
bars.

P=P +P, LD
. Load cazried by bar 1

The stress in bar 1, = .
Tess in bar Area of cross-section of bar 1

P ..

o, = A_i or P =04, (i)

- . B,
Similarly stress in bar 2, Oy = —= or  Py=0,4, .(3ii)

2

Substituting the values of P and P, in equation (i), we get
P=0A +0,4, o ¢17)]
Since the ends of the two bars are rigidly connected, each bar will change in length by

the same amount, Also the length of each bar is same and hence the ratio of change in length
to the original length (i.e., strain) will be same for each bar.
Stressinbar 1 a

But strain in bar 1, = =1
Ul strain in bar Young’s modulus of bar 1 E,

Similarly strain in bar 2, ===,
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But strain in bar 1 = Strain in bar 2
O1_02

-{v)

" E, ) E, :

From equations (iv) and (v), the stresses o, and o, can be determined. By substituting

the values of o, and o, in equations (if) and (ii7), the load carried by different materials may be
computed. : ’

’ E
Modular Ratio. The ratio of EL is called the modular ratio of the first material to the
Ay

second.

Problem 1.19. A steel rod of 3 em diameter is enclosed centrally in a hollow copper tube
of external diameter 5 cm and internal diameter of 4 e, The composite bar is then subjected to
an axial pull of 45000 N. If the length of each bar is equal fo 15 cm, determine :

(i) The stresses in the rod and tube, and .

(if) Load carried by each bar.

Take E for steel = 2.1 x 10° Nimm? and for copper = 1.1 x 10° Nfmm?.

* Sol. Given ;
Dia. of steel rod =3 em = 30 mm 7777 //!/ 77777777
- Area of steel rod, ‘ I \\ £ i
X — 1 Copper
. As =3 (30)% = 706.86 mm? f \\\\\ Ekﬂbe
External dia. of copper tube 15em ZhS Stesl r‘f\\t é
=5 cm =50 mm 2 \ E
Internal dia. of copper tube 2 %
=4 cm = 40 mm ’ 3cm
. Area of copper tube, H 4.cm N
’ e 5
A, =~ [50% - 40%) mm? = 706,86 mm? e
4 ¥P = 45000 N
Axial pull on composite bar, P=45000 N Fig. 1.16

Length of each bar, L=15¢cm
Young’s modulus for steel, E =21 x 105 N'mm?
Young’s modulus for copper, E, =1.1 x 10° N/mm?
(3 The stress in the rod and tube
Let g, = Stress in steel,

P, = Load carried by steel rod,

G, = Stress in copper, and

P, = Load carried by copper tube.
Now .strain in steel = Strain in copper

or & = E& ('.' 2- = strain)
ES EF E

E 2.1x 10 .

o, = E—: xao, = W xo = 1902 o, . ‘. D)
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o

Load

Area ’

Load on steel + Load on copper = Total load
o XA+ O, xA =P

or 19090, x706.86+a,x 706.86 = 45000

or g, (1.909 x 706.86 + 706.86) = 45000

Load = Stress x Area

Now stress =

(-~ Total load = P)

or 2056.25 g, = 45000
45000
= = o Illlﬂ.z. Ans.
% = 205695 21.88 N/ s

Substituting the value of o, in equation (i}, we get
o, = 1.909 x 21.88 N/mm?
=41.97 N/mm?2. Ans.

(ii} Load carried by each bar.

As ] load = Stress x Area
- Load carried by steel rod,
P =aoxA,

= 41.77 % 706.86 = 29525.5 N. Ans.
Load carried by copper tube,
: P, = 45000 - 29525.5
= 15474.5 N. Ans.

Problem 1.20. A compound tube consists of & steel tube 140 mm internal diameter

wd 160 mm external diameter and an outer brass tube 160 mm internal diameter and

a

180 mm external diameter. The two tubes are of the same length. The compound tube carries
an axial load of 900 kN, Find the stresses and the locd carried by each tube and the amount
it shortens. Length of each tube is 140 mm. Take E for steel as 2 x 10% Nfmm? and for brass

as 1 x 10° Nfmm?.
Sol. Given:
Internat dia. of steel tube = 140 mm
External dia. of steel tube =160 mm

4, =7 (160~ 1407 = 47124 mum?

Internal dia. of brass tube = 160 mm
External dia. of brass tube = 180 mm

. Area of steel tube,

. Area of brass tube,

Axial load carried by compound tube,
P =900 kN = 900 x 1000 = 900000 N

A, = (180° - 160% = 5340.7 mm®

Length of each tube, L =140 mm
E for steel, E =2x10° N/mm?
E for brass, E,=1x10° N/mm?2

Let g, = Btress in steel in N/mm? and
o, = Stress in brass in N/mm?
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Now strain in steel = Strain in brass

O, _ SO N . Stress
B R ( Strain = 7 )
_E 2x10°
O's— E? XCFb= j_—xi_?'_ 0.‘5:206 . .(E)
Now load on steel + Load on brass = Total load
or o, x A, + o, X A, = 900000 . (v TLoad = Stress x Area)
or 20, x 4712.4 + g x 5340.7 = 300000 (v o,=20)
or 14765.5 ¢, = 900000 ’
200000
O, = = B 2,
b= Tirees 60.95 N/'mm?®. Ans.

Substituting the value of p, in equation (i}, we get
g, =2 x 60.95 = 121.9 N/mm®. Ans.
Load carried by brass tube
= Stress x Area
=g, x4, =60.95 x 5340.7 N
= 325515 N = 325.515 kN. Ans.
Load carried by steel tube {
. =900 — 325.515 = 574.485 kN. Ans.
Decrease in the length of the compound tube
= Decrease in length of either of the tubes
= Decrease in length of brass tube
= Strain in brass tube x Original length
S g 60.955
£, 1x10
Problem L.21. Two vertical rods one of steel and the other of copper are each rigidly
ﬁ.xed at the top and 50 cm apart, Diameters and lengths of each rod are 2 cm and 4 m respec-
tively. A cross baf‘ fixed to the rods at the lower ends carries a load of 5000 N such that the cross
bar remains horizontal even after loading. Find the stress in each rod and the position of the
load on the bar. Take E for steel = 2 » 10° Nimm?® and E for copper = 1 x 105 Nimm?.
Sol. Given :
Distance between the rods
=50 cm = 500 mm
Dia. of steel rod

x 140 = 0.0853 mm. Ans.

Copper
2 cm dia

= Dia. of copper rod 400
=2com =20 mm e
. Area of steel rod
= Area of copper rod
= % x {20 = 100 = mm? —r—
Cross bar

L A=A =100x mm?
Fig. 1.17
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Problem 1.25. Two brass rods and one steel rod to-

gether support a load as shown in Fig. 1.20. If the stresses in P
brass and steel are not to exceed 60 N/imm? and 120 N/immSZ, & = =
find the safe load that can be supported. Take E for steel é § %
= 2 x 10° N/mm? and for brass = 1 x 16° Nimm?. The cross- % Brass § Steal % Brass
sectional area of steel rod is 1500 mm? and of each brass rod 100 /// :norg? § 1503 % Fo0D
> o m o] e
is 1000 mm?. cm %/ %x/ é‘/
Sol. Given : é % é
Stress in brass, - g, = 60 N/mm? é % é
Stress in steel, ¢, = 120 N/mm? Y ,,/,/,,T § ,,fu,
E for stecl, F,=2x10Nmm? | 3
E for brass, E, =1 x 10° N/mm? 70 cm %\
Area of steel rod = 2 \\\
, A, = 1500 mm N
Area of two brass rods, A, =2x1000 TITITITY
. = 2000 mmz Fig. 1.20
Length of steel rod, L, =170 mm
Length of brass rods, . Ly =100 mm

We know that decrease in the length of steel rod should be equal to the decrease in
length of brass rods. :

But decrease in length of steel rods
= Strain in steel rod x Length of steel rod
=g, x L_where e, is strain in steel
Similarly decrease in length of brass rods
= Strain in brass rods x Length of brass rods
= e, x L, where ¢, is strain in brass rod
Equating the decrease in length of steel rods to the decrease in length of brass rods, we get

: e, L, 100
e L, =e, xL Lo b=
gl 2 €y X by OT e L, 170
But stress in steel = Strain in steel x E, (~ Stress = Strain x B)
or o,=e xE A7)
Similarly stress in brass is given by,
O =g, x By .(iE)

Dividing equation (i) by equation (ii), we get

o, ey xE, 170 1x10°

Suppose steel is permitted to reach its safe stress of 2 x 105 N/mm?2 i
stress in brass will be ' s the corresponding

s} 2x10°
Oy = —2—==l 2 o 5 2
( 551176 " 1376 1.7 x 10° N/mm }
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1.7 % 105 N/mm? which exceeds the safe stress of 1 x 10° N/mm? for brass. Therefore lst brass
be allowed to reach its safe stress of 1 x 10° N/mmZ. Then corresponding stress in steel will be
1.176 x 105 N/mm? which is less than 2 x 10° N/'mm?.
. Total load = P = Load on steel + Load on copper
=UsXAs+UbXAb
=1.176 x 105 x 1500 + 1 x 105 x 2000
=3764 x 105N or 3764x 105N :
=376.4 MN. Amns. (~ M=10%
Problem 1.26. Three bars made of copper, zinc and aluminium are of equal length and
have cross-section 500, 750 and 1000 square mm respectively. They are rigidly connected af
their ends. If this compound member is subjected to a longitudinal pull of 250 kN, estimate the
proportional of the load carried on each rod and the induced stresses. Take the value of E for
copper = 1.8 x 10% NfmmZ, for zine = 1.0 x 10° Nimm? and for eluminium = 0.8 x 10% Nimm?Z,
Sol, Given :
- Total load, P=250KkN =250 x10°N
For copper bar,
Area, A, =500mm? and E,=1.3x10° N/mm?2
For zinc bar,
Area, A =T750mm? and E,=10x 105 N/mm?
For aluminium bar,
Area, A,=1000mm? and B, =0.8x 108 Nimm? 777777777 77770 1 T A2 7 77
Let o, = Stress induced in copper bar,
: o, = Stress induced in zinc bar, P =250 kN
o, = Stress induced in aluminium bar, Fie. 1.21
£
P, = Load shared by copper rod,
P, = Load shared by zinc rod,
P_=Load shared by aluminium rod, and
L = Length of each bar.
Now, we know that the increase in length of each bar should be same, as length of each
bar is equal hence strain in each bar will be same. .
Strain in copper = Strain in zine = Strain in aluminiu
Stress in copper _ Stress in zinc Stress in aluminium

- Copper
Zinc
Aluminium

0 = =
r E, E, E,
a o g
or 8 _ P _
¢ Ez Ea
E, 1.3 x10° .
o =% xg, = —"— g =1625c LE)
© E, * 08x105 ° “
‘ E 1.0 x 10°
Algo 0 =—% xg =——F x0,=1250 (i)
*E,  * 08x10° ° < - :
Now total load = Load on copper + Load on zinc+ Load on aluminium
or 250 x 10% = Stress in copper x A, + Stress in zinc x A,

+ Stress in aluminium x A
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'=0chc+czxAz+caxAu
= 1.625q, x 500 + 1.250, % 750 + o x 1000
= 27500, {~ o©,=1.6250, and g, = 1.250,}
250 x 107
O, = ————
2750
Substituting the value of o, in equations (i) and (if), we get
o, = 1.625 x 90.9 = 147.7 N/'mm?2  Ans.
and "o, =1.25 x 90.9 = 113.625 N'mm?2. Ans.
Now load shared by copper =g, x4,
= 147.7 x 500 = 73850 N. Amns.
=g, x A, =113.625 x 750
= 85218 N. Ans.
Load shared by aluminium rod
=0, x A =90.9x1000
= 90900 N. Ans.
Problem 1.27. A steel rod 20 mm in diameter passes centrally through o steel tube of
25 mm internal diameter and 30 mm. external diameter. The tube is 800 mm long and is closed
by rigid washers of negligible thickness which are fustened by nuts threaded on the rod. The
nuts are tightened until the compressive load on the tube is 20 kN. Calculate the stresses in the
tube and the rod.
Find the increase in these stresses when one nut is tightened by one-quarter of o turn
relative to the other. There are 4 threads per 10 mm. Take E = 2 x 10° N/mm?2.
Sol. Given :
Dia. of rod =20 mm

=909 N'mm? Ans. |

Load shared by zin¢ rod

- Areaofrod, A = E {20)2 mmn? = 100x mm?

Area of tube, A, = % (302 - 25%) mm? = 68.751 mm?

Length of tube, L. = 800 mm
Compressive load on tube, P, = 20 kN = 20 x 103 N
Value of £ = 2 x 105 N/mm?
Tube
ﬂod
UL HAFLLEFEEOIINE

SN WD AN

L T T T T 7T i)

Fig. 1.22

] When the nuts are tightened, the tube will be compressed and the rod will be elongated.
This means that the tube will be under compression and rod will be under tension. Since no
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external foreces have been applied, the compressive load on the tube must be equal to the
tensile load on the rod. :
Let o, = Stress in the tube, and
o, = Stress in the rod
Now, Tensile load on the rod = Compressive load on the tube
G, % Ar =0, x A,
or Urxﬁxct=68.75mx
A, 100
(i) When the compressive load on the tube is 20 kN or 20,000 N.
Then stress in the tube, ;

= 0.68750, D)

Load 20000
%= Area of tube _ 68.75 %
= 92.599 N/mm? (compressive). Ans.
(1) Substituting this value in equation (i), we 'get
Stress in the rod, o, = 0.6875 x o, = 0.6875 x 92.589
= 63.66 N/mm? (tensile). Ans.
{iii) Stresses in the rod and tibe, when one nut is tightened by one quarter of @ turn.
Let 0. = Stress in the rod and
o,* = Stress in the tube due to tightening of the nut by one-quarter of a turn.
As the stress in the tube is compressive and stress in the rod is tensile hence there will
be decrease in the length of tube but there will be increase in the length of the rod.
-. Decrease in the length of tube

= Strain x L
- _ Stress in tube <L ( Strain o Stress}
E E
a*, "
= = x 800 = 0.004 x o,
2x 10
Increase in the length of the rod
- sk
_ Stressinrod <L=20 sl
E E
~ *
-9 gop = @EBTOx0) x B0 800 ¢: o,=068750)
2x 10 2 x 108

= 0.00275 x ¢,*
Axial advancement of the nut = One-quarter of a turn

=} of a turn
But in one turn, the advancement of the nut is 4 1th of 10 mm.

.. Axial advancement of the nut = - x — x 10 = 0.625 mm

But axial advancement of the nut
= Decrease in length of tube + Increase in the length of rod
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0.625= 0.004 x 0,* + 0.002750,% = 0.00675 x o,*

0.625
% _ _ 2
o= 0.00675 = 92.59 N/mm?*. Ans.
and o, * = 0.6875 x 92.50 = 63.65 N'mm®. Ans.

1.14. THERMAI STRESSES

Thermal stresses are the stresses induced in a body due to change in temperature. Ther-
mal stresses are set up in a body, when the temperature of the body is raised or lowered and
the body is not allowed to expand or contract freely. But if the body is allowed to expand or
contact freely, no stresses will be set up in the body.

Congsider a body which is heated to a certain temperature.

Let L = Original length of the body,

T = Rise in temperature,
E = Young’s Modulus
o = Co-efficient of linear expansion.
.dL = Extension of rod due to rise of temperature.
If the rod is free to expand, then extension of the rod is given by
dL=a TL. «{1.13)

This is shown in Fig. 1.23 (2} in which AB represents A B =3
the original length and BB' represents the increase in length q -
due to temperature rise. Now suppose that an external @ 2
compressive load, P is applied at B' so that the rod is decreased in =~ ¢ L ———»j«-dL 4|

its length from (L + «T7.) to L asshown in Figs. 1.23 (b) and (c). A B w
: . ? P
Then compressive strain = Decz:es-ise in length 0} | T
Original length L L »
_ o.T.L aTL T A B .
== ——e = P
L+a.T.L L © [4_
e Fig. 1.23

Stress = Strain x E = «.TE
And load or thrust on the rod = Stress x Area = a.T.E x A

If the ends of the body are fixed to rigid supports, so that its expansion is prevented,
then compressive stress and strain will be set up in the rod. These stresses and strains are
known as thermal stresses and thermal strain.

- Thermal strain, o= Exte:%s.fen prevented
. Original length
_dL _e.T.L_ . -
| =7 =" =ol - (1.14)
And thermal stress, o = Thermal strain x £
= a.TE. ' ' (1.15)

Thermgl stress is also known as temperature stress.
And thermal strain is also known as temperature strain.

1.14.1. Stress and Strain when the Supports Yield. If the supports yield by an
amount equal to 3, then the actual expansion .. ‘
= Expansion due to rise in temperature - &
=o.T.L -8,
. _ Actual expansion _ (@ T.L-38)
Original length L
And actual stress = Actual strain x E
e T LY, g . {1.16)
L H - -
Problem 1.28. A rod is 2 m long at a temperature of 10°C. Find the expansion of _the rod,
when the temperature is raised to 80°C. If this expansion is prevenied, find the stress l,r'lduced
in the material of the rod. Take E = 1.0 % 10° MN/m? and o = 0.000012 per degree centigrade.

. Actual strain

Sol. Given o’

Length of rod, L=2m=200cm

Initial temperature, T,=10°C

Final temperature, T,=80°C

-. Rise in temperature, T=T,-T =80"-10°=7 Q°C

Young’s Modulus, E = 1.0 x 105 MN/m?
= 1.0 x 10° x 10% N/m? (- M =105
= 10! N/m?

Clo-efficient of linear expansion, a = 0.000012
(@} The expansion of the rod due to temperature rise is given by equation (1.13).

. Expansion of the rod =a.l.L
=0.000012 x 70 x 200
= 0.168 em. Ans.
(ii) The stress in the material of the rod if expansion is prevented is given by equation (1.15).

. Thermal stress, c=a.T.E
= 0.000012 x 70 x 1.0 x 103 N/m?

= 84 x 10° N/m? = 84 N'mm2, Ans. (- 10¢ N/m? = 1 N/mm?)

Problem 1.29. A stcel rod of 3 cm diameter and 5 m long is connected to two grips and
the rod is maintained af o temperature of 95°C'. Determine the stress and pull exerted when the
temperature falls to 30°C, if ‘

(i) the ends do not yield, and

(ii) the ends yield by 0.12 cm.

Take E = 2 » 10° MNim? and o = 12 x 107%°C,

Sol. Given :

Dia. of the rod, d=3cm=30mm

- : .
. Areaoftherod, A= Vil 302 = 225 n mm?

Length of the rod, L =5 m = 5000 mm
Initial temperature, T = a5°C
Final temperature, T, =30°C
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=T -T,=95-30=65C .
E = 2 x 105 MN/m?
=2 x 10° x 108 N/m?2
. =2 x 1011 N/m?
Co-efficient of linear expansion, o = 12 x 10-5/°C,
(i) When the ends do not yield '
The stress is given by equation (1.15).
: Stress = o.T'E = 12 x 10-% x 65 x 2 x 101! N/m?2
. = 156 x 10% N/m? or 156 N/mm? (tensile). Ans.
Pull in the rod = Stress x Area
=156 x 225 x = 1102699 N. Ans.
(i) When the ends yield by 0.12 em
§=012¢em=12mm
The stress when the ends yield is given by equation (1.16).
{(a. 7. L-8) <E

.~ Fallin temperature,
Modulus of elasticity,

Stress =

_(12x 107% % 65 x 5000 - 1.2)

(39-1.2) 000
= 27T 4 5 _
5500 x 2 x 10° = 108 N‘'mm?2, Ans.

Pull in the rod = Stress x Area
=108 x 225 n = 76340.7 N. Ans.

x 2 x 105 N/mm?

L.15. THERMAL STRESSES IN COMPOSITE BARS

Fig. 1.24 (a) shows a composite bar consisting of two m

aqnther of steel. Let the composite bar be heated throigh some t:ﬁi::;;f aII% E}Eebfxfesril;i;:
are free to expand then no stresses will be induced in the members. But the t.wo members are
rigidly _ﬁxed an_d hence the composite bar as a whole will expand by the same amount. As the
co-efficient of linear expansion of brass is more than that of the steel, the brass will .ex and
lr)ni;e than the steel. Hence the free expansion of brass will be more the;n that of the steelpBut

c;l 1the r.nembers are not free to expand, and hence the expansion of the composite bar .as a
whole, will be less than that of the brass, but more than that of the steel. Hence the s,tress

\7 )

Steal

Brass

Brass Sieel
Brass Steel

@) (b) i)
Fig. 1.24
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induced in the brass will be compressive whereas the stress in steel will be tensile as shown in

Fig. 1.24 (c). Hence the load or force on the brass will be compressive whereas on the steel the

load will be tensile. ‘
Let A, = Area of cross-section of brass bar )

g, = Stress in brass
e, = Strain in brass
a, = Co-efficient of linear expansion for brass
E, = Young’s modulus for copper
A,o,eanda = Corresponding values of area, stress, strain and co-efficient of
linear expansion for steel, and
E, = Young’s modulus for steel.
& = Actual expansion of the composite bar
Now load on the brass = Stress in brass x Area of brass
=g, x4,
And load on the steel =0, x A,
For the equilibrium of the system, compression in copper should be equal to tension in

the steel
or 1.0ad on the brass = Load on the steel

o cbeb:o'sxAs. )
Also we know that actual expansion of steel

= Actual expansion of brass ()]
But actual expansion of steel _ )

= Free expansion of steel + Expansion due to tensile stress

in steel
e’
=a . T.L+-+.L
(ls Es

And actual expansion of copper

= Free expansion of copper — Contraction due to compressive

stress induced in brass
—a, . T.L- 22 L
E,
Substituting these values in equation (i), we get
czﬂxTxL-z——G—S xL:abexL—g”—xL
s b
o e
al+—-2=axT-t
or i3 Es b Eb

where T = Rise of temperature.

Problem 1.30. A steel rod of 20 mun diameter p
50 mm external diameter and 40 mm internal diameter.
plates of negligible thickness. The nuts are tightened ligh

asses centrally through o copper tube of
The tuhe is closed at each end by rigid
tly home on the projecting parts of the
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rod. If the temperature of the assembly is raised by 50°C, calculate the stresses developed in
copper and steel. Take E for steel and copper as 200 GN/m? and 100 GN/m? and o for steel and
copper as 12 x 1078 per °C and 18 x 1075 per °C.

Sol. Given :

Dia. of steel rod =20 mm

- Area of steel rod, A = E x 202 = 100x mm?

Avea of copper tube, A = % (50% — 40% mm? = 2251 mm?

Rise of temperature, T = 50°C

E for steel, E_ =200 GN/m?
=200 x 10 N/m? (-
= 200 x 10° x 108 N/m?
=200 x 1¢* N/mm?

E, =100 GN/m® = 100 x 10° N/m?
=100 x 10% x 108 N/m? = 100 x 103 N/mm?

o, =12 x 107% per °C

o, = 18 x 1075 per °C.

As o for copper is more than that of steel, henice the free expansion of copper will be
more than that of steel when there is a rise in temperature. But the ends of the rod and the
tube is fixed to the rigid plates and the nuts are tightened on the projected parts of the rod.
Hence the two members are not free to expand. Hence the tube and the rod will expand by the
same amount. The free expansion of the copper tube will be more than the common expansion,

whereas the free expansion of the steel rod will be less than the common expansion. Hence the

copper tube will be subjected to compressive stréss and the steel rod will be subjected to tensile
stress. i

G =109

(- 10° N/m® = 1 N/mm?2)
E for copper,

o for steel,
a for copper,

Let o, = Tensile stress in steel
o, = Compressive stress in copper.
- For the equilibrium of the system, .
Tensile load on steel = Compressive load on copper
or 0, .4,=0,. 4, :

or US=A':XO'{__

[av]

_ 225m
T 100x
We know that the copper tube and steel rod will actually expand by the same amount.

Actual expansion of steel = Actual expansion of copper )
But actual expansion of steel

= Free expansion of steel + Expansion due to tensile stregs.in steel

x g, = 2.250, (i)

| =a$.T.L+%i.L_

3
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. and actual expansion of copper . o - .
= Free expansion of copper — Contraction due to compressive stress in copper

O
=qc.T.L—E.L

. [+
" Substituting these values in equation (if), we get

[+]
as.T.L+%£.L=ac.if.L—Ei-L

s c

_ o 6.

: L NP
Or (Is N ES ¢ [+

06 x50+ 2290 . 6 x 50 -t (v 0, =243 )
or 12x106x50+2_,00x163-18>510 x50 - o 100 s e
ar 2250, + Ge =18 x 1078 x 50 ~ 12 % 10-8 % 50
200x 10° ~ 100 x 10° -
or 1125 x 105 6, + 105 0, = 6 x 10 x 50
or 2125 x 1075 ¢, = 30 x 10°®
or - _ 2._125ch =30 _
o = 80 ='14.117 N/mm? Ans.
£ 21258

Substituting this value in equation (i}, we get
g, = 14.117 x 2.25
= 31.76 N/mm? Ans.

Problem 1.31. A steel tube of 30 mm external diameter an.d-.20 mm internal dzramefe;'
encloses o copper rod of 15 mm diameter to which it is rigidly Joined a% each end. If, atba
temperature of 16°C there is no longitudinal stress, calculate the siresses in the; rod arzd tzzi 12
when the temperature is roised to 200°C. Take E for steel and copper as 2.1 x 10° Nimm?® an .
x 10° Nimm? respectively. The value of co-efficient of linear expansion for steel and copper is
given as 11 x 10 per °C and 18 x 1078 per °C respectively.

Sol, Given :

Dia. of copper rod - =15 mm
kA
-~ Area of copper rod, A = Vi 15? = 56.25x mm?
7 .
Area of steel tube, A= 1 (302 = 202) = 1257 mm?
Rise of temperature, T = (200 — 10) = 190°C
E for steel, E =21x10% N/mm?
E for copper, E, =1 % 10° N/mm?
Value of o for steel, @, =11 % 10-% per °C

Value of « for copper,’ a, = 18 x 1078 per °C .
As the value of o for copper is more than that of steel, hence the copper rod would
expand more than the steel tube if it were free. Since the two are joined together, the copper
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wﬂl be prevented from expandmg its full amount and will be put m compression, the steel
being put in tension.

Let o, = Stress in steel
o,-= Stress in copper.
For equilibrium of the system,
Compressive load on copper = Tensile.load on steel

or o, A =0, A
o=t mg 2B oo L
= S.Ac—cr 5625 n = % g, D

We know that the copper'rod and the steel tube will actually expand by the same amount
Now actual expansion of steel = Free expansmn of steel + Expansmn due fo tensile stress
=4, . T.L+ E L

£
and actual expansion of copper = Free expansion of copper

— Contraction due fo compressive stress
) 53
=a . .T.L-==_.L
[ Ec
But actual expansion of steel = Actual expansion of copper

@ . T.L+2 L=o,.T.L- 9% L

ES - EC
o g,
or T+ F=zag - =
o, +Es a,.T E,
or 1Ix108x 190+ — 25 _ =18 x 106 x 190 — 2220, G 0-—22.20)
2.1x 10° 1x10° ST e s

G 2220,

or [P S
21x10°  1x 105

0, +21x 2220,

=18%10%x 190 - 11 x 10-% x 190

or = -6
. 21% 10° B x 1(? x 190
or 0, +4.6620, = 5 x 107 x 190 x 2.1 x 10
or 5.662(}5 = 198.5
199.5 '
g, = m = 35.235 N'mm?2. Ans.

Substituting this value in equation (Z), we get
O, = 2.22 x 35.235 = 78.22 N/'mm?. Ans,

Problem 1.32. A sfeel tube of 30 mm external diagmeter and 25 mm. internal diameter
encloses a gun metal rod of 20 mm. diameter to which it is rigidly joined at each end. The
temperature of the whole assembly is raised to 140°C and the nuts on the rod are then screwed
lightly home on the ends of the tube. Find the intensity of stress in the rod when the common
temperature has fallen to 30°C. The value of K for steel and gun metal is 2.1 x 10° Nimm? and
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1 % 10° Nimm? respectively. The linear co-efficient of expansion for steel and gun metal is
12 x 107 per °C and 20 x 1075 per °C,

Sol. Given : ’

Dia. of gun metal rod =20 mm

" Area of gun metal rod, A, = Z x 202 = 1007 mm?

Area of steel tube, T A= Z (302 - 25%) = 68.75x mm?
Fall in temperature, T=140-30=110
Value of E for steel, E_ =21 x 105 N/mm?

Value of E for gun metal, E, =1 x 10% N/mm?

Value of o for steel, o, =12 x 1078 per °C

Value of o for gun metal, a, =20 x 10 per °C.

As o, is greater than O hence the free contraction of the gun metal rod will be more
than that of steel when there is a fall in temperature. But, since the ends of the rods have been
provided with nuts, the two members are not free to contract fully, each of the member will
contract by the same amount. The free contraction of the gun metal rod will be greater than
the common contraction, whereas the free contraction of the steel tube will be less than the
common contraction. Hence the steel tube will be subjected to compressive stress while the
gun metal rod will be subjected to tensile stress.

Let g, = Stress in steel tube and

g, = Stress in gun metal rod.

For the equilibrium of the system,

Total compressive force in steel = Total tensile force in gun metal

o,.A,=0,. A, ‘

B A, 100x
or. OS—Ug.r=Gg.—68.75n ‘
or ’ o, = 1.45450, R 3]

We also know that the steel tube and gun metal rod will actually contract by the same

amount. ‘
Actual contraction of steel = Actual contraction of gun metal rod

But actual contraction of steel = Free contraction of steel .
+ contraction due to compressive stress in steel

=o,. T.L+ 3 L
E,
Actual contraction of gun metal = Free contraction of gun metal
— expansion due to tensile stress in gun metal
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Equating the two values, we get.

« . TL+% Lea . T.L-25.L
8 E g E

s g
G, )
or o T+28cq  T-£
s A g Eg
145460, :
20 x 1078 x 110 -

or 12x1o4>§110ue——~= il (- g = 14545 0,)
: © 2.1x10° 1x 10° T g

G .
14545 £ =20x106x110- 12 x 106 x 110

ar = +
2.1x10° ¥ 1x10°
1454506, + 21xa, -
or £ = £ -8%108x110
2.1x 10 .
or ' 3.5545 0, = 8 x 1076 x 110 x 2.1 x 10° = 184.8
184.8
= 2220 — 51,99 N/mm?2  Ans.
o, 35545 1.99 N/mm 5

Substituting this value in equation (i), we get
o, = 1.4545 x 51.99 = 75.62 N'mm?. Ans.

1.16. ELONGATION OF A BAR DUE TO ITS OWN WEIGHT

Fig, 1.25 shows a bar AB fizxed at end A and hanging freely under ., p/rrriirr000
its own weight. ] A
Let L = Length of bar,
A = Area of cross-section, )
E = Young’s modulus for the bar material,
w = Weight per unit volume of the bar material. T

Consider a small strip of thickness dx at a distance x from the
lower end.

Weight of the bar for a length of x is given by,
P = Specific weight x Volume of bar upto length x
=wxAxx
“This means that on the strip, a weight of w x A x x is acting in the downward direction.

Due to this weight, there will be some increase in the length of element. But length of the
element is dx. ’

X

e s b_l—

¥

Fig. 1.25

Now stress on the element
_ Weight acting on element wxAxx
Area of eross-section A

The above equation shows that .stress. due to self weight in a bar is not uniform. It
depends on x. The stress increases with the increase of x.

=W XX

Stress wxx

Strain in the el t o=
elemen B %
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Elongation. of the element
= Strain x Length of element

Total elongation of the bar is obtained by integrating the above equation between limits
zero and L. . :

w /| x® - w - I? . )
15 " T ‘ LALLT
=5 ( W=wxl) WL

1.17. ANALYSIS OF BAR OF UNIFORM STRENGTH

In the previous article we have seen that the stress due to gelf weight of the baris &+
constant but the stress increases with the increase of distance from the lower end. If the 3
weight is neglected and a bar of uniform section is subjected to an axial load, then the stress ::
the bar would be uniform. . ‘

Let us find the shape of the bar of which self weight of the bar is considered and .
having uniform stress on all sections when subjected to an axial P. Suchbar is shown in Fig. 1.5
in which the area of the bar increases from the lower end to the upper end.

Let " A, = Arca of upper end,

A, = Area of lower end,
w = Weight per unit volume of the bar,
o = Uniform stress on the bat.

Consider a strip of length dx at a distance x from
the lower end. Let A be the area of the strip at section AB
and (A + dA) be the area at section DC. Consider the equi-

" librium of the strip ABCD. e d;f) 2
The forces acting on the strip are : L,
(i) Weight of strip acting downward and equal to
w x volumeof strip i.e., w x A x dx. i
4 ah + wAdx

(£L) g"s'rce on section AB due to uniform stress (o)
and is equal to o x A. This is acting downward.
(#if) Eprce on section CD due to uniform stress (o)
and is equal to o(A + dA). This is acting upwards.
Now, Total force acting upwards
" = Total force acting downwards

Fig. 1.26

or (A + dA) = 0 x A + wAdxc
or ox A+ odd=oxA+wAdx
or odA = wAdx
dA w
Ao -
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Integrating the above equation; we get

dA w : w
J5=12a o log, =225 D)

where-C is the constant of integration.

or

or

At , =0, A=A,
Substituting these values in equation (i), we get

log, A= = x 0+ C

- C=log A,
Substituting the value of C in equation (i), we get

w
log, A= ot log, A,

‘ w
log, A-log, A, = o F or log, (AJ =% .
. o

Ay
wx Sux
Ai; =e° or A=A’ : | (i)
The above equation gives the area at a distance x from lower end.
At x=L, A=A,
Bubstituting these values in equation (if), we get
wi,
A=A {119}

Problem 1.83. A vertical bar fixed at the upper end and of uniform strength carries an

_ axtal fensile load of 600 kN. The bar is 20 m long and having weight per unit volume as 0.00008
Nimm?3, If the area of the bar at the lower end is 400 mm?, find the area of the bar ot the upper

end.

Sol. Given : ’ :
Axial load, P=600KN =600x 10°N
Length, L=20m =20 x 10° mm

Weight per unit volume,  w = 0.00008 N/mm3
Area of bar at lower end, A4, = 400 mim? . :

Let A, = Area of bar at upper end.
Now the uniform stress* on the bar,
_ P B00x10% "
O = g = 1600 Nimm
Using equation (1.19), we get
: wh
A=A
0.00008 x 20 x 19°
=400 x e 1500 = 400 x 00010867

equal to ——,
C[_ A

*The stress on lower end = —Ii We want that the stress in the bar should be uniform i.e.,
2
P
2
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.or

or

or

- or

PR g

&

10.

11.

12.

j}}ﬂ — @0-0010867
400
A
log, = 7=t = 0.0010667
A
2.3 log,, 1616" = 0.0010667

A, 0.0010667

w00 = g5 = 000046378

logy,

A
Wlo = Antilog of 0.00046378 = 1.00107

A, =400 x 1.00107 = 400.428 mm®  Ans.

HIGHLIGHTS

The resistance per unit area, offered by a body against deformation is known as stress: The

stress is given by

o= "7

‘ A
where P = External force or load ; A = Cross-sectional area.

- Btress is expressed as kefm?, keflom?®, N/m? and N/mm?.

1 N/m? = 10-* N/em? or 10-¢ N/mm?. ]

The ratio of change of dimension of the body to the original dimension is known as strain.

The. stress induced in a bedy, which is subjected to two egual and opposite pulls, is known as
tensile stress. -

The stress induced in a body, which is subjected to two equal and opposite pushes, is known as
commpressive stress.

Elasticity is the property by virtue of which certain materials return back to their original posi-
tion after the remaval of the external force. )

Hocke's law states that within elastic limit, the stress is proportional to the strain.

The ratio of tensile stress (or compressive stress} to the corresponding strain is known-as Young’s
modulus or modulus of elasticity and is denoted by E.

- Tensile or compressive stress

- Corresponding strain ’
The ratio of shear stress to the corresponding shear strain within the elastic limit, is known as
modulus of rigidity or shear modulus. It is denoted by € (or & or N).
Total change in the length of a bar of different lengths and of diiferent diameters when subjected
to an axial load P, is given by

PlL Ly Ly e
=% [Al + Az..’r Ay LRPI v When E is same
Iy Lo Ls
ﬁP[ELAL + E2A2+ E3A3+'"
The total extension of a uniformly tapering circular rod of diameters [}, and D,, when the rod is
subjected to an axial load P is given by

when K is different.
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4PL :
dL = m 5 where L = Total length of the rod.

13. A comp?site bar is made up of two or more bars of equal lengths but of different materials rigidly

¥ fixed with each other and behaving as one unit for extension or compression.

14. In_case of a co{nposite bar having equal length : (i) strain in each bar is equal and (i) tetal load
on the composite bar is equal to the sum of loads carried by each different materials. -

15. The stresses induced in a body due to change in temperature are known as thermal stresses.

16. Thermat strain and thermal stress is given by
thermal strain, e = o .7 and thermal stress, p = . T\E
where o = Co-efficient of linear expansion ,

T = Rise or fall of temperature,
E = Young’s modulus. . :

17. T_otal ﬁ]ongation of a uniformly tapering rectangular bar. when subjécted to an axial load P is
given by :

PL a .
dlb & ——— 1 -
Ea-56 b
where L = Total length of bar;: ¢ = Thickness of bar -
a = Width at bigger end ; b = Width at smaller end
E = Young's modulus. .

18, I1_1 case ofa compos'ite bar having two or more bars of different lengths, the extension or compres-
sion in each bar will be equal. And the total load will be equal to the sum of the Joads carried by
each member, :

19. In case of_' nut and bolt used on a tube with washers, the tensile load on the bolt 'is equal to the
compressive load on the tube.

20. Elengation of a bar due to its own weight is given by

w 2 WL
8L = "E-; ® ?-U!‘ 'ﬁ'
where: w = Weight per unit volume of the ber material
L = Length of bar.
EXERCISE 1 -
(A} Theoretical Questions
1. Define stress and strain. Write down the 5.I. and M.K.5. units of stress and strain.

2. Explain clearly the different types of stresses and strains. :

3. Define the terms : Elasticity, elastic imit, Young’s medulus and modulus of rigidity.

4. State Hooke's law. . -

5. E‘Ohree sef::;c)lns ctl)f ; b]:i)il' are having different lengths and different diameters. The bar is subjected

: an axial load P. Determine the total change in length of the bar. T
different sections same. ' & ,a Fake Young's modulus of
6. Distinguish between the following, giving due explanation :

(i) Stress and strain, :
{ii) Force and stress, and
(i#7) Tensile stress and compressive stress.
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7.

10.

1.
12,
i3.

14.

Prave that the total extension of a uniformly tapering rod of diameters D, and D,, when the rod
is subjected to an axial load P is given by
___4PL
" mEDD,
where L = Total length of the rod.
Define a. composite bar. How will you find the stresses and load carried by each member of a
composite bar ? S
Define modular ratio, thermal stresses, thermal strains and Poisson’s ratio.
A rod whose ends are fixed to rigid supports, is heated so that rise in temperature is T'°C. Prove
that the thermal strain and thermal stresses set up in the rod are given by, :

’ Thermal strain = o.T and

Thermal stress = . T.E

where a = Co-efficient of linear expansion. .
What is the procedure of finding thermal stresses in a composite bar 7
What do you mean by ‘z bar of uniform strength’ 7
Find an expression for the total elongation of a bar due to its own weight, when the bar is fixed
at its upper end and hanging freely at the lower end.
Find an expression for the total elongation of 2 uniformly taperihg rectangular bar when it is
subjected to an axial load P. .

dL

(B) Numerical Problems

A rod 200 cm long and of diameter 3.0 cm is subjected to an axial pull of 30 kN. If the Young’s
inodulus of the material of the rod is 2 x 10% Nfmm?, determine : (i) stress, (i) strain and {#i) the
elongation of the rod. [Ans. (i) 42.44 N/mm? (ii) 0.000212 (i) 0.0424 cm]
Find the Young’s modulus of a rod of diameter 30 mm and of length 300 mam which is subjected
1o a tensile load of 60 kN and the extension of the rod is equal to 0.4 mm.  {Ans. 63.6 GN/m?}
The safe stress, for a hollow steel column which carries an axial load of 2.2 x 10% kN is 120 MN/m?.
If the external diameter of the column is 25 em, determine the internal diameter.

{Ans. 19.79 cm]

An axial pull of 40000 N is acting on a bar consisting of three sections of length 30 cm, 25 cm and
90 e and of dizmeters 2 cm, 4 em and 5 cm respectively, If the Young’s modulus = 2 » 105 N/mm?,
determine : -

(&) stress in each section and i) total extension of the bar.

[Ans. (i} 127.32, 31.8, 20.37 N/mm?, (i) 0.025 cm]
The ultimate stress for a hollow steal-¢plumn which carries an axial load of 2 MN is 500 N/mm?,
If the external diameter of the coliim 250 mm, determine the internal diameter. Take the
factor of safety as 4.0. : - . [Ans. — 205.25 mm]
A member formed by connecting a stechiss #to an aluminium bar . '
is shown in Fig. 1.27. Assuming that the bars are prevented from

buckling sideways, calculate the magnitude of force P, that will 3 gtcer:; Eaﬁrcm
cause the total length of the member to decrease 0.30 mm. The 20 cm
values of elastic modulus for steel and aluminium are 2 x 10° 10 om % 10 em
N/mm? and 8.5 x 10 N/mm? respectively. [Ans. 406.22 kN] . Aluminiem bar
. - 30 fm
¥ Fig. 1.27
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The bar shown in Fig. 1.28 is subjected to a tensile load of 150 kN. If the stress in the middle
portion is limited to 160 N/mm?, determine the diameter of the middle portion. Find also the
length of the middle portion if the total elongation of the bar is to be 0.25 e, Young’s modulus is
given as equal to 2.0 x 10° N/mm?. [Ans. 3.45 cm, 29.38 em]

150 kN
150 kN

0 cm DIA 10 cm DIA

l« 45¢cm »

Fig. 1.28

8. A brass bar, having cross-section area of 900 mm?, is subjected to axial forces as shown in

10.

11.

12.

13.

Fig. 1.29 in whick AB=0.6m, BC=0.8 mand CD = 1.0 m.

A B C " D
40 kN TO kN 20 kN 10 kN
. — — +— —
Fig. 1.29

Find the total elongation of the bar. Take £ = 1 x 105 N/mm?. {Ans. - 0.111 mm]

A member ABCD is subjected to point loads P, Py, Pyand P, as shown in Fig. 1.30. Calculate
the force P, necessary for equilibrium if P, =120 kN, P, = 220 kN and P, =160 kN. Determine
also the net change in the length of the member. Take £ = 200 GN/m?2. [Ams. 0.55 mm]

40MM x40 pg o on B0 mim x 30 mm
A B

C o

Py Py Py
-+ — - >

b 0.75 em -de—— 1 m—b—— 1.2 m——>
Fig. 1.30

A rod, which tapers uniformly from 5 cm diameter to 3 cm diameter in a length of 50 em, is

. subjected to an axial load of 6000 N. If E =2 x 10° N/mm?, find the extension of the vod.

‘ [Ans. 0.00127 em]
Find the modulus of elasticity for a rod, which tapers uniformly from 40 mm to 25 mm

diameter in a length of 400 mm. The rod is subjected to a load of 6 kN and extension of the rod is .

(.04 mm. [Ans. 76.39 kN/mm?]
A rectangular bar made of steel is 8 m long and 10 mm thick. The rod is subjected to an axial
tensile load of 50 kN. The width of the rod varies from 70 mm at one end to 28 mm at the other.
Find the extension of the rod if E = 2 x 105 N/mm?2.
The extension in a rectangular steel bar of length 800 mm and of thickness 20 mm, is found to be
0.21 mw. The bar tapers uniformly in width from 80 mm to 40 mm. If & for the bar is 2 x 10°
N/mm?, determine the axial tensile load on the bar. [Ans. 60.6 kN)

[Ans. 1.636 mm]’

14,

15.

16.

i7.

18,

19,

20.

21,

22.

A steel rod of 2 cm diameter is enclosed centrally in a hollow copper tube of external diameter
4 cm and internal diameter of 3.5 cm. The composite bar is then subjected to an axial pull of
50000 N. If the length of each bar is equal to 20 cm, determine :

() the stress in the rod and tube, and

-{if) load carried by each bar.

Take E for steel = 2 x 105 N/mm? and for copper = 1 x 105 N/mm?,
- [Ans. () 54.18 ; 108.36 N/mm? (if) 34043.4 N and 15956.6 N]
A mild steel rod of 20 mm diameter and 300 mm long is enclosed centrally inside a hollow copper
tube of external diameter 30 mm and internal diameter of 25 rum. The ends of the tube and rods
are brazed together, and the compogite bar is subjected to an axial pull of 40 kN. If E for steel
and copper is 200 GN/m? and 100 GN/m? respectively, find the stresses daveloped in the rod and
tube. Also find the extension of the rod. ~ [Ans. 94.76 N/mm?, 47.38 N/mm? and 0.142 mm]
Aload of 1.9 MN is applied on a short concrete column 300 mm x 200 mm. The column is rein-
forced with four steel bars of 10 mm diameter, one in each corner. Find the stresses in the
concrete and steel bars. Take E for steel as 2.1 x 10° N/mm? and for concrete as 1.4 x 10+ N_/mmz.
[Ans. 20.13, 301.9 N/mm?]
A reinforced short concrete column 250 mm x 250 mm ik section is reinforced with 8 steel bars.
The total area of steel bars is 1608.50 mm?2. The column carries a load of 270 kN. If the modulus
of elasticity for steel is 18 times that of concrete, find the stresses in conerete and steel.
If the stress in concrete shall not exceed 4 N/mm?, find the area of steel required so that the
column may support a load of 400 kN. [Ans. ¢, = 3 Nmm?, o, = 54 N/mm? and 4, = 2206 mm?]
Two vertical rods one of steel and other of copper are each rigidly
fixed at the top and 60 ¢m apart. Diameters and length of each T

=z

<
=

rod are 3 em and 3.5 em respectively. A cross bar fixed to the rods
at the lower ends carries a load of 6000 N such that the cross bar
remains horizontal even after loading. Find the stress in each
rod and the position of the load on the bar. Take E for steel = 2 x
105 N/mm? and for copper = 1 x 10% N/imm?2,

[Ans. 2.829 and 5.658 N/mm? ; 39.99 em]
A steel rod of cross-sectional area 1600 mm?® and two brass rods
each of cross-sectional (area of 1000 mm? together support a load
of 50 kN as shown in Fig. 1.31.
Find the stresses in the rods. Take E for steef = 2 x 167 N/mm?
and E for brass = 1 x 10° N/mm?2

200 mm

Fig. 1.31

[Ans. o, = 12.1 N/mm? and -, = 16.12 N."m’mz}
Arod is 3 m long at a temperature of 15°C. Find the expansion of the rod, when the temperature
is raised to 956°C. If this expansion is prevented, find the stress induced in the material of the
rod. Take E = 1 x 10° N/mm® and o = 0.000012 per degree centigrade.

' [Ans. 0.288 cm, 96 N/mm?]
A steel rod 5 em diameter and 6 m long is connected to two grips and the rod is maintsiiried at'a
temperature of 100°C. Determine the stress and pull exerted when the temperature falis to 20°C
if (i) the ends do not yield, and (i) the ends yield by 0.15 cm.

Take E = 2 x 10% Nfmam? and o = 12 x 10-%°C.

{Ans. (i) 192 N/nm? and 376990 N (ii) 142'N."mm2, 278816.3 NI
A steel rod of 20 mm diameter passes centrally through a copper tube 40 mm external diameter
and 30 mm internal diameter. The tube is closed at each end by rigid plates of negligible thickness.
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23.

24.

The nuts are tightened lightly home on the projected parts of the rod. If the temperature of the
assembly is raised by 60°C, calculate the stresses developed in copper and steel. Take E for steel
and copper as 200 GN/m? and 100 GN/m? and o for steel and copper as 12 % 10-% per °C angd
18 % 107% per °C. o [Ans. 16.23, 28.4 N/mm?}
A vertical bar fixed at the upper end and of uniform strength carries an axial tensile 1oa_d of 500
EN. The bar is 18 m long and having weight per unit volume as 0.00008 N/mm2. If the area of the
bar at the lower end is 500 mm?, find the area of the bar at the upper end. Ans. 500.72 mm?]
A straight cireular rod fapering from diameter I at one end to a diameter ‘d’ at the other endis
subjected to an axial load ‘P’. Obtain an expression for the elongation of the rod.

; 4PL
[Ans. SL =wnr~———E o d]

2

Elastic Constants

" 9.1, INTRODUCTION

When a body is subjected to an axial tensile load, there is an increase in the length of the

;- - body. But at the same time there is a decrease in other dimensions of the body at right angles
£ o the line of action of the applied load. Thus the body is having axial deformation and also
¥ deformation at right angles to the line of action of the applied load {i.e., lateral deformation),
# This chapter deals with these deformations, Poisson’s ratio, volumetric strains, bulk moedulus,
iF - relation between Young’s modulus and modulus of rigidity and relation between Young’s modu-
& Jus and bulk modulus. ‘ :

| 2.2 LONGITUDINAL STRAIN

- Whena body is subjected to an axial tensile or compressive load, there is an axial defor-
mation in the length of the body. The ratio of axial deformation to the original length of the

# body is known as longitudinal (or linear) strain. The longitudinal strain is also defined as the
4 deformation of the body per unit length in the direction of the applied load. .

Let L = Length of the body, :
' P = Tensile force acting on the body, o
8L = Increase in the length of the body in the direction of P.

i 3L
Then, longitudinal strain = T -

‘} 2.3. LATERAL STRAIN

The strain at right angles to the direction of applied load is known as lateral strain. Let

§ arectangular bar of length L, breadth & and depth d is subjected to an axial tensile load P as-
- shown in Fig. 2.1. The length of the bar will increase while the breadth and depth will

- decrease. :
"~ Let : 8L = Increase in length,
&b = Decrease in breadth, and
8d = Decrease in depth.
I R dL
Then tongitudinal strain = A .(2.1)
and lateral strain = % or % L{2.2)

&9
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Fig. 2.1
Note. (i) If longitudinal strain is tensile, the lateral strains will be compressive.
(if} If longitudinal strain is compressive then lateral strains will be tensile.

(iif} Hence every longitudinal strain in the direction of load is accompanied by lateral strains of
the opposite kind in all directions perpendicular to the load. ' :

24. POISSON'S RATIO

The ratio of lateral strain to the longitudinal strain is a constant for a given material,
when the material is stressed within the elastic limit. This ratio is called Poisson’s ratio and
it is generally denoted by u. Hence mathematically,

1 .
Poisson’s ratio, 1 = len—_— ..(2.3)
Longitudinal strain
or ' Lateral strain = p x longitudinal strain

As lateral strain is opposite in sign to longitudinal strain, hence algebraically, the lat-
eral strain is written as
Lateral strain = — |4 » longitudinal strain L1283 (A)
The value of Poisson’s ratio varies from 0.25 to 0.33. For rubber, its value ranges from
0.45 to 0.50.

Problem 2.1. Determine the changes in length, breadth and thickness of a steel bar
which is 4 m long, 30 mm wide and 20 mm thick and is subjected to an axial pull of 30 kN in the

direction. of its length. Take E = 2 x 109 Nimm? and Poissorn’s ratio = 0.3. -
Sol. Given : -
Length of the bar, L =4 m = 4000 mm
Breadth of the bar, b=30mm
Thickness of the bar, t =20 mm

Area of cross-section, A=bxt=30x20 =600 mm?

Axial pull, P=30kN=30000 N
Young’s modulus, E =2 x 10° N/mm?*
Poisson’s ratio, n=10.3.
Now strain in the direction of load (or longitudinal strain),
_ Stress _ Load ( Stress = Load)
ea

Eg=Area><E
P

30000

TAE T600xzx108 - 00025,
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But longitudinal strain =

OE

&L
- = 25.
I 0.00025

8L (or change in length) = 0.00025 x I, ]
: =0.00025 x 4000 = 1.0 mm. Ans,
Using equation (2.3),
Lateral strain
"~ Longitudinal strain
03 = Lateral strain

- Poisson’s ratio - -

or 0.00025
Lateral strain = 0.3 x 0.00025 = 0.000075.
We know that o
8
Lateral strain = ?b or %CE( r %)

8b = b x Lateral strain
=30 x 0.000075 = 0.00225 mm. Ans.

&t = ¢ x Lateral strain :
=20 x 0.000075 = 0.0015 mm. Ans. _

Problem 2.2. Determine the value of Young'’s modulus and Poisson’s ratio of a metallic
bar of length 30 em, breadth 4 ¢m and depth 4 cm when the bar is subjected to an axial
compressive load of 400 kN. The decrease in length is given as 0.075 cm and increase in breadth
iz 0.003 cm.

Sol. Given :

Length, L = 30 ¢m ; Breadth, # =4 em ; and Depth, d = 4 em.

. Area of eross-section, A=bxd=4x4 ‘

=16 em? = 16 x 100 = 1600 mm?
P =400 kN = 400 x 1000 N

Similarly,

Axial compressive load,

Decrease in length, 8L = 0.075 cm
Increase in breadth, b = 3.003 em

1 .- &L, 0.075 i
Longitudinal strain A 0.0025
Lateral strain = i—b = (LZO_S = 0.00075.

Using equation (2.3), .
_ Lafteral stram- _0.00075 0.3 Ans.
 Longitudinal strain  0.0025

_— . Stress P
Longitudinal strain =" EF " axEk
4000600

1600 x &

= —m—' =1x 10° N‘'mm?2 Ans.
1600 x 0.0025

. Poisson’s ratio

Load PJ
Area A

( Stress = =—

or ) 0.0025 =
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2 5. VOLUMETRIC STRAIN

The ratie of change in vo'l_ume to the original volume of a body (when the body is sub-
jected to a single force or a system of forces) is called volumetric strain. It is denoted by e,

Mathematically, volumetric strain is given by
| 4
e = V
where 5V = Change in volume, and
V = Original volume.

" 2.5.1. Volumetric Strain of a Rectan-
gular Bar which is Subjected to an Axial i }—'
Load P in the Direction of iis Length. Con- T 5 1
sider a rectangular bar of length L, width b and O Som— N N B
depth d which is subjected to an axial load P in e ) P v
the diréction of its length as shown in Fig. 2.2, '

Let &[, = Change in length,
b = Change in width,
and 5d = Change in depth.
Final length of the bar =L +8L
Final width of the bar =b+8b "
Final depth of the bar =d +dd
Now original volume of the bar, V = Lbd
Final volume - = (L + SL)b BB)d + 8d)
=L.b.d. + bd3L + Lbdd + Ld.0b
{Ignoring products of small quantities)

Change in volume, _
8V = Final volume - Original volume
= (Lbd + bddL + Lbdd + Lddh) — Lbd

= bddL + Lbdd + Lddb
Volumetric strain,
)
ev = 7
B bddL + Lbdd + Lddb
I Lbd
8L 4d db .
=] 1—+?+%‘— . .(2.4)
oL - : 5d &b .
But I Longitudinal strain and ' or - are lateral strains.
Substituting these values in the above eqﬁafion‘, we get
' e, = Longitudinal strain + 2 x Lateral strain B

From equation (2.3A), we have _
Lateral strain = — p x Longitudinal strain.
Substituting the value of lateral strain in equation (i), we get
' e, = Longitudinal strain — 2xp lqngitudinal strain
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= Longitudinal strain (1 - 2)
=5 (1-2u) _ .(2.5)

Problem 2.3. For the problem 2.1, determine the volumetric strain and final volume of
the given steel bar. '
Sol. Given :
The following data is given in problem 2.1. :
I = 4000 mm, b = 30 mm, £ or d = 20 mm, p = 0.3.
Original volume, V = L.b.d = 4000 x 30 x 20 = 2400000 mm?®

The value of longitudinal strain [i. €., %J in problem 2.1 is caleulated .

’ L 0.00025
as, 7 =0

Now using equation (2.5), we have

8L
Volumnetric strain, e, = A {1 - 2u)
=0.00025(1 — 2 x (.3) = 0.0001. Ans.

ar - - Y _p0001 : ( e, = 5_V_J
v _ v

dV=00001xV "~
_ = 0.0001 x 2400000 = 240 mm?
Final volume = Original volume + &V
= 2400000 + 240 mm®
= 2400240 mm>. Ans.

Problem 2.4. A steel bar 300 mm long, 50 mm wide and 40 mm thick is subjected fo a
puil of 360 kN in the direction of its length. Determine the change in volume. Take E =2 x 1 (i

Nimm?2 and u = 0.25.

Sol. Given :

Length, L =300 mm

Width, b =50 mm

Thickness, t =40 mm

Pull, P=300kN=2300x10°N
Value of £ =2 x 10° N/mm®

Value of p =025

Original volurne, V=Lxbxt

= 300 x 50 x 40 mm? = 600000 mm?
The longitudinal strain {i.e., the strain in the direction of load) is given by

darL _ Stress in the direction of load
L B
But stress in the direction of load
P P
" Area bx#
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300 x 10*
- — 2
50 % 40 150 N/mm’
di. 150
— ==
T "o 10° 060075

Now volumetric strain is given by equation {2.5) as
e, = -‘-%— (1 2p}
= 0.00075 (1 - 2 x 0.25) = 0.000375

Let 8V = Change in volume. Then éVK reﬁresents volumetric strain.

av
v < 0.000375
or dV =0.000375 x V

= 0.000375 x 600000 = 225 mm?®. Ans.

2.5.2. Volumetric Strain of a Rec-
tangular Bar-Subjected to Three Forces
which are Mufually Perpendicular, Con-
sider a rectangular block of dimensions x, y
and z subjected to three direct tensile stresses .
along three mutually perpendicular axis as’
shown in Fig. 2.3,

Then volume of block, V =xyz.
Taking logarithm to both sides, we have
logV=logx +logy +logaz.

Differentiating the above equation, we get

—l—dV=ldx+ldy+ldz
Vv x y z

dV dx dy d=
dx  dy dz

or —=
v ” Y p” ..{2.6)
dV Ch
But — = M = Volumetrie strain
V' Original volume -
dx  Change of dimension x
x  Original dimension x
= Strain in the x-direction = ¢,
.. dy ., . .
Similarly, —= = Strain in y-direction = e,
d
and = Strain in z-direction = e,
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Substitutirig these values in equation (2.6}, we get

av ‘
=g te, te,

v
Now, Let o,
G,

¥
o, = Tensile stress in z-z. direction.
E = Young's modulus

u = Poisson’s ratio.

Tensile stress in x-x direction,
Tensile stress in y-y direction, and

Now ¢, will produce a tensile strain squal to %"— in the direction of x, and a compressive

strain equal to P’;}ﬁ in the direction of y and z. Similarly, o, will preduce a tensile strain

x O i
Hx 9y in the direction of x

0 .
equal to —E’l in the direction of y and a compressive strain equal to

i
E

in the direction of x and y. Hence o, and o, will produce

and z.. Similarly o, will produce a tensile strain equal to in the direction of z and a comp-

. . X0
ressive strain equal to ’ 5 Z

Y . N
compressive strains equal to EE-—” and -E-%G—z in the direction of x.

Net tensile strain along x-direction is given by

* E E E E E
an _ Oy O, + 0,
Similarly, &= % - n (WE }
G, B g, +9,
and ¢.= g [ I ]

Adding all the strains, we get

2p

1
ex+ey+ezz—(crx+0y+cz)—f

7 (o + oy, + o)

1
=5 (o, + o, + g, X1 - 2u).
But e te, te, = Volumetric strain = —-.

v

A |
2 = 5 (o, + o, + o, )(1 - 2u} {27

Equation (2.7} gives the volumetric strain. In this equation the stresses o, 0, and o, are
all tensile. If any of the stresses is compressive, it may be regarded as negative, and the above

equation will hold good. If the value of GEVK is positive, it represents increase in volume whereas

the negative value of %Y- represents a decrease in velume.
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Problem 2.5. A metallic bar 300 mm x 100 mm x 40 mm is subjected to a force of 5 kN
(tensile), 6 kN (tensile) and 4 kN (tensile) along x, y and z directions respectively. Determine the
change in the volume of the block. Take E = 2 x10° Nimm? and Poisson’s ratio = 0.25.

Sol. Given : .

Dimensions of bar =300 mm x 100 mm x 40 mm

x =300 mmw, y = 100 mm and z = 40 mm

Volume, V=xxyxz=300x 100 x 40
i = 1200000 mm?
Load in the diréction of x =5kN = 5000 N
Load in the direction of ¥ =6 kN =6000 N
Load in the direction of z =4 kN =4000 N
Value of E = 2 % 10° N/mm? _
Poisson’s ratio, n=1025 T 4 kN
Stress in the x-direction, )
o = Load in x-direction o \él_st )
g yxz LA e A
. _ «
300 mm —»fAR
=290 o5 Nimm? :
100 x 40 B kN
- . s Fig. 2.4

Similarly the stress in y-direction is given by,

_ Load in ydirection

¥ xxz
6000
= — = (. / 2
300x4p - -5 N/mm
And stress in z-direction = M
xxy
4000
or g = —————
300 x 100
= (.133 N/mm?

Using equation (2.9), we get

av 1
vV oF (o, + g, + oz)_(l - 2u)
= 5T (1.2; +0.5+0.113)(1 - 2 x 0.25)
_ 1883
T2x10%x2
V= 1.883_ «
4 x 10°

1.883 :
= m x 1200060

= 5,649 mm3, Ans,
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Problem 2.6. A metallic bar 250 mm ] 4 MN
x 100 mm x 50 mm is loaded as shown in 1
. .Fzg. 2.5. : J a0

Find the change in volume. Take :
E=2x10° Nimm® and Poisson’s ratio = 0.25. ¢,
Also find the change that should be ™M / S

made in the 4 MN load, in order that there / 250 mm 7
2MN .

should be no change in the volume of the
bar. Fig. 2.5
Sol. Given :
TLength, =250 mm,y =100 mmandz=50 mm
Volume, V = xyz = 250 x 100 x 50 = 1250000 mm3
Load in x-direction =400 kN = 400000 N (tensile)
Load in y-divection =2 MN = 2 x 10° N (tensile)
Load in z-direction =4 MN = 4 x 10% N (compressive)
Modulus of elasticity, E =2 % 10° N/mm?
Poisson’s ratio, n=40.25,
Now g, = Btress in x-direction

_ Loadin x-direction
" Area of cross-section
400000 400000

=2 - _ 2
V7 100 %50 ° = 80 N/mm? (tension).

_ Load in y-direction

Similarly, , =
xxz

2% 10°
T 250 x 50

o - 4000000
z7 250 % 100
= 160 N/mm? (compression).

Using equation (2.7) and taking tensile stresses pogitive and compressive stresses nega-
tive, we get

= 160 N/mm?

and

dVv

?_E (o, + o, + o, (1 - 2u)
dv 1
or vV T ox 105 (80 + 160 - 160X1 — 2 x 0.25)
=8 05=0.0002.
2x10

Change in volume,
dV=00002xV
= 0.0002 x 1250000
= 250 mm3, Ans,
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Change in the 4 MN load when there is no change in volume of bar
Using equation (2.7), iivz -1 (o, + 0, + 01— 2y)

¥ there is no change in volume, then é‘;— 0

(c; +0, + o)1 -2 =

But for most of matenals, the value of u lies between 0.25 and 0.33 and hence the term -

1- 2;1) is never zero.
g, +0,+0,= =0.

The stresses o, and o, are not to be changed. Only the stress corresponding to the load

4 MN (1, e., stress in z—dxrectmn) is to be changed.
O, =-0, -0, =~ 80 — 160 = — 240 N/mm?2 (compresswe)
Load Load Load
But %% Area zxy O M7 %55x100
Load =240 x 250 x 100 = 6 x 10 N = 6 MN
But already a compressive load of 4 MN is acting.
Additional load that must be added
=6 MN - 4 MN = 2 MN (compressive). Ans.

2.6. VOLUMETRIC STRAIN OF A CYLINDRICAL ROD

Con51der a cylindrical rod which is subjected to an axial tensile load P,
" Let d diameter of the rod
= length of the rod

Due to tensile load P, there will be an increase in the length of the rod, hut the diameter
of the rod will decrease as shown in Fig. 2.6.

L L+8L »
S N P
R o
b« L ol
Fig. 2.6
Final length =L + 8L
Final diameter =d-bd

Now ariginal volume of the rod,

=— dz x L
Final volume = — (d — 8)A(L + 8L)

(d? + 8d® ~ 2d x 3dXL + 8L}

»S-\]:a’ ]

ELASTIC CONSTANTS . 69

(d?xL+8d2x 1 —2dxLxdd+d?x8sL
+8d? x 8L - 2d x &d x 8L}

]

=E(ﬂxL-2dexad+ﬁx5n

Neglecting the preducts and higher powers of two small quantities.
Change in volume, 8V = Final volume — Original volume

(dzxL 2d><Lx6d+d2x6L)—-— 2x L

L I

(d2x6L 2dexad)

plﬁ

Change in volume &V

Volumetric strain, ¢, = Original volume ~ V.
"B (d? 8L -2d x L x 8d)
_4 - =0L _zoe (2.8)
2d¥xL

4

where % is the strain of length and % is the strain of diameter.

Volumetrie strain = Strain in leng_‘th — Twice the strain of diameter.

Problem 2.7. A steel rod 5 m long and 30 mm in diameter is subjected to an axial tensile
load of 50 kN. Determine the change in length, diameter and volume of the rod. Take E=2x1(¥
Nfmm? and Poisson’s ratio = 0.25.

Sol. Given :
Length, L =5m=5%10"mm
Diameter, d =30 mm
Volurne, V= % d?xL= % (30) x 5 x 10° = 35.343 x 10°
Tensile load, P =50 kN =50 x 103
Value of B = 2 x 10° N/mm?
Poisson’s ratio, w=0.25
Let . 8d = Change in diameter

8L = Change in length
8V = Change in volume

wa strain of length = Stress
= Lead X 1 ( Stress = Load)
Area E : e

P 1 50x10° 1

x
5
it-xclz E %X302 2 x 10
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0.4 x 50 » 10°
= = 0.00035
Ax30% x2x 10° 36
But  strain of length = %
8L
7 = 0.0003536

8L = 0.0003536 x 5 x 10

= 1.768 mm: Ans.

Lateral strain
Longitudinal strain .
Lateral strain = Poisson’s ratio x Longitudinal strain

Now Poigson’s ratio =

= (.25 x 0.0003536 - ( Longitudinal strain = %J

= 0.0000884
But Latera] strain = %
&d
— = 0.0000884

d
b = 0.0000884 x d
= 0.0000884 » 30 = 0.002652 mm
Now using equation (2.8), we get
8V 8L 28d
v L 4 .
= 0.0003536 — 2 x 0.0000884 = 0.0001768
8V = V x 0.0001768
= 85.343 x 10° x 0.0001768
= 624.86 mm? Ans.

Volumetric strain,

2.7. BULK MODULUS

When a body is subjected to the mutually perpendicular like and equal direct stresses,
tl?e ratio of direct stress to the corresponding volumetric strain is found to be constant for a
given material when the deformation is within a certain limit. This ratio is known as bulk
modulus and is usually denoted by K. Mathematically bulk modulus is given by

_ _ Directstress o \
Volumetric strain ( av ) ...(2.9)
V "

2.8. EXPRESSION FOR YOUNG’S MODULUS IN TERMS OF BULE MODULUS
Fig 2.1 shows a cube A B C I E F G H which is subjected to three mutually perpendicu-
lar tensile stresses of equal intensity. '
Let L = Length of cube
dL = Change in length of the cube
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E = Young's modulus of the material of the cube Tg
o = Tensile stress actiﬁg on the faces £
n = Poisson’s ratio.
Then volume of cube, V = L# A
MNow let us consider the strain of one of the sides of 4
the cube (say AB) under the action of the three mutually
perpendicular stresses. This side will suffer the following /,/
three strains : ¢ -
1. Strain of AB due to stresses on the faces AEHD o

\
:
0]

and BFGC. This strain is tensile and is equal to %. Fig. 2.7

2. Strain of AB due to stresses on the faces AEFB a_a.ndDHGC. This is compressive lateral
strain and 15 equal td_— n %. ' _

3. Strain of AB due to stresses on the faces ABCD and EFGH. This is also compressive

J
lateral strain and is equal to — u ok

Hence the total strain of AB is given by
dl. o G

g
T Y EYETE
Now original volume of cube, V = L2 . G0
If dL is the change in length, then &V is the change in volume.
Differentiating equation (ii), with respect to L,
dV=3L2x dL : T
Dividing equation (iii) by equation (i), we get -

(3 - 2u) )

dV  3I%xdl 3dL

v I3 L

Substituting the value of %— from equation (i), in the above equation, we get

dV 3o
= 2a-.9
v - E (124
From equation (2.9), bulk modulus is given by | )
a g dv 3o
" (ﬂ)—3—0(1~2u) [ 7=E(1”2‘”}
v E
E
= m .(2.10)
or E=3K{1-2u, {211
. . . , . . . 3K -E
From equation (2.11), the expression for Poisson’s ratio (u) is obtained as u = T
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Problem 2.8, For a material, Young’s modulus is given as 1.2 x IC N/ mm? and Poisson’s
ratio 4. Caleulate the Bulk modulus.

Sol. Given : Young’s modulus, E = 1.2 x 10° N/mm?

Poisson’s ratioe, = %
Let K = Bulk modulus

Using equation (2.103,
E 12x10° 1.2x10°

K= = =
3(1-2u) 3(1“2_) gx L
4 2
5
= 2><_1:23_><i0_ = 0.8 x 10° N/'mm?2. Ans,

Prr_\biem 2.9. A bar of 30 mm diameter is subjected to a pull of 60 kN. The measured
excension on gavge length of 200 mm is 0.1 mm and change in diameter is 0.004 mm. Calculate :

(@) Young’s modulus
{ii1) Bulk modulus.
Sol. Given : Dia. of bar, d = 30 mm

(i1) Poisson’s ratio and

Area of bar, A =7 (30)° = 225% mm?
Pull, P=60LkN=60x 1000 N
Gauge length, L =200 mm
Extension, 8L = 0.1 mm
Change in dia., &d = 0.004 mm

(i} Young’s modulus (E)

. P 60000
Tensile stress, o= —= =84, 2
=1~ 5oEn 87 N/mm
e . 8L 0.1
Longitudinal strain = = —— = 0.000
L 200 5

Tensile stress
~ Longitudinal strain
8487
~ 0.0005
= 1.6975 x 10° N/mm?2 Ans.

Young’s modulus, £

=16.975 x 10* N/mm?

(it) Poisson’s ratio (1)

Poisson’s ratio is given by equation (2.3} as

_ Lateral strain

~ Longitudinal strain

Poisson’s ratio ()

(%)
= < [ Lateral strain:%}
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(0.004)
30 0.000133
= 00005~ 00005 - 0266 Ams.
(ii1) Bulk modulus (K)
Using equation (2.10), we get
X E 1.6975 x 10°

= 3(1-2w)  3(1-0.266x2)
= 1.209 x 10° N‘'mm?, Ans.

29. PRINCIPLE OF COMPLEMENTARY SHEAR STRESSES

It states that a set of shear stresses across a plane is al-
ways accompanied by a set of balancing shear stresses (ie., of B
the same intensity} across the plane and normal to it.

Proof. Fig. 2.8 shows a rectanguilar block ABCD, sub- TI | lf
jected to a set of shear stresses of intensity © on the faces AB
and CD. Let the thickness of the block normal to the plane of A " B
the paper is unity. i

The force acting on face AB Fig. 2.8

= Stress x Area
=txABx1=1AB
Similarly force acting on face CD
' =gxCDx1=xCD .
=1t.AB _ (+ CD=AB)

The forces acting on the faces AB and CI} are equal and opposite and hence these forces
will form a couple.

The moment of this couple = Force x Perpendicular distance

=1.AB x AD D)

If the block is in equilibrium, there must be a restoring couple whose moment must be
-equal to the moment given by equation (i). Let the shear stress of intensity v is set up on the
faces AD and CB.

The force acting on face AD =t x AD x 1 =1.AD

The force acting on face BC =7 x BC x 1 =vBC = v AD (~ BC=AD}

As the force acting on faces AD and BC are equal and opposite, these forces also forms a
couple.

Mement of this couple = Force x Distance = v".AD x AR ¢4

For the equilibrium of the block, the moments of couples given by equations (i) and (i)
should be equal ) :

o TAB xAD=vADxABort="1.

The above equation proves that a set of shear stresses is always accompanied by a trans-
verse set of shear stresses of the same intensity.

The stress © is known as complementary shear and the two stresses (1 and 1) at right
angles together constitute a state of simple shear. The direction of the shear stresses on the
block are either hoth towards or both away from a corner.
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In Fig. 2.8, as a result of two couples, formed by the shear forces, the diagonal BD will be
subjected to tension and the diagonal AB will be subjected to compression.

2.10. STRESSES ON INCLINED SECTIONS WHEN THE ELEMENT IS SUBJECTED
TO SIMPLE SHEAR STRESSES

Fig. 2.9 shows a rectangular block ABCD which is in a
state of simple shear and hence subjected to a set of shear D «— c
stresses of intensity © on the faces AB, CD and the faces AD
and CB. Let the thickness of the block normal to the plane of
the paper is unity. TT : lt

1t is required to find the normal and tangential stresses
across an inclined plane CE, which is havmg inclination 8 with
the face CB. __E

Consider the equilibrium of the triangular piece CEB of
thickicss unity. The forces acting on triangular piece CEB are

(i) Shear force on face CB, _
@, = Shear stress x area of face CB
stxBCx1
=t x BC acting along CB
(i) Shear force on face EB,
@, = Shear stress x area of face EB -
=1 x EB x 1 =1 x EB acting along EB . TxEB=Cy
(iii) A force P normal to the plane EC . Fig. 2.10
(iv) A force P, tangential to the plane EC
The force Q1 is acting along the face CB as shown in Fig. 2.11. This force is resolved into
two components, i.e., @, cos 8 and @, sin 8 along the plane CE and nermal to the plane CE
respectively.
The force @, is acting along the face EB. This force is also resolved into two components,
Le., @, sin 8 and @, cos 0 along the plane EC and normal to the plane EC respectively.
For eaquilibrium, the net force normal to the plane CE
should be zero.
P, —-@Q,sin8-Qycos8=0
or P =@, sinb+@;cos 8
=tx BC xsin8+txEB xcosH
(v @, =txBCand Qz—erB)
For equilibrium, the net force along the plane CE should ¢
be zero.

P Gy cos 8+ Q,sin0=0

or P, =@ cos 60— @, sin 0
(-~ ve sign is taken due to opposite dlrectlon)

=txBC xcos 0 - txEBxsin@ } Fig. 2.11

ELASTIC CONSTANTS 75

Let o, = Normal stress on plane CE
= Tangential stress on plane CE
o = Normal force on plane CE
" Area of section CE
B, txBCxsin8+txEBxcosh
TCEx1 CEx1

Then

BC e BB
—'BXCEXSIII +TXCEXCDS

=txXcosOxsinO+txginBxcosh

. BC EB
o Int le EBC,— = — ==
( n triangle O cos 6 and CE sin BJ

=2t cos 0§ x'sin 8 = 7 sin 20 : . .(2.12)
Tangential force on plane CE
Area of plane CE
P, 'chCxcose ix EBxgin8
TCEx1- CE

and o, =

—1x§gxc 580 E—Q in@
= oF Xcosf-Tx o xsin

o =TxcoS8xcosO-txsinBxsinh
=tcos’0—tsin? @
=1[cos? 8 — sin? 8] = T cos 26 .(2.13)
For the planes carrying the maximum noimal stress, o, should be maximum. But from
equation (2.12) it is clear that o, will be maximum when sin 29 x1

k4

ie., 20=

FEY
or 8==x 1 which means 8 = 45° or -- 45°

when8 = 45°, then from equation (2.12), we have
o, =18in90° =1 D o]
when 6 = — 45°, then G, =-T

(Positive sign shows the normal stress is tensile
whereas negative sign shows the normal stress is

45°

compressive).
When 0 = = 45°, then from equation (2.13), we find
45¢
that .
o, =tcos 2 x 45° - E : B
=tcos90° =0 ' " Fig. 2.12

This shows that the planes, which carry the maxi-
mum normal stresses, are having zero shear stresses.

Now from equation 2.13, it is clear that shear stress
will be maximum when cos 26 == 1,

ie., 20=0°0r 180° or 6=0°0ar90°
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When 8 = 0° or 90°, the value of g, from equation.(2.12), is zerc.
This shows that the planes, which carry the maximum shear stresses, are having zero
normal stresses. These planes are known as planes of simple shear.’

Important peints. When an element is subjected to a set of shear stresses, then :

- Similarly it can be proved that on the
(i) The planes of maximum normal stresses are perpendicular to each other.
of pure shear.

tude 1 is acting. This compressive siress is p

R # 4
pla.mz1 BDI, a direct compressive stress of magni-

3 . erpendicular to the plane BD or this com, i
Stress. is along the dlagox}al AC. Hgnce the diagonal AC is subjected to compressive iﬁ?ﬁ

magnitude t. The pure QIrect_: tensﬂe. and compressive stresses active on the diagonal planes

AC and BD are called diagonal tensile and diagonal compressive stresses. The stress on the

(ii) The planes of maximum normal stresses are inclined at an angle of 45° to the planes
(iii) One of the maximum normal stress is tensile while the other maximum normal stress
is compressive. -

diagonal plane AC (i.e., along diagonal BI)) is tensile whereas on the di ;
along the diagonal AC is compressive. n the diagonal plane BD i.e.,
Hence the set of shear stresses v on the faces AB, CD and th
; . s e faces AD and CB are
equivalent to a compr i - ]
- dil agonal BD. pressive stress v along the diagonal AC and a tensile stress v along the
(iv) The maximum normal stresses are of the same magnitude and are equal to the in-
tensity of shear stress on the plane of pure shear.
2.11. DIAGONAL STRESSES PRODUCED RY SIMPLE SHEAR ON A SQUARE BLOCK
Fig. 2.13 shows a square block ABCD of each side equal to ‘o’ and subjected to a set of
shear stresses of intensity T on the faces AB, CD and faces AD and CB. Let the thickness of the
block normal to the plane of the paper is unity. :

2.12. DIRECT (TENSILE AND COMPRESSIVE) STRAINS OF THE DIAGONALS
In Art. 2.11, we have proved that when a square block ABCD of unit thickness is sub
jected to a set of shear stresses of intensity g on the faces AB, CD and the faces AD and CB. th .
diagonal BD will experience a tensile stress of magﬁitude q ‘ e
I whereas the diagonal AC will experience a compressive stress of ... D e & e’
magnitude g. Due to these stresses the diagonal B will be elon- ‘.‘\5 . “\
. _ . . : gated whereas the diagonal AC will be shorted. Let us consider  * © b s
b — c o — c D — G : the joint effect of these two stresses on the diagonal BD. l‘. ™ ‘\
A i . Due to the tensile stress g along diagonal BD, there will | “\ \
458 L " -be a tensile strain in diagonal BD. Due to the compressive stress l‘.ﬂ A \\
| 4 g along the diagonal AC, there will be a tensile strain in the i \\ \
. ¢ v ¢ < . § . diagonal BD due to lateral strain.* \ ™\
| " Let p=Poisson’s ratio ;\ p— N
£ E = Young’s modulus for the material of the block i °
Now tensile strain in diagonal BD due to tensile stress t Fig. 2.14
A - T A > B A > B . along BD
: T t _ Tensilestressalong BD «
(a) (b} {c) B E h E
Fig. 213 Tensile strain in diagonal BD due to compressive stress t along AC
The normal stress (o,) on plane AC is given by equation (2.12) as . k=T )
o, =T sin 28 ' i) ] . i i ¥
But as shown in Fig. 2.13 () the angle made by plane AC with face BC is given by, ! - Total tensile strain along diagonal BD
tan 6 = %l]_é _ % [ ABCD is a square of side ‘'] é = —;EF,‘- * “;;T - % A+ ~{(2.14)
) e “_:‘ 150 .:‘ and w iin{)n;l;r;lg nlth ;a,n be proved that the total st.:ram in the diagonal AC will be compressive
Substituting this value of 0 in equation (), we get : Total compressive strain in diagonal AC
o,=txs8in2x45°=1xsin90° =1 : T
and ct=txc0529=rxcoszx45° =E(1+P‘J‘
=txcos90° =0 .
Hence on the plane AC, a direct tensile stress of magnitude « is acting. This tensile
stress is parallel to the diagonal BD. Hence the diagonal BD is subjected to tensile stress of
magnitude T.

The total tensile strain in the diagonal BD is equal fo half the shear strain. This is
proved as given below : '

) *Please refer tt? Art. 2.4, in which it Is proved that every strain in the direction of load is zceom-
panied by lateral strain of the opposite kind perpendicular to the direction of load.
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Due to the shear stresses acting on the faces, the square blockABCD will be. deformed to t

position ABC,D, as shown in Fig. 2.14.
Now increase in the length of diagonal BD = BD, - BD
. Tensile strain in the diagonal BD

Increase in length _BD,-BD o ) 0
QOriginallength ~ ° BD :
From D, draw a perpendicular DE on BD.
We know that the distortion DD, is very small and hence angle DBD, will be very small.

Hence we can take

BD = BE
and | LCDB=/CDB=45"
Now in triangle DI E, £ DD\ E = 45°
Length D,E = DD, cos (DD E)

=DD; cos 45° = J§

In triangle ABD,BD = JAB? 4+ AD?

= JAD? + AD® = 3 xAD . (+ AB=AD)
Now from equation (Z), we have ’ -
Tensile strain in diagonal
BD, - BD
- BD
BD; - BE
= BD
DlE
~ BD

& |
_ A2 ( D1E=DD1andBD=J§xADJ

BD =

[~ BD=BE]

V2

Db
== in* in=—1 (215
) Shear strain ( Shear strain . J | (2.15)

2.13. RELATIONSHIP BETWEEN MODULUS OF ELASTICITY AND MODULUS OF
RIGIDITY

We have seen in the last article that when a square block of unit thicknes_s is subjected
to a set of shear stresses of magnitude v on the faces AB, CI} and the faces AD and CB, then the

*Please refer to Art. 1.4.3, for shear strain. ~
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[ BD,- BE = DET

diagenal strain due to shear stress v is given by equation (2.14) as

Total tensile strain along diagonal BD = —;— 1+

From equation (2,15} also we have total tensile strain in diagonal BD

= = modulus of rigidity = C

Shear stress [ Shear stress
shear strain = - ——

2 cC Shear strain

il

L\Slb--' 2|

T
E (** Shear stress = 1)
.. Equating the two tensile strain along diagonal BD, we get

LA PURTEE o2
ETWIRTE
‘ T
or = 1+ )= 56 (Cancelling * to both sides)
E=2C(1 +p) {2.16)
E
or C= S 0 WA217)

Problem 2.10. Determine the Poisson’s ratio and bulk modulus'of a material, for which
Young’s modulus is 1.2 x 10° N/mm? end modulus of rigidity is 4.8 x 10¢ N/mm?.

Sol. Given :

Young's modulus, E =1.2 x 10° N/mm?
Modulus of rigidity, C = 4.8 x 10* N/mm?
Let the Poisson’s ratio ='n

Using equation (2.16), we get

E=20{(1+w
or 12x105=2x48x10* (1 + W
1.2x10°
or 1+w= TxABx 10t 125 or p=125-10=0.25 Ans.
Bulk modulus is given by equation (2.10) as
E 12x10°% -
K=o o 2 X0 v uw=0.25)

3(1-2w) 3(1-0.25x2)
= 8 x 10 N/'mm?. Ans.

Problem 2.11. A bar of cross-section 8 mm x & mm is subjected to an axial pull of
7000 N. The lateral dimension of the bar is found to be changed to 7.9985 mm x 7.9985 mm. If
the modulus of rigidity of the material is 0.8 x I 0% N/mm?, determine the Poisson’s ratio and
modulus of elasticity.

Sol. Given :

Area of section = § x 8 = 64 mm?

Axial pull, P= 7000 N _

Lateral dimensions = 7.9985 mm x 7,9985 mm

Volume of C = 0.8 x 16° N/mm?
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Let u = Poisson’s ratio and
E = Modulus of elasticity,
Change in lateral dimension
- Original lateral dimension
- 8 -—7.89985 _ 0.0215 = 0.0001875.

To find the value of Poisson’s ratio, we must know the value of longitudinal strain. But
in this problem, the length of bar and the axial extension is not given, Hence longitudinal
strain cannot be caletlated. But axial stress can be caleulated. Then longitudinal, strain will
be equal to axial stress divided by E.

Now lateral strain =

p 7000 o
.+ Avi P U bd A 2 adi in= —
o Axial stress, o= Aren ~ o4 102.375 N/mm? and longitudinal strain = 7
But lateral strain = p x longitudinal strain = u x %
or : 0.0001875 = % (~* Lateral strain = 0.0001875)
E 109375
W = 00001875 = 583333.38
or E = 583333.33u (D)
Using equation (2.17), we get
E
sz or E=2C001+w |
=2x08x105(1 + ) - C=0.8x10%
or 583333.33u=2x 0.8 x 10°(1 + W (v E=583333.33w
or l+p= w“g = 3.6458p
2x0.8x10°

1=3.6458u - p = 2.6458)

1
m = (.378. Ans.

Modulus of elasticity (E) is obtained by substituting the value of i in equation ().
: K =583333.33u

583333.33 2
E= 06458 2.2047 x 10° N/mm?, Ans.
Problem 2.12. Calculate the modulus of rigidity and bulk medulus of a cylindrical bar
of diameter 30 mm and of length 1.5 m if the longitudinal strain in ¢ bar during a tensile siress
is four times the lateral strein. Find the change in volume, when the bar is subjected to a

hydrostatic pressure of 100 Nimm?2, Take E = I x 10° NfmmZ.

Poisson’s ratio = u =

Sol. Given :
Dia. of bar, d = 30 mm
Length of bar, L=1.5m=15x 1000 = 1500 mm

- Volume of bar, V= g d2xL = % x 30 x 1500
= 1060287.52 mm?

ELASTIC CONSTANTS

Longitudinal strain = 4 x Lateral strain
Hydrostatic pressure, p = 100 N/mm?
Lateral strain 1
= —=—=0265
_ Longitudinal strain 4
or Poisson’s ratio, =025
Let C = Modulus of rigidity
" K = Bulk moduius
E = Young’s modulus = 1 x 10° N/mm?
- Using equation (2.16), we get

E=201 +w
or 1x 105 =201 +0.25)
1x 10° |
— = 4 2
C= 2% 195 =4 x 10* N'mm?®. Ans.
For bulk modulus, using equation (2,11}, we get
E=3K(1-2w}
or 1% 105 = 3K(1 - 2 x 0.25)
1x10°
- - 5 2
=3%05 ° 0.667 x 10° N/mm?*. Ans.
Now using equation (2.9), we get
P P __P
~ Volumetric strain [ﬂ )
v
where p = 100 N/mm?
: 100
5_ o
0.667 x 10° = (ﬁ)
v
dv 100 ,
or T = 0667x 100 = 1Ex10

dV =V x 1.5 x 1073 = 1060287.52 x 1.5 x 107*
= 1590.43 mm?3, Ans.

HIGHLIGHTS

1. Poisson's ratio is the ratio of lateral strain to longitudinal strain. It is generally denoted by p.

2. The tensile longitudinal stress produces compressive lateral strains.

: T . 8l
2. If a load acks in the direction of length of a rectangular bar, then longitudinal strain = T and

Lotera stran = % or 2
ateral strain = b or a

where 8l = Change in length,
§b = Change in width,
&d = Change in depth.
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The ratio of change in volume to original volume is known as volumetric strain.
Volumetric strain {e,) for a rectangular bar subjected to an axial load P, is given by

€,= P;-(I—ZM).

Volumetric strain for a rectangular bar subjected to three mutually perpendicular stresses is

1 .
given by, %=F (o, + o, + )1 - 21)

where o, a, and o, are stresses in x, y and z direction respectively.
Principle of complementary shear stresses states that a set of shear stresses across a plane is
always accompanied by a set of balancing shear stresses (i.e., of the same intensity) across the
plane and normal to it.
Volumetric strain of a cylindrical rod, suhjected to an axial tensile load is given by,

e, = Longitudinal strain - 2 x strain of diameter

8 g8
i d
Bulk modulus K is given by,
’ o
vy
)
The relation between Young’s modulus and bulk modulus is given by,
E=3K(1-2p.
When an element is subjected to simple shear stresses then :
(i) The planes of maximum normatl stresses are perpendicular to each other.
(ff) The planes of maximum normal stresses are inclined at an angle of 45° to the plane of pure
shear.
(#{) One of the maximum normal stress is tensile while the other maximum normal stress is
compressive. .
(iv} The maximum normal stresses are of the same magnitude and are equal to the shear stress
on the plane of pure shear.
The relation between modulus of elasticity and modulus of rigidity is given by

K=

E
E=20(1+w or C= TRPINE
EXERCISEZ

(A) Theoretical Questions
Define and explain the terms : Longitudinal strain, lateral strain and Poissen’s ratio.

Prove that the volumetric strain of a ¢cylindrical rod which is subjected to an axial tensile load is
equal to strain in the length minus twice the strain of diameter.

What is a bulk moedulus ? Derive an expression for Yeung’s modulus in terms of bulk modulus
and Poisson’s ratio.

Define volumetric strain. Prove that the volumetric strain for a rectangular bar subjected to an
axial-load P in the direction of its length is given by

81
=7 {(1-2w

. . &l I .
where p = Poisson’s ratio and i Longitudinal strain.
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10.

ratio = 0.25.

(a) Derive an expression for volumetric strain for a rectangular bar which is subjected to three
mutually perpendicular tensile stresses.

(b) A test element is subjected to three mutually perpendicular unequal stresses. Find the change
in volume of the element, if the aljebraic sum of these stresses is equal to zero.

Explain briefly the term ‘shear stress’ and ‘complimentary stress’ with proper illustrations,

State the principle of shear stress.

What do you understand by ‘An element in a state of simple shear’ ?

When an element is in a state of simple shear then prove that the planes of maximum normal

stresses are perpendicular to each other and these planes are inclined at an angle of 45° to the

planes of pure shear.

Derive an expression between modulus of elasticity and modulus of rigidity.

(B) Numerical Problems

Determine the changes in length, breadth and thickness of a steel bar which is-5 m loné, 40 mm
wide and 30 mm thick and is subjected to an axial pull of 35 kN in the direction of its length.
Take E = 2 x 10% N/mm? and Poisson’s ratio = (.32,

[Ams. 0.0729 e¢m, 0.000186 ca, 0.000139 cm)]

For the above problem, determine the velumetric strain and the final volume of the given steel
bar. (Ans. 0.0000525, 6000317 mmn?]

Determine the value of Young’s modulus and Poisson's ratio of a metallic bar of length 25 cm,
breadth 3 em and depth 2 cm when the bar is subjected to an axial compressive load of 240 kN.
The decrease in length is given as 0.05 cm and increase in breadth is 0.002.

[Ans, 2 x 10° N/mm? and 0.33]
A steel bar 320 mm long, 40 mm wide and 30 mm thick is subjected to 2 puli of 250 kN in the
direction of its length. Determine the change in volume, Take E = 2 x 105 N/mm? and m = 4.

[Ans. 200 mm?]

A metallic bar 250 mm x 80 mm x 30 mm is subjected to a force of 20 kN (tensile), 30 kN (tensile)
and 15 kN (tensile) along x, y and z directions respectively. Determine the change in the volume
of the block. Take E = 2 % 10° N/mm? and Poisson’s ratio = 0.25. [Ans. 19.62 mm?3]
A metallic bar 300 mm x 120 mm x 50 mm is loaded as shown in Fig. 2.15.
Find the change in volume, Take £ = 2 x 105 N/mm? and Poisson’s ratio = 0.30.

| 4.5_.MN

500 kN

50 /‘{
mmI / / 20 mm

J / 300 mm »

Fig. 2.15

Also find the change that should be made in 4.5 MN load, in order that there should be no change
in the volume of the bar. [Ans. 450 mm?, 4.5 MN]
A steel rod 4 m long and 20 mm diameter is subjected to an axial tensile load of 40 kN. Deter-
mine the change in Jength, diameter and volume of the rod. Take E = 2 x 105 N/mm? and Poisson’s
[Ans. 2.5464, 0.05092, 5598 mm?]

e,
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For a material, Young’s modulus is given as 1.4 x 10° N/mm? and Poisson’s ratic 0.28. Calculate
the bulk modulus. [Ans. 1.06 x 10% N/mm?]
A bar of 20 mm diameter subjected to a pull of 50 kN. The measured extension on gauge length of
950 mm is 0.12 mm and change in diameter is 0.00375 mm. Calculate :
(i) Young’s modulus (i) Poisson’s ratio and (i#) Bulk modulus.

[Ans. (i} 1.989 x 10% NAnm?, (if) 0.234, (7if) 1.2465 x 10% N/mm?]
Determine the Poisson’s ratio and bulk modulus of a material, for which Young’s modulus is
1.2 x 105 N/mm? and modulus of rigidity is 4.5 x 10¢ N/mm?. [Ans. 0.33, 1.2 x 105 N/mm?]
A bar of eross-section 10 mm » 10 mm is subjected to an axial pull of 8000 N. The lateral dimen-
sion of the bar is found to be changed to 9.2985 mm x 2.9985 mm. If the modulus of rigidity of the
material is 0.8 x 105 N/mm?, determine the Poisson’s ratio and modulus of elasticity.

i [Ans. 0.45, 2.4 x 10° N/mm?]

Calculate the modulus of rigidity and bulk modulus of a cylindrical har of diameter of 25 mm
and of length 1.6 m, if the longitudinal strain in a bar during a tensile test is four times the
lateral strain. ¥Find the change in volume, when the bar is subjected to a hydrostatic pressure
of 100 N/mm?, Take E = 1 % 10° N/mm®. B

[Ans. 4 % 101 N/mm?, 0.667 % 105 N/mm?, 1178 mm?®] -

A bar 30 mm in diameter was subjected to tensile load of 54 kN and the measured extension on
300 mm gauge length was 0.112 mm and change in diameter was 0.00366 mm. Calculate Poisson's
ratio and values of three modulii.

[Ans. p = 0,326, E = 204.6 kN/mm?, C =77.2 kN/mm2, K = 196 kN/mm?)
Derive the relation between E and €. Using the derived relationship, eatimate the Young’s modulus
(E) when the modulus of rigidity (C) is 0.80 x 10° N/mm? and the Poisson’s ratio is 0.3.
[Hint. E=2C(1 + n) =2 x 0.80 x 10° (1 + 0.3) = 2.08 x 105 N/mm?.]

3

Principal Stresses and Strains

3.1. INTRODUCTION

In chapter 2, the concept and defirition of stress, strain, types of stresses (i.e., tensile,
compressive and simple shear) and types of strain (i.e., tensile, compressive, shear and volu-
metric strains ete.) are discussed. These stresses were acting in a plane, which was at right
angles to the line of action of the force. In many engineering problems both direct (tensile or

" eompressive stress) and shear stresses are acting at the same time. In such situation the re-

sultant stress across any section will be neither normal nor tangential to the plane. In this
chapter the stresses, acting on an inclined plane (or oblique section} will be analysed.

3.2, PRINCIPAL PLANES AND PRINCIPAL STRESSES

The planes, which have no shear stress, are known as principal planes. Hence principal
planes are the planes of zero shear stress. These planes carry only normal stresses.

The normal stresses, acting on a principal plane, are known as principal stresses.

3.3. METHODS FOR DETERMINING STRESSES ON OBLIQUE SECTION

The stresses on oblique section are determined by the following methods :
1. Analytical method, and 2. Graphical method.

3.4, ANALYTICAL METHOD FOR DETERMINING STRESSES ON OBLIQUE SECTION

The following two cases will be considered :

1. A member subjected to a direct stress in one plane.

9. The member is subjected to like direct stresses in two mutually perpendicular direc-
tions.

3.4.1. A Member Subjected to a Direct Stress in one Plane. Fig. 3.1 () shows a
rectangular member of uniform cross-sectional area A and of unit thickness.

Let P = Axial force acting on the member. '

A = Area of cross-section, which is perpendicular to the line of action of the force P.

The stress along x-axis, o = e
Hence, the member is subjected to a stress along x-axis.

Consider a cross-section EF which is perpendicular to the line of action of the force P.

85
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E G E G
f, goﬂ
— 0/ A < >
~ P s o \K P
F
Fig. 3.1 (a) Fig. 3.2 (&)

Then area of section, EF=EFx1=A.
The stress on the section EF is given by

o= Force .. P
Areaof EF A _
The stress on the section EF is entirely normal stress. There is no shear stress (or tan-
gential stress) on the section EF. )
Now consider a section FG at an angle 8 with the normal cross-section EF as shown in
Fig. 3.1 (a).
Area of section FG = FG x 1 (member is having unit thickness)

(D)

EF EF EF
_ = InA EFG, ——=cosf .. FG-=
- cosBXI [ " FG cos cos @
A
= (- EFx1=A4)
cosB
~. Stress on the section, ¥G
Force p P
= = =—vco0s0
Area of section FGG A A
cos B
- =acos B ( §=GJ (3.1

This stress, on the section F(, is parallel to the axis of the member (i.e., this stress is
along x-axis). This stress may be resolved in two components. One component will be normal
to the section FG whereas the second component will be along the section F(G (i.e., tangential
to the section F(7). The normal stress and tangential stress (i.e., shear stress) on the section
FG are obtained as given below [Refer to Fig. 3.1 ()1, - '

Let- P, = The component of the force P, normal to section FG
=Pcos 0

P, = The component of force P, along the surface of the section FG (or tangential
to the surface FG) : ’

=Psing )
o, = Normal stress across the section FG
o, = Tangential stress (i.e., shear stress) across the section FG.
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- Normal stress and tangential stress across the section FG are obtained as,

_ Force normal to section FG

Normal stress, %= Area of section F@G
P P a
= ; = (js (v P,=Pcos 8)
cos cos O

P 3
. =— 0
cos 0 .cos @ A €0s

i

o |

=ccos 0 [ = 0’) ..(3.2)

Tangential stress (i.e., shear stress),

o = Tangential force across section FG
¢ Area of section FG

(- P,=Psin 0)

—
8
@ e
[ ]
\_—___/

=—§—sin6.cosﬁ=osin8.cose
= % % 2 gin O cos @ [Multiplying and dividing by 2]
= -g_ sin 20 (-~+ 2sin 8 cos 0 = sin 26) (3.3

From equation (3.2), it is seen that the normal stress {(o,) on the section FB will be
maximum, when cos? 6 or cos 6 is maximum. And cos 0 will be maximum when 8 = 0° as
cos 0° = 1. But when 8 = 0°, the section FG will coincide with section EF. But the section
EF is normal to the line of action of the 1oading. This means the plane normal to the axis
of loading will carry the maximum normal stress.

- Maximum normal stress, =occos?8=ccos?0°=c A8.4)

From equation (3.3, it is observed that the tangential stress (i.e., shear stress} across
the section FG will be maximum when sin 20 is maximum. And sin 28 will be maximum when
sin 26 = 1 or 26 = 90° or 27(°
or = +2° or 135°.

This means the shear stress will be maximum on two planes inclined at 45° and 135° to
the normal section EF as shown in Figs. 3.1 (¢} and 3.1 ().

o

Max. value of shear stress = -(21 sin 26 = g— sin 90° = 3 ' " .(3.5)
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First plane of maximum
shear stress 0= 45°

E ¥ E
45° .
A Po® N P
F ‘ F A

second plane of maximum
shear stress B = 135°
Fig. 3.1 (o) Fig. 3.1 (d)
From equations (3.4) and (3.5) it is seen that maximum normal stress is equal to o
whereas the maximum shear stress is equal to o/2 or equal to half the value of greatest normal
stress.

Second Method

A member subjected to a direct stress in one plane. Fig. 3.2 shows a rectangular
member of uniform cross-sectional area A and of unit thickness. The bar is subjected to a
principal tensile stress o, on the faces AD and BC.

D E C
PE— | s
] i  p—
—] 1P 0y
ay : S
¥ —] ] e
- -8 | —
- ! pn_.>P1=01xBCx1
‘— 1 —
A F B
Fig. 3.2
Area of cross-section = BC x Thickness of bar
=BCx1

Let the stresses on the oblique plane FC are to be calculated. The plane FC is inclined at
an angle § with the normal eross-section EF {or BC). This can be done by converting the stress
o, acting on face BC into equivalent force. Then this force will be resolved along the inclined
planes FC and perpendicular to FC. (Please note that it is force and not the stress which is to
be resolved).

Tensile stress on face BC = o,

Now, the tensile force on BC,

P, = Stress (o) x Area of cross-section
=0, xBCx1 : (- Area=BCx1)

The above tensile foree P, is also acting on the inclined section FC, in the axial direction
as shown in Fig. 3.2, This force P, is resolved into two component, i.e., one normal to the plane
FC and other along the plane FC.

Let P, = Component. of the force Py, normal to the section FC
=P cos0
=0, xBCx1xcos® (- Pj=0;xBCx1)
P, = Component of the fores P, along the section FC
=P sin®

:cleCxlxsinB
o, = Normal stress on the section FC
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g, = Shear stress {or tangential stress) across the section FC.

Th | st o Force normal to section FC
al stress, = -
€1 noti = Area of section FC

= E (~+ bar is of unit thickness)
FCx1
=%ﬂ { P,L:cleCxcosB)
I iangle FBC, 5C — cos
=g, xcos 0 xcos B .~ In triangle Fo oS
=0, x cos® 8 ..(3.54)
Similarly, tangential {(or shear) stress,
_ Force along section FC' E,

St T Aven of section FC  FCx1
_01xBCx1xsinb (+ P.=o xBOx 1)
= FC =%

=0, x co5 6 x sin 6 ( In triangle FBC, %g— = cos B)

=lec0s8xsin9

=% x2xcosxsin®  (Multiplying and dividing by two)
= = x sin 28 ..(3.6B) (- 2sgin .e cos @ = sin 28)

From equation (3.54), it is seen that the normal stress {(o,) on the section FC will be
maximum, when cos® 8 or cos 8 is maximum. And cos 8 will be maximum when 8 = 0° as
cos 0° = 1, Bui when 8 = 0°, the section FC will coincide with section EF. But the section
EF is normal to the line of action of the loading. This means the plane normal to the axis
of loading will carry the maximum normal stress.

Maximum normal stress = o, cos® 8 = 0, cos? 0° = G, .(3.50)

From equation (3.58), it is observed that the tangential stress (i.e., shear stress) across
the section FC will be maximum when sin 20 is maximum. And sin 20 will be maximum when

sin 26 = 1 or 20 =90° or 270° or 6 =45° or 136°. .
_ This means the shear stress will be maximumn on two planes inclined at 45° and 135° to
the normal section EF or BC as shown in Figs. 8.2 (@) and 3.2 ().

Second plane of

First plane of maximum maximum shear

shear stress, § = 45° stress, § = 135°
135°fNC .

-

S
45° b _»P
‘ I Pe— >
P P 1 35"\¥
F B 8
(e} (b}

. Fig. 3.2
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- o
Max. value of shear stress = % sin 28 = —(;—1 sin 90° = _; (3.5D)

From equations (3.5C) and (3.5D) it is seen that maximum normal stress is equal to 0,

whereas the maximum shear stress is equal to 02—1 or equal to half the value of greatest normal

stress.
Note. It is the force which is resolved in two components. The stress is not resolved.

Problem 3.1. A-rectangular bar of cross-sectional area 10000 mm? is subjected fo an
axial load of 20 kN. Determine the normal and shear stresses on a section which is inclined at
an angle of 30° with normal cross-section of the bar.

Sol. Given :

Cross-sectional area of the rectangular bar,
A = 10000 mm?

Axial load, P=20kN=20,000 N

Angle of oblique plane with the normal cross-section of the bar,
0 =30°

. P 20000 _ 2
Now direct stress, o= =~ 16000 - 2 N/mm
Let o, = Normal stress on the oblique plane

0, = Shear stress on the oblique plane.
Using equation (3.2) for normal stress, we get
o, =0ccos” @
=2 x cos? 30° (~+ o=2Nmm?
= 2 x 0.8662 (++ cos 30° = 0.866)
=15 N/'mm2 Ans.
Using equation (3.3) for shear stress, we get
ct=-§ 5in 20 = 2 x sin (2 x 30°)
=1 x sin 60° = 0.866 N/mm2, Ans.
Problem 3.2. Find the diameier of a circular bar which is subjected to an axial pull of
180 kN, if the maximum allowable shear stress on any section is 65 N/mm?2.

Sol. Given :

Axial pull, P =160kN = 160000 N

Maximum shear stress = 65 N/mm?

Let D = Diameter of the bar
Area of the bar = g D?

. P 160000 640000
Direct stress, gz = —— = 5
A mpe D

N/mm?

Maximum shear stress is given by equation (3.5).

Maxi hear stress o _ 640009

aximum shear = .
2 2xnD?

But maximum shear stress is given as = 65 N/mm?.

Hence equating the two values of maximum shear, we get

_ 640000
T 2xnD?
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D 640000
2xmx865
o D =39.58 mm. Ans.
Problem 3.3. A rectangular bar of cross-sectional arex of 11000 mm? is subjected to a
tensile lood P as shown in Fig. 3.3. The permissible normal and -shear stresses on the obligue
plane BC are given as 7 Nimm? and 3.5 N/mm? respectively. Determine the safe value of P,

= 1567

Sol. Given :
Area of cross-section, A = 11000 mm? c
Normal stress, g, = 7 N/mm? P . P
Shear stress, o, = 3.5 N/mm? ha— —
Angle of oblique plane with the axis of bar = 60°. 60°
Angle of obligue plane BC with the normal cross- B
section of the bar, Fig. 3.3
8 = 90° - 60° = 30° '
Let P = Bafe value of axial pull

o = Safe stress in the member.
Using equation (3.2),
g,=ccos?0 or 7=0cos?30°
=a (0.866)2, (v cos 30° = 0.866)
7

- 2
0866 x 0.866 ~ >-334 N/mm

o
Using equation (3.3},

g .
O, = — sin 20

or 3.5= —g sin 2 x 30° = —g §in 60° = g x 0.866
35x2
o2 ra 2
o YT 8.083 N/mm?.

The safe stress is the least of the two, i.e., 8.083 N/mm?2
Safe value of axial pull,
P = Safe stress x Area of cross-section
=8.083 x 11000 = 88913 N = 88.918 kKN. Ans.
Problem 3.4. Two wooden pieces 10 cm % 10 em : B
in cross-section are glued together along line AR as
showrn in Fig. 3.3(u) below. What maximum axial
force Pcan be applied if theallowable shearing stress
along ABis 1.2 Nimm?2 ¢ (AMIE, Summer 1987) A
Sol. Given : Fig. 8.3 (a)
Area of cross-section =10 x 10 = 100 em?
= 100 % 100 mm? = 10000 mm?
Allowable shear stress, g, = 1.2 N/mm?
Angle of line AB with the axis of axial force = 30°
Angle of line AB with the normal cross-section,
8 =90° - 30° = 60°
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Let P = Maximum axial force
o = Maximum allowable stress in the direction of P. -
Using equation (3.3},

o, = % sin 26

or : 12= g x sin (2 x 60°) = % x sin 120°
1.2x2 2.4 :

O=§in120° 0.866
Maximum axial force,
P = Stress in the direction of P x Area of cross-section

= g x 10000 = 2.771 x 16000 = 27710 N = 27.71 kN, Ans.
3.4.2. A Member Subjected to like Direct Stresses in two Mutually Perpendicu-

= 2.771 N/mm?

" lar Directions. Fig. 3.4 (a) shows a rectangular bar ABCD of uniform eross-sectional area A

and of unit thickness. The bar is subjected to two direct tensile stresses (or two-principal ten-
sile stresses) as shown in Fig. 3.4 (a).

T2 P,sinbAC
SERRRRNNNNRY
-+~ o 8 P,
-+ 0
oy P, » 51 E
- S
- T
] ; __'P1=cr1xBCx‘:

T

v Py=o,xBFx1
Fig. 3.4 {a}

Let FC be the obligue section on which stresses are to be calculated. This can be done by
converting the stresses o, (acting on face BC) and g, {acting on face AR) into eguivalent forces.
Then these forces will be resolved along the inclined plane FC and perpendicular to FC. Con-
sider the forees acting on wedge FBC.

Let @ = Angle made by oblique section FC with normal cross-section BC

o, = Major tensile stress on face AD and BC -
o, = Minor tensile stress on face AB and CD

P, = Tensile force on face BC

P, = Tensile force on face FB.

The tensile force on face BC,

Pl=ﬁlereaoffaceBC=oleCx1 (v Area=BCx1)

The tensile force on face FB,

P, = Stress on FB x Area of FB = 0, x FB x 1.
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The tensile forces P; and P, are also acting on the obligue section FC. The force P is
acting in the axial direction, whereas the force P, is acting downwards as shown in Fig. 3.4 (a).
Two forces P| and P, each can be resolved into two components i.e., one normal to the plane FC
and other along the plane FC. The components of P, are P; cos § normal to the plane ¥C and
P, sin 0 along the plane in the upward direction. The components of P, are P, sin # normal to
the plane FC and P, cos 0 along the plane in the downward direction.

Let P = Total force normal to section FC
= Component of force P, normal to section FC
+ Component of force P, normal to section FC
=P cos0+P,sind
=g, x BC x cos 8 + 0, x BF x sing (- P, =0, x BC, P, = 6, x BF}
P, = Total force along the section FC
= Component of force P, along the section FC
+ Component of force P, along the section FC
=P, sin 8 + (- P, cos 0) (—ve sign is taken due to opposite direction)
=P sin0-P,cos 8
=0, x BC x sin 8- o, x BF x cos §
(Substituting the values P, and P,)
o, = Normal stress acress the section KC
_ Total force normal to the section FC

Area of section FC
__ B _01xBCxcost+0, x BF xsin 0
FCx1 - FC

=g xﬂxcosew;r x—B—Fxsine
L™ Fe 27 FC
=g, xcosfxcosb+0,x8inBxsing
. BC BF
-+ Intriangle FBC, —=-=cos8, — =sin¥ |
( g 7o cos o sm]
=0, cos? 6 + a, sin® @ ’

_ 1+cos28Y 1-cos20Y
= Ty +0q T

[~ cos?6=(1+cos 20)2 and sin2 8 = (1 - cos 28)/2]
G110 O1 -0y
2 2
c, = Tangential stress (or shear stress) along section FC

cos 20 ..43.6)

Total force along the section FC
- Area of section FC

( Stress = M)
Area

#% cog 28 = cos® B — sin® @
=cos28-(1-cos?8)=2cos?O-1 ={]l~sin?@)—sin28=1-25in%@
(1+cos 20) 9 (1 - cos 26)

— sin? 8 = —

* pos 260 = cos? 0 - sin? @

cos? 8 =
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__ K mcixBstinB—crszFxcosG
TFCxl ' FC :

F
FC
=0'1xcosﬁxsin9—02'>< 5in® x cos 0

( In triangle FBC, %— =cos @, % =sin 6)

=g xBstinB oxB x cos @
=X Fe S0 e

= (g, — 0,) cos 0 sin &
=_(9%qu x 2 cos @ sin @

= ggl;ci) sin 20 ...(3.7)

(Multiplying and dividing by 2)

The resultant stress on the section FC will be given as

op=Jolrol (3.8)

Obliquity [Refer to Fig. 3.4 (8)1. The angle made D c
by the resultant stress with the normal of the oblique plane, o
is known as obliquity. It is denoted by ¢. Mathemattcally, : .

a; : S
tan ¢= «[3.8(4)] oy

n

Maximum shear stress. The shear stress is given , F B
by equation (3.7). The shear stress (o) will be maximum Fig. 3.4 (&)
when '
gin29=1 or 20=900° ar 270° (- sin90°=1and alsosin 270°=1)

or 6 =45° or 135°

And maximum shear stress, (9,),,., = % ;02 (3.9

The planes of maximum shear stress are obtained by making an angle of 45° and 135°
with the plane BC (at any point on the plane BC} in such a way that the planes of maximum
shear stress lie within the material as shown in Fig. 3.4 (c).

Plane of maximum shear stress /Q
/ c o
45° x

135"

B ’ B

Fig. 3.4 {0)

Hence the planes, which are at an angle of 45° or 135° with.the normal cross-section BC ¥

{see Fig. 3.4 ()], carry the maximum shear stresses.

PRINCIPAL STRESSES AND STRAINS : " a5

_ Principal planes. Principal planes are the planes on which shear stress is zero. To
locate the position of principal planes, the shear stress given by equation (3.7} should be equated

" o zero.
For principal planes,
21792 Gin26=0
2
or 5in 26 =0 [ (o, — oy} cannot be equal to zero]’
or 286=0 or 180°
g=0 or 90°
when 8 =10, J,1'=£Jr—1—;&+01—“9-2—c0529
S s S Bl RPTYY
2
_0'1+02 UI—UQ . o _
g +———2 x1 (*: eos0°=1)
when 0 = 90°, H=M+Mc052x90°
. 2 2
e O1 10y + C1 -0 cos 180°
2
g, +0y O] -
R N T Sk ST A P (- cos180°=—1)
2 2
= 02, .

Note. The relations, given by equations (3.6) to (3.9), also hold good when one or both the stresses
are compressive. '

Preblem 3.5. The tensile stresses at a point across two-mutually perpendicular planes
are 120 Nimm? and 60 Nimm?®. Determine the normal, tangential and resultant stresses on a
plane inclined at 30° to the axis of the minor stress. :

Sol. Given :

Major principal stress, o, = 120 N/mm?

Minor principal, g, = 60 N/mm?
Angle of oblique plane with the axis of minor principal stress,
8 = 30°

Normal stress
The normal stress (g,) is given by equation (3.6),
o, = O1+Gy 01 ~Ty
2
_ 120+80 . 120-60
2
=90 +30cos 60° =90+ 30 x §
= 105 N/mm?2. Ans,

cos 20

cos 2 x 30°

-‘g\‘f

LAY

",
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Tangential stress
The tangential (or shear stress) o, is given
by equation (3.7).

;= 60 N/mm”

ARERIAIAIY

0, —-03 , ~ c
0, = ———= sin 28 E — =
! E g)i(;in?fstress ! > g
Z ey ! L —> Z
- Q e —"
=Msin(2x30°) N o— Ax1_soff- o
| €—— | major stress "
- Yo
g

= 3_0 x sin 60° = 30 x 0.866
= 25.98 N'mm?® Ans.

N

3 2
Resultant stress ap =60 N/mm

The resultant stress (o} is given by equa- Fig. 3.5
tion (3.8) ’ g. 4

Op = 0,2 +0,% = 1057 + 25.98°

= /11025 + 674.96 = 108.16 N/mm2, Ans.

Problem 3.6. The stresses at a point in a bar are 200 N/imm? (tensile) and 100 Nimm?
(compressive). Determine the resultant stress in magnitude and direction on a plane inclined at
60° to the axis of the major stress: Also determine the maximum intensity of shear stress in the
material at the point. (AMIE, Winter 1984)

Sol. Given :
Major principal stress,
Minor principal stress,

o, = 200 N/mm?
g, = — 100 N/mm?
(Minus sign is due to compressive stress)
Angle of the plane, which it makes with the major principal stress = 60°
Angle 6 = 90° - 60° = 30°,
Resultant stress in magnitude and direction
First calculate the normal and tangential stresses,
Using equation (3.6) for normal stress, 2
_ot0y o 100 N/enm

G110 O1-0Ty
K D Tt HEANRANDI
_ 200 +(-100) 200 - (- 100)

o 4— — o
2 2 E +—| o— E
cos (2 x 30°) S +—. . — A 5
(= 8=309 S «——] Axisof/ -3 8
200 - 100 200 + 100 & ¢——| major stress >
= + cos 60°
s s
= L .. o
=50+150x £ (- cos60°= 1) 160 N2
= 50 + 75 = 125 N/mm?2. Fiz 3.6
Using equation (3.7) for tangential stress, g =
200 - (- 100)

01 -0 .
Ut=—1~——2-sm28

sin (2 x 30°)

= M sin 60° = 150 x 0.866 = 129.9 N/mm?,
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Using equation (3.8) for resultant stress,
Op = Jo,% + 2 = 1257 + 12992
= /15625 + 16874 = 180.27 NAnm?. Ans.

The inclination of the resultant stress with the normal of the inclined plane is given by
equation [3.8 (A)] as

. 125
¢ =tan1 1.04 = 46° 6. Ans.

Maximum shear stress
Maximum shear stress is given by equation {3.9)
oy -0y _ 200 - (- 100) _ 200 + 100

- 2
(0 e = G - 2 = 150 N/mm?. Ans.

Problem 3.7. Af @ point in a strained material the principal tensile stresses across two
perpendiculor planes, are 80 Nimm? and 40 Nimm?2. Determine normal stress, shear strfass and
the resultant stress on a plane inclined at 20° with the major principal plane. Determine also
the obliquity. What will be the intensity of stress, which acting alone will produce the same

maximum strain if Poisson’s ratio = 4.

Sol. Given : o0 N
Major principal stress, o, = 80 N/mm?
Miner principal stress, o, = 40 N/mm? b T T T T c

The plane CE is inclined at angle 20° with “'E Mejor princlpa) e
major principal plane (.e., plane BC). £+ plane 8 ’ 5
- " oe=20° CEN e B
1 R £ e
Poisson’s ratio, p = i © l l l l 8 °
Let o = Normal strass on inclined plane ,
" R §0 N/mm
g, = Shear stress and Fig. 3.7
o, = Resultant stress.
Using equation (3.6}, we get
o = O ;02 N o1 ;02 cos 20 = 80+ 40 + 80;40 cos (2 x 20°)

=60 + 20 x cos 40° = 75.32 N/mm?  Ans.

The shear stress is given by equation (3.7)

- - 40 o
o, = SLZL‘—% sin 20 = 80 2 gin (2 x 20°) = 20 sin 40

= 12.865 N/fmm?. Ans.
The resultant stress is given by equation (3.8)

a4
2 2
Op = 0, + 0,

= \/75.322 +12.8562 = 76.4 N/mm? Ans.
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Obliquity (¢} is given by equation [3.8 (4)]

_ o, 12856
ten = " 7532
12.856 :
- -1 = 9° ’ 3
¢ = tan 75.32 9°41'. Ans

Let o = stress which acting alone will produce the same maximum strain. The maxi-
mum strain will be in the direction of major principal stress.

. s o] [T 1
Maximum strain = El - _Eg ] {0y — nay)
1 40Y 70
wor | B - — | = —
#(2-%)-F
The strain due to stress o= %
Equating the two strains, we get ZEE' = %

o o =70 N'mm?. Ans.

Problem 3.8. At a point in « strained material the principal stresses are 100 Nimm?
(tensile) and 60 Nimm? (compressive). Determine the normal stress, shear stress and resultant
stress on a plane inelined ot 50° to the axis of major principal stress. Also determine the moxi-
mum shear stress at the point. (AMIE, Summer 1982)

Sol. Given :

Major principal stress, o, = 100 N/mm?

Minor principal stress, o, =—60 N‘/mm* (Negative sign due to compressive stress)

Angle of the inclined plane with the axis of major principal stress ='50°

. Angle of the inclined plane with the axis of minor principal stress,

68 =90- 50 =40°,

Normal stress (o))

Using equation (3.6),

= Gi+ % ;02 + 94792 oos0m
_ 160 + (- 60) + 100 - (- 60)
2 2
_ 1066 -60 +100+60
2 2
=20 + 80 x cos B0° =20 + 80 x .1736
=20 + 13.89 = 33.89 N/'mm2. Ans.
Shear stress (o,)

cos (2 x 40°)

cos 80°

Oy —0q .
L = gin 20

Using equation (3.7}, o, =

_ 100 - (- 60)

i sin (2 x 40°)

PRINGIPAL STRESSES AND STRAINS . 99

L 100+ 60 80° = 80 x 0.9848 = 78.785 N/mm®. Ans.

- Resultant stress (o)
Using equation on (3.8),

Op = Jo? + 02 = 33.89° + 78785%
n t

= f114853 + 6207.07 = 85.765 N/mm?. Ans.

Maximum shear stress
Using equation (3.9},

(0). = T 202 _100 2( 60)
100 + 60
=
Problem 3.9. At & point in o strained material, the principal stresses are 100 Nimm?
tensile and 40 N/mm?® compressive. Determine the resultant stress in magnitude and direction
on a plane inclined at 60° to the axis of the major principal siress. What is the maximum
intensity of shear stress in the material af the point ? (AMIE, Winter 1982)
Sol. Given : :
The major principal stress, o, = 100 Nimm?
The minor principal stress, o, =- 40 N/mm? (Minus sign due to compressive stress)
Inclination of the plane with the axis of major principal stress = 60°
. Inclination of the plane with the axis of minor principal stress,
8 = 90 - 60 = 30°.
Resultani stress in magnitude
The resultant stress (GR) is given by equation (3.8) as

= 80 N/mm?2. Ans. -

Op = 0,2,_+0't2

where o, = Normal stress and is given by equation (3.6) as
_ O1 + 0y J1 — Oy
=75 + 3 cos 26
_ 100 + (-~ 40) . 100 —(-40)°
B 2. 2
100 - 40 100+ 40
= + £
2 2
=30+70x0.5 (" ¢0s60°=0.5)
= 65 N/mm?2 '
and o, = Shear stress and is given by equation (3.7) as
o 100 - (-40)

cos (2 x 30°)

os 60°

T; —Jg

== sin 26 sin (2 x 30°)
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z 100+ 40 | ¥ e
% = =" sin 60° = 70 x .866 = 60.62 N/mm? _ ] - Stress along vaxis = — e along x-axis
: Area normal to x-axis
: op = J65% + 60627 = 88.9 N'mm?2, Ans. E 1200
g - = —— = 800 N/cm?
Direction of resultant stress i 1.5
) Let the resultant stress is inclined at an angle ¢ to the normal of the obhque plane. Then j 3 Lo a, = 800 N/em?
using equation [3.8 (A)] i . Foree along y-axis
9 E Stress along y-axis, o, = Ar Tt -
tan § = o 60.6 . i ea normal to y-axis
o 65 :
7 E 4 500
o & = “”2““ = 250 N/em?
$=tan"1 =43°. Ans. ¥ 4
L Maximum shear stress i Also tan 6 = 3" 1.33
. ' o, -0 1 . 8 = tan~! 1.33 = 53.06°
: Using equation (3.9), (0,)5 = 9 4 " Let g, = Normal stress on diagonal AB
3
i - ¥ g, = Shear stress on diagonal AB
: -(- L 40 ; § :
_ 100-(-40)_100+40 70 N/mm?2. Ans. &
2 2 ’ ¥ Using equation (3.6), o, = S1%9 (S92 00599
; Problem 3.10. A small block is 4 cm long, 3 em high and 0.5 cm thick. It is subjected to 1 _ T 2 2
‘_};‘ uniformly distributed tensile forces of resultants 1200 N and 500 N as shown in Fig. 3 7 (a) 1 o 800+ 250 800 - 250"
: below Compute the normal and shear stresses developed along the diggonal AB. ¥ - = 2 + B cos (2 x 53.06)
o0 ¥
] (AMIE, Summer 1087 { = 595 + 275 x cos 106.12° = 525 + 275 x (- 0.2776)
: 500 N : § _ = 525 — 76.35 = 448.65 Nlem®. Ans.
i A ! : " o1 -
0.5cm ! £ Now using equation (3.7}, o, = L= 2 5in 29
' B ;
t : - 250
; : - 890-2%0 ;1 (2 x 53.06°)
1200 N i 8 1200 M _ 2
: I ¥ =275 sin 106.12° = 275 x 0.96 = 264.18 N/em?. Ans.
1 .
4 om i 3.4.3. AMember Subjected to a Simple Shear Stress. .
i : Fig. 3.8 shows a rectangular bar ABCD of uniform cross-sectional D B c
. : g
D R £Y 1 area A and of unit thickness. The bar is subjected to a simple £
# 05 em . £ ‘shear stress (q) across the faces BC and AD. Let FC be the oblique i
*a o . ¥ section on which normal and tangential stresses are to be ° lt
f 4om . + caleulated. . P,
Y500 N Let 8 =Angle made by oblique section FC with normal Py , B
Fig. 3.7(a) _ cross-section BC, B Fit sg
Sol. Given : 1 = Shear stress across faces BC and AD. g <
Length = 4 cm, height = 3 cm and width = 0.5 cm It has already been proved (Refer Art. 2.9) that a shear stress is always accompanied by
Force along x-axis = 1200 N an equal shear stress at right angles to it. Hence the faces AB and CD will also be subjected to
, ' Force along y-axis = 500 N a shear stress ¢ as shown in Fig. 3.8. Now these stresses will be converted into equivalent _
oree alon zsecti —n el o iaxis = 3 x 0.5 1.5 cm? forces. Then these forces will be resolved along the inclined surface and normal to inclined,
Area of cro:s sectiZn norzal to: axis - £ 0' 5 _ 2-cm2 surface. Consider the forces acting on the wedge FBC of Fig. 3.9.
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Let Q, = Shear force on face BC D c
= Shear stress x Area of face BC Q, cos 0/5 (Shy
=txBCx1 : "01='
(- Area of face BC = BC x 1) oA B
=txBC o f—'-02= s
Q, = Shear force on face FB A P PR
=1 x Area of FB %%9
=txFBx1=x.FB Fig. 3.9

P, = Total nermal force on section FC
P, = Total tangential force on section FC.
The force @, is acting along face CB as shown in Fig. 3.9. This force is resolved into two
componentsi.e., @, cosBand @, sin 6 along the plane CF and normatl to the plane CF respectively.
The force @, is acting along the face FB. This force is also resolved into two component
i.e., Q, sin 6 and @), cos 6 along the plane FC and normal to the plane FC respectively.
Total normal force on section FC,
P, =@ sin0+¢,cos0
=tx BC xsin 9 +1x FB xcos 0. (v @ =txBCand@, =7 x F'B)
And total tangential force on section FC.
P, =@, sin 8 — ¢, cos 8. {—ve sign is taken due to opposite direction)
=t xFB xsin@—1xBC xcos 0 {(~+ @y=t.FBand @, =t.BC)
Let o, = Normal stress on section FC
‘ g, = Tangential stress on section FC
_ Total normal force on section FC

Then o=
r Area of seciion FC

- B,
FCx1
_ t.BC .sin8+1.FB.cosd

= FC =1 _ G

Area = FC x 1}

=t.—.sinf +1t E cos B
TFC “FC

=t.¢c088.8n8+1.sin0.cosb

( In triangle FBC, % =cos 0, % =sin 9)

=2tcosf.sind

=1 sin 20 (v 2sinBcos?=gin20) ..(3.10)
o = Total tangential force on section FC

t Area of section FC

_ B

T FCx1

_oxFB xsin8-txBC xcos0

- FCx1 .

and

=rx-§% XS‘II"I.B—TX_—?—(.C_;-XCQSG'

=gxXsindxsinB-—txcosBxcost
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=t sin? 8 — 1 cos? 8 = — tcos? 8~ sin? 8]
=— cos 20 (- cos28—sin?0=cos20) ..(3.11)
—ve sign shows that g, will be acting downwards on the plane CF. '

3.4.4. A Member Subjected to Direct Stresses in two Mutually Perpendicular
Directions Accompanied hy a Simple Shear Stress. Fig. 3.10 (a) shows a rectangular bar
ABCD of uniform cross-sectional area A and of unit thickness. This bar is subjected to :

LH]
Ak A _
DT T L - T T TC D c
« ———pp "?4;)
— P, jal— Q, cos 60 3
< A ) > vQ
Ot — LI 3 — P, =g, xBCx1
< P »> Q, sin @ /g
4 F _" —» F
A B g f
lilt lll A szs‘e&‘ozB
YY V¥ v
ap Py=g;x FBx 1
(@) (b)
Fig. 3.1C

(i) tensile stress o, on the face BC and AD
(ii} tensile stress o, on the face AB and CD
(iii) a simple shear stress t on face BC and AD.

But with reference to Art. 2.9, a simple shear stress is always accompanied by an equal
chear stress at right angles to it. Hence the faces AB and CD will also be subjected to a shear
stress t as shown in Fig. 3.10 {a).

We want to calculate normal and tangential stresses on oblique section FC, which is
inclined at an angle 8 with the normal cross-section BC. The given stresses are converted into
equivalent forces.

The forees acting on the wedge FBC are :

P, = Tensile force on face BC due to tensile stress o
=g, x Area of BC .
=UixBCx1 (- Area:BCxl)
=0, xBC

P, = Tensile force on face FB due to tensile stress o,
=g, x Area of FB = 0, x FB x 1
=o,x FB ‘

@, = Shear force on face BC due to shear stress ©
=1 x Area of BC
=txBCx1=1txBC

€, = Shear force on face FB due to shear stress ©
=1 x Area of FB
=txFB x 1=1xFB.

Resolving the above four forces (i.e., P;, P,, &, and €,) normal to the oblique section FC,
we get )
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Total normal force,
P =Pl cosH +P,sin 6+ leinB+Q2cnsG

Substituting the values of Py, Py, @, and @, we get
P,=0,.BC.cos0+0,.FB.sin0+7.BC .sin0+r. FB.cos @

Similarly, the total tangentlal force (P} is obtained by resolving P, Py, Q, and Q2 along
the oblique section FC,

Total tangential force,
P,=P sin0-Pycos - cos 6+ @, sin B
=0,.BC.sin8-0,.FB.cos0-1.BC.cos0+t.FB.sing
(substitute the values of P, P, & and §,)
Now, Let o, = Normal stress across the section FC, and
' g, = Tangential stress across the section FC.
Then normal stress across the section FC,

_ Total normal force across section FC _ b
Area of section FC FCx1
0;.BC.cos8+0,.FB .sinf8+1.BC.sin®+1.FB.cost

FCx1

_ BC g FB BC
_UL'}"_E'COS +02.F—C.smﬂ+~c.l

=0, .co88.0050+ 0,8n0.8in0+7.c050.8N0+1sind.cos b

.sinG-H:.E .cos @
FC

( In triangle FBC, % = ¢o0s f and % =sin 8)

=0, c0s% 0 + 0, sin? B + 2t cos 0 5in 6

1+cos28 1-cos 20 .
=g ““T”" +0y —“2—"" + 1t sin 20
( cos® 8 = liczo_szg’ sin”8 = L:M and 2 cos 0sin 8 = sin 28)
U, +0C; O;-0 :
= ——‘7—% + 4?1 cos 20 + T sin 20 ..{3.12)
and tangential stress (i.e., shear stress) across the section FC,
_ Total tangential force across section FC B,
£ Area of section FC T FCx1
_03.BC .5inB-05.FB.cos8-1.BC .cosB+1.FB.gin8
- FCx1
BC

= .sinb-g FB .cosbB-x —‘@E cosO+1 B sin 6
" FC 2 FC T FC TFC
-—cl.cos9.sm8—02.smB.cos9—1:.cos(3.cosﬁ+t.sinﬁ.sin9
BC FB .
~ In triangle FBC, — =cos B and —= = sin 0
( n triang o ¢os B an Y )

={0,-0,).cos8sin0-1tcos?B +vsin?e

o, -0
z[ 12 2).2cosesine—r(cos%-sinm)
/
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=912 gin 96 vcos 28 (- cos28 - sin® @ = cos 20) ...(3.13)
2 .

Position of principal planes. The planes on which shear stress (i.e., tangential stress)
is zero, are known as principal planes. And the stresses acting on principal planes are known
principal stresses. ‘ .

The position of principal planes are obtained by equating the tangential stress [given by
equation {3.13)] to zero.

For prineipal planes, o,=0

1= % sin20—tcos20=0

or

or 91 ; T2 sin 20 = v cos 20

gin2 v 2t
or ws20 (o) -0y} (g, ~03y)
2
2t

or tan 26 = -~ — | (314D

{0y —0g)
But the tangent of any angle in a right angled triangle "
Height of right angled triangle

~ "Base of right angled triangle

Height of right angled triangle 27 21

Base of right angled triangle ~ (o; - 0g)

Height of right angled triangle = 2¢
Base of right angled triangle = (g, - d,). 29
Now diagonal of the right angled triangle L (5, - M

== \[(01 ‘02)2 +(21)% =“\/(Ul *02)2 + 47 Fig. 3.11
(oy - ag)? + 47> and - J{o, -0, )+ 422
1st Case. - Diagonal = f(o, — 05)% + 417
Height _ 2t
Diagonal J(01 - ay)? + 477

Then sin 20 =

Base _ (o - 03)
Diagonal /(01 —ay)?+ 412

The value of major principal stress is obtained by substituting the values of sin 26 and
cos 20 in equation (3.12). .
Major principal stress
Oy +0s O —0g

and cos 20 =

== + ———= ¢0s 20 + T sin 26
; o)+ 0y . 91-% (01.—§2) fTx 2 =
= 2 2 (0, - 0g)* + 477 J(Gl —op) + 43
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O; + 03 +l (o, - o3)* . 2r°
2 2 ‘/(crl —op)? 247t J(ol - 0y)% + 4n?

_01+oy (o) —ap)% + 412
2 afioy - 0507 + 4

= 01;—‘32+% (o —crz)2 +472
O +0 g, -0, Y
= 12 24 [ 12 2) +12 .{3.15)
2nd Case.  Diagonal =~ 15, _ ¢r,)? + 472
. 2t
Then sin 20 =
- J(cr]L - 02)2 + 42
and cos 20 = {9, - 05)

- \/(01 —og)? 4412
Substituting these values in equation (3.12), we get minor principal stress.
Minor principal stress

=Z%1%02 [ 01-0p
2

cos 26 + 1 sin 20

O1+0y O, -G 01— O
- 12 2, 12 2, 1-9s frx 2v
2 2 ]
- J(Gl ~ag ) +4v - \/{01 - 02)2 +41°
_ G 40y {0y - 95)2 212

2 2\/(01 - 03) + 41? \j(cr1 —ag)? +41?

01 +0y (o —02)2 + 417
2 2\/(0’1 - 02)2 + 4'52

_ 0L +0y 1

3 2
gy — 4
P (o; —05)° +47

2
_o1t0y o -05)) | o
3 ( 2 T ...(3.16)

Equation (3.15) gives the maximum principal stress whereas equation (3.16) gives mini-
mum principal stress, These two principal planes are at right angles.

The pesition of principal planesis obtained by finding two values of 8 from equation (3.14).
Fig.3.11(a}showsthe principal planesin which 8, and8, arethevalues from equation (3.14).
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Fig. 2.11 ()

Maximuam shear stress. The shear stress is given by equation (8.13). The shear stress
will be maximum or minimum when

d
55 @)=0
or i S~ O sin 20 ~tcos26|=0
de 2 -
or %(00329)x2—t(—sin28)x2=0

(0, — 0y} . cos 28 + 2 5in 20 = 0
or 2t sin 20 = — (0, — 0,) cos 28
= (g, — a;) cos 20
sin28 gy -0
c0s28 21

or

or tan 26 = G2 %
2t

Egquation (3.17). gives condition for maximum or minimum shear

..(3.17)

stress.
ftan28= 229
2t —_
. Jg -4y T
Then sin 20 = & ~p=—————t——— o
Jlop —0;)% + 412 L
) 2t
and cos 28 =«

(0 —0p)* + 45*
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 Substituting the values of sin 26 and cos 26 in equation (3.13), the maximum and mini-
mum shear stresses are obtained,

Mazimum shear stress is given by

3y —
(Ut’ max —

% ;"2 sin 26 — 1 cos 20

2
0‘1"‘0’2 % '(02“01) N at

TX
2
2 \/(Gz - rart \/(_02 -0y et
(0’1 —0'2)2 2‘!.'2

S
yflog - op)® + 4<? @2 -0 + 47

#

1l
[

{0y — 0 +4+2

2(0y - 0,)? + 417
Viog - 0707 + 2%

(o, - 05)% + 472

1}
I+

=¢% (02~01)2+4‘52

(O =

«{3.18)

il

Bof = o

The planes on which maximum shear stress is acting, are obtainead after finding the two
values of B from equation (3.17). These two values of 8 will differ by 90°.

The second method of finding the planes of maximum shear strefss is to find ﬁrSt-pn;;Ii
pal planes and principal stresses. Let 8, is the angle of principal plane with p_laneBC of Flgé C'
(a}. Then the planes of maximum shear will be at 8, + 45° and 9, + 135° with the plane as
shown in Fig. 3.12 ().

4 4 4 A T2 A 4 4 4+
T
«—
D 9]
TA -
— N - —
s ¥ o)
- 5 B —>
“ s
a8 -
e, A - >
“;\(e?‘ L
« Pl \‘“ﬁ e
o o S,
- L
< 8, + 135° y
— —»
T
h A Y b b & B v
A —
T
5]
Fig. 3.12 (@)

Note. The above relations hold good when one or both the stresses are compressive.

PRINCIPAL STRESEES AND STRAINS oo . 109

Problem 3.11. A a point within a body subjected to two mutually perpendicular direc-
tions, the stresses are 80 Nimm? tensile and 40 Nimm? tensile, Each of the above stresses is
accompanied by a shear stress of 60 N/mm?. Determine the normal stress, shear stress and
resultant siress on an oblique plane inclined at an angle of 45° with the axis of minor tensile
stress.

Sol. Given :

Major tensile stress, o; = 80 N/mm?

Minor tensile stress, o, = 40 N/mm?

Shear stress, T = 60 N/mm?

Angle of oblique plane, with the axis of minor tensile stress,
0 =45°,

(&} Normal stress (a,)
Using equation (3.12),

Gy +0y O~
G1t0 G

2 .
fn 3 5 co5 26 + Tsin 20
80+40 80-40

=5 + g tos (2% 45°) + 60 sin (2 x 45°)

=60 + 20 cos 90° + 60 sin 90°

=60+20x0+60x1 (- cos90°=0)

=60 + 0 + 60 = 120 N'mm?. Ans.
4 40 Njmm”

60 MMM 4|
Axis of minor ; 8
2, tensile stress H 2
80 N-"";ﬂ% ______________ A 80 N/mm
18
‘ .
T 50 Nimm”
Jr 40 Nimem®
Fig. 3.13
(ii) Shear (or tangentialj stress ( o,)
Using equation (3.13),
g0y
o, = B sin 26 — t cos 26
80 - 40

= 5 sin (2 x 45°) — 60 x cos (2 x 45°)

= 20 % gin 90° — 60 cos 90°
=20x1-60x0
=20 N/mmZ, Ans.

{iii) Resultant stress og)

Using equation, op= o 2 +o?

n
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= 1202 + 202 = /12400 + 400
= 14800 = 121.655 N'mm?2. Ans.

Problem 3.12. A rectangular block of matericl is subjected to o tensile stress of 110
Nimm? on one plane and a tensile stress of 47 Nimm? on the plane at right angles to the for_mer.
Each of the above stresses is accompanied by a shear stress of 63 N/m_mz and that associated
with the former tensile stress tends to rotate the block anticlockwise. Find :

(i} the direction and magnitude of each of the principal stress and _

(if} magnitude of the greatest shear stress. (AMIE, Summer 1983)
Sol. Given :

Major tensile stress, o, = 110 N/mm*

Minor tensile stress, o, = 47 N/mm?

Shear stress, t = 63 N/mm?

() Major principal stress is given by equation (3.15).

2
O, + 0 g, -0
1 2+(z 2] ot

.~ Major principal stress =

2 2
2
4 47 N/mm
63 N/mm®
r—d——
110 N/mm® 8 110 Nimai®
63 Nfmm®
2
¥ 47 N/mm
Fig. 3.14

2
_ 110+47+ 110-47} 4632
2 2

2
_ 157, (@} (63)2
2 3

=78.5+ 3157 +63° =785 + /09225 + 3069
= 78.5 + 70.436 = 148.936 N/mmz. Ans,
Minor principal stress is given by equation (3.16).

2,
O01+0; (01—02] g

~. Minor principal stress, =" 3
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_110+47 110 - 47
B 2 2

= 8.064 N/mm?2. Ans. .
The directions of principal stresses are given by equation {3.14).
- Using equation (3.14),

2
J +63% =785 .-70.436

2t 2x63

tan 20 = —2t. _ _ Zx¢

S T TTo— 47
=2x63=2.0

63
28 = tan~! 2.0 = 63° 26" or 243°26°
0=31°43" or 121°43'. Ans.
(ii)  Mognitude of the greatest shear stress
Greatest shear stress is given by equation (3.18).
Using equation (3.18),

1
(O'r}max = 51}(01 - 02)2 + 472

Ja00 - 472 4 < 632

= ~+/63% + 4% 63% =%x63><\/g

= 70.436 N/mm?2, Ans.
Problem 3.13. Direct stresses of 120 Nimm?2 tensile and 90 Nimm? compression exist on
two perpendicular planes af @ certain point in a body. They are also accompanied by shear
stress on the planes. The greatest principal stress at the point due to these is 150 Nimm?2.
(a) What must be the magnitude of the shearing stresses on the two planes 2
(D) What will be the moximum shearing stress at the point ?
Sol. Given :
Major tensile stress,
Minor compressive stress,
Greatest prineipal stress = 150 N/mm?
(a} Let v = Shear stress on the two planes.
Using equation (3.15) for greatest principal stress, we get

B2{= bo|—

o, = 120 N/mm?

G, = — 90 N/mm? {Minus sign due to cornpression)

.

2
0y + O gy -G
Greatest principal stress = — 7 24 ( 1 5 2J +12

2
or 150:120+?f-90)+‘/(120-(_90}J o

2

120 - 90 ( 120 + 90)2 2
= + +T
2 2




STRENGTH OF MATERIALS
112

=15+ 1052 + <
or 150 - 15 = f1052 s
or 185 = 1052 + v

Squaring both sides, we get
. 1352 = 1052 + +#
42 = 1352 — 105° = 18225 11{)25 7200 -

v = 7900 = 84.853 N'mm?®. Ans.
(b) Maximum shear siress at the point
Using equation (3.18) for maximum shear stress,

' 1

(0) e = 3 (oq - 02)2 1477

2 {120 - (- 9011 + 4 % 7200 ' (o

1
J_102 + 28800 = = .144100 +28800 = 5 % 270

= 135 N/mm?, Ans

Problem 3.14. At ¢ certain pomt in a strained mater e
right angles to each other are 20 Nimm? and 10 N/mm? both tensile. They are accomp Y

location of principal
a shear stress of a magnitude of 10 Nimm?. Find graphically or otherwise, Ié?f[\/[ (;LI'; i f per b

planes and evaluate the principal stresses.

or

< = 7200}

Sol. Given :
10 Np'mm2
o & A 1; A A F 3
v =10 N/mm
. t k _%
-+ & /
« &£ P
- £ A
2 oy
oo >
+— & “ .
i Principal E
« planes » £
< ;D 8
) =
-+ A, v —»
gy
S “in Iy, ——
-+ r@s\? "bﬁl L
A
2
: 1= 10 N/mm
\L v v . 1L 1 ‘L
10 Nfmm
Fig. 3.14 {a} .

ial, the stresses on two planes, ot
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Major tensile stress,

o, =20 N/mm?
‘Minor tensile stress, o, = 10 N/mm?
Shear stress, T = 10 N/mm?

Location of principal planes

The location of principal planes is given by equation (3.14),

Using equation (3.14), '

tan 96 = 2t 2x10 2x10_2-0
: G,-0, 20-10 . 10
e 26 = tan! 2.0 = 63° 26' or 243° 26’
or 8= 31° 43 or 121° 43, Ans.
Magmtude of principal stresses '
; The major principal stress is gwen by equatlon (3.15)
Major prmc1pal stress

e 2
_ 140, 0y — Oy 2 _ 20+10 20 -10 2
B + ( 5 J +T" = 2 + 2 +10

=15+ 5% +100 =15+ 426+ 100 = 15+ /125 = 16 + 11.18
= 26.18 N/mm?. Ans,
The minor principal stress is g'iven by equation (3. 16)
Minor principal stress

=01;:02_ [01502)2“72
20+1 - 10V?

- ; 6 (20210] + 107

=15-11.18 = 3.82 N/mm?2. Ans.

Problem 3.15. A point in a strained material is subjected to the stresses as shown in
Fig. 3.15.

Locate the principal planes, and evaluate the principal stresses.

40 Nmm®

I ITT T

60 N/mm”

&0°

/
89 Nimm®

TLLIT

40 Nimm®

Fig. 3.15
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Sol. Given :
The stress on the face BC or AD is not normal. I
BC or AD. This stress can be resalved into two components Z.e., normal t

and along the face BC {or AD).

Stress normal to the face BC or AD
= 60 x sin 60° = 60 x 0.866 = 51.96 N/mm? -

t is inclined at an angle of 60° with face
o the face BC (or AD)

Stress along the face BC or AD
‘ = 60 x cos 60° = 60 x 0.5 = 30 N/mm*

¢ or AD is known as shear stress. Henee t= 30 Nfmm?, Due
the face AB and CD will alsobe subjected fo shear stress

ting on the material are shown in Fig. 3.16.

The stress along the face B
to complementary shear stress
of 30 N/mm? Now the stresses ac

40 Nz'lrnm2
{L h b 11 ?
> 30N
o h o
- E
E T £
z2 L2
g " i
b« —— n
A
2
30 N/mm™ «—
L ¥y ¥ v
40 N/mm
Fig. 3.16

Major tensile stress, 0, = 51.96 N/mm?
Minor tensile stress, o, =40 N/mm?
Shear stress, 7 = 30 N/mm?

Location of principal planes
Let 8 = Angle, which one of the principal planes make with the

The location of the principal planes is given by the equation (3.14).
Using equation (3.14), we get
2t 2x30
==
tan 28 = T 51.96- 40
96 = tan~l 4.999 = 78° 42’ or 258° 42’
0= 89° 21" or 129° 21'. Anms.

stress of 40 N/mm?®.

= 4.999

or

Principal stress
The major principal stress is given by equation (3.18).

Major principal stress

2

oy +a T, —3a

_o1ta, 01702l 2
P 2

J 2
) 51.9f;+ 4, J(51.962_ 40] . 50°
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= 4598 + 30.6
= 76.58 N'mm?, Ans.
Theé minor principal stress is given by equation (3.18).
Minor principal stress

: 2
_ 01 +0y [01-02) o

2 2
_5L96+40  [(51.96-40 _ ,
= 9 - J[ 3 ] + 30 .
= 45.98 - 30.6

= 15.38 N/'mm® Ans.
J 3ogrA{;/blenz1b3.1hG. Thel normal stres.s: in two mutually perpendicular directions are 600 Nimm?
Zgo 0 2m;':ndOt tenstle. The complzm.entary shear stresses in these directions are of intensity
'mm®. th.e normal and tangential stresses on the two planes which are equally inclined
to the planes carrying the normal stresses mentioned ahove, Y e

Sol. Given :
Major tensile stress, v, =600 N/mm?
Minor tensile stress, o, = 300 N/mm?

Shear stress, 1 = 450 N/mm?

The normal and tangential stresses are
18 0 be calculated on the two planes which
equally inclined to the planes of major tensile stress and of minor tensile stﬁ*ess. This xile::;:

'8 =45% and 135°.

A ) Angle 8 = 45° and 135°.
(i) Normal stress (o) is given by equation (3.12).

T1—-0Cy 01 -0y
. + ——= ¢05 26 + T 5in 20

(a) When 6 = 45°, the normal stresses (0,) becomes as

600+ 300 600 -~ 300
GnT TN T
= 450 + 150 cos 90° + 450 sin 90°
=450+ 150 x0+450x 1 (v cos9*=0and sin80°=1)
= 800 N/mm?2. Ans.

(b)Y When 6 = 135°, the normal stress (o, ) becomes as
600 + 300 N 600 - 300
i3 2 2
=450 + 1.50 cos (270°) + 450 sin 270°
=450+ 150 x 0 +450 x (- 1} (- cos270°=0andsin270°=-1)
=450 —-450 = 0. Ans, '
(zi) Tangential stress {o,) is given by equation (3.13} .

g, =

¢05 {2 x 45°) + 450 sin {2 x 45°)

cos (2 x 185) + 450 sin (2 x 135°)

0, -03 .
g, = 3 8in 26 — T cos 20
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{a) When 0 = 45°, the tangential stress (g,) becorﬁes as
600 - 30
= “___2_0 sin 90° — 450 cos H°
_ =150 x I — 450 x 0 = 150 N/mm?. Ans.
(b) When 8 = 135°, the tangential stress (o,) becomes as
600 - 300
QT Ty e
= 150 x {— 1) — 450 x 0 = — 150 N'mm?, Ans.
Problem 3.17. The intensity of resultant stress on o '

2
plane AB {Fig. 3.16 (a)} af a point in a material under stress is 600 Nicm
800 Nlem? and it is inclined at 30° to the normal to that plane.  © B

sin 270° — 450 cos 270°

The normal component of stress on another plane BC af right 800 Nigm”
angles to plane AB is 600 Niem?.
Determine the following : C 30°
(i) the resultant stress on the plane BC,
(i) the principal stresses and their directions, A

{iii) the maximum shear stresses and their planes.

(AMIE, Summer 1989) Fig. 8.16 @
Sol. Given : :
Resultant stress on plane AB = 800 N/em?
Angle of inclination of the above stress  =30°
Normal stress on plane BC © =600 N/em?

The resultant stress 800 N/em? on plane AB is resolved into normal stress and tangential
stress.

a, = 600 Njom”

4 =400 Niem®
—»

c B
2
y T = 400 N/em
5, = 692.82 Nfem” ‘
X a, = 692.82 Niem”
© = 400 Nfom” '
D . A

1= 400 Mom® § )
o, = 600 N/iem

Fig. 3.16 (5)
The normal stress on plane AB ‘
= 800 x cos 30° = £92.82 N/em?.
The tangential stress on plane AB
= 800 x sin 30° = 400 N/em?.
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The shear stress on plane AB is, i.e., 1,5 = 400 Nfem?, then to maintain the equilibrium
on the wedge ABC, another shear stress of the same magnitude, i.e., Tpo = 400 N/em? must act
on the plane BC. The free body diagram of the element ABCD is shown in Fig. 3.16 (a), showing
normal and shear stresses acting on different faces.

(i) Resultant stress on plane BC
On plane BC, from Fig. 3.16 (a),
o, = 600 Niem?
Shear stress, © = 400 N/em®
Resultant stress on plane BC

s = \,'022 +12
= 6002 + 4002 = 721 N/em?% Ans.

The resultant will be inclined at an angle 6 with the horizontal given by,

400
- 8 =1tan! 1.5 = 56.3°. Ans,
(i1) Principal stresses and their directions
The major principal stress is given by equation (3.15).
Major principal stress

2

oL+ 0 g, -0

I S 1792 ) .2
2 2.

_ 692824600 \[{692.82 - 600)2 + 100°
2 2
= 646,41 — 402.68
= 1049.09 N/em?® (Tensile). Ans.
The minor principal stress is given by equation (3.16}
Minor principal stress

2
_O1 0 G120 2
2 2

_ 692.824 600 _ \/[692.82 - 600)2 \ 400?
2 2
= 646.41 - 402.68
= 243.73 N/cm? (Tensile). Ans.
The directions of principal stresses are given by equation (3.14), as
21 2 x 400 _ 800 '
(0, ~0p)  (692.82- 600) 92.82
20 = tan~! 8.618 = 83.38° or 263.38°
S 8 = 41.69° or 131.99°. Ans.
(iii) The maximum shear stress and their planes.
The maximurm shear stress is given by equation (3.18).

tan 20'= =8.618
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1 o — . V2
(Ug)max='2‘\/m= (_12__EJ +q?

2 .
=J[692.82—600) + 400°

2

= 402.68 N/em?, Ans,

Problem 3.18. Af o certain point in a material under stress the intensity of the resultant
stress on o vertical plane is 1000 Niem? inclined at 30° to the normal to that plane and the
stress on a horizontal plane has a normal tensile component of intensity 600 Niem? as shown in
Fig. 3.16 (c). Find the magnitude and direction of the resultant stress on the horizontal plane
and the principal stresses. (AMIE, Winter 1990)

600 N/iom®

c ' B 1000 Miom®

A
Fig. 3.16 (&) .

Sol. Given : ‘
Resultant stress on vertical plane AB = 1000 N/:ém2
Inclination of the above stress = 30°
Normal stress on horizental plane BC = 600 Nfom? .
The resultant stress on plane AB is resolved into normal and tangential component,
The normal component
= 1000 x cos 30° = 866 N/em?

Tangential component :

= 1000 x sin 30° = 500 N/ecm?, ‘

Hence a shear stress of magnitude 500 Njem? is acting on plane AB. To maintain the
wedge in equilibrium, another shear stress of the same magnitude but opposite in direction
must act on the plane BC. The free-body diagram of the element ABCD is shown in Fig. 3.16 {d),
showing normal and shear stresses acting on different faces in which :

o, = 866 N/cm?,
0, = 600 N/em?
and © = 500 Nfem?
(£) Magnitude and direction of resultant stress on horizontal plane BC.
Normal stress on plane BC, o, = 600 N/em? '

R
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Tangential stress on plane BC, © = 500 N/em?

= 600 Mfom”
A

c ——** B
2

© = 500 Nfcm

o, = 866 Nicm” |
2
M o, = 866 Niem
D «— A
=500 Niem”
¥ o, = 600 Mfom”

Fig. 3.16 (d)

= 1i0’§ + 12
= Jgoo? + 5002 = 781.02 Nfem® Ans,

The direction of the resultant stress with the horizontal plane BC is given by,

Resultant stress

0 =tan™! 1.2 = 50.19°. Ans,

(i) Principal stresses
The major and minor principal stresses are given by equations {(3.15) and (3.16).

2
Oy + 0y + [01—02) +'52

Principal stresses = B 5
2
_ 866 + 600 . 866 — 600) +500%
2 2
=733 = 517.38

= (733 + 517.38) and (733 - 517.38}
= 1250.38 and 215.62 N/cm?
Major principal stress = 1250.38 N/em®. Ans.
Minor principal stress = 215,62 Nfem®2.  Ans,
Problem 3.19. Af a point in a strained matericl, on plane BC there are rormal and

shear stresses of 560 Nimm? and 140 Nimm? respectively. On plane AC, perpendicular to plar_ne
BC, there are normal and shear stresses of 280 Nimm? and 140 Nimm? respectively as shown in

Fig. 3.16 (e). Determine the following :
(i) principal stresses and location of the planes on which they act,
(it) maximum shear stress and the plane on which it acts. (AMIE, Summer 1990)




120 STRENGTH OF MATERIALS

A
280 Nimim®
140 N."mm2
B c
_ \
140 N/mm
560 N/mm”
Fig. 3.16 (&)
Sol. Given :
On plane AC, o, = ~ 280 N/mm? (- ve sign due to compressive stress)
: T = 140 N/mm?
On plane BC, a, = 560 N/mm?
T = 140 N/mm?

(i) Principal stresses and location of the planes on which they act,
Prineipal stress are given by equations (3.15) and (3.16)

2
_91+oy (Gx—ch gt

Principal stresses 5 5

_ =280+560 J[« 280 —560]2 1402
2 2
=140 £ 4427
= 582.7 and (140 ~ 442.7) N/mm?
= 582.7 and - 302.7 N/mm?
Major principal stress = 582.7 N/mm? (Tensile). Ans.
Minor principal stress = - 302.7 N‘'mm2. Ans.
The planes on which prinéipal stresses act, are given by equation (3.14) as

2t 2x140 280
tan 2= T T280-560 -840 3%
- 20 = tan™! - 0.33 = -18.26°
- ve sign shows that 26 is lying in 2nd and 4th quadrant
" 28 = (180 - 18.26°) or (360 - 18.26°)
= 161:34° or 341.34°
6 = 80.67° and 170.67°. Ans.
(id) Maximum. shear stress and the plane on which it acts.

Mazimum shear stress is given by equation (3.18).

' ' 121
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2

2
- \[(__28%“5—69} + 1402

= ,{4205 +140% = 442.7 N/mm?. Ans.

.;I‘he plane on which maximum shear stress acts is given by equation (3.17) as

2
Gy ~0Og 2
(0 nax = [ L ) +T

T — O
tan 99 = —2——L
2t

560 - (- 280) 840
= 2x140 280
20 = tan~t 3.0 = 71.56° or 251.56°
0 = 85.78° or 125.78°. Ans.
p i i ] ter 50 mm is drawn before the
8.20. On ¢ mild steel plate, a circle of diame _ .
late z:? i?z:t;:?z as shown in Fig. 3.17. Find the lengths of the major and minor axes of an
gllipse formed as a result of the deformation of the circle marked.

3.0

2
b 20 N/mm

2
40 Nfrmm
]

40 Nfmrn” ,
’ 80 Nfmm

80-N/imm’

40 Nimm®

A — 2 B
40 N/mm
X
2‘0 N.’mm2
Fig. 3.17
s 11
Take E = 2 x 10° N/imm?® and —=T

Sol. Given : .
Major tensile stress, o =80 N/mm
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Minor tensile stress, o, = 20 N/mm?
Shear stress, T = 40 N/mm?’
Value of £ = 2 x 105 N/mm?2

Major principal stress is given by equation {3.15).
Major principal stress :

2
O+ T o, -0
1+ 0y
= )| 22| +1?
-2 2

80+20 [/80-20y
= 2 +( 2 J+40

=50+ /302 + 402 =50 + 50 = 100 N/mm? (tensile)
Minor principal stress

2
_Gi 0 lg; ~0y -2
2 2

80 + 20 ’s- 2

=50-50=0.
From Fig. 3.17, it is clear that diagonal BD will be elon i i
I ! gated and diagonal AC will b
shortened. Hence the circle will become an ellipse whose major axis will bi along BD ang

minor axis along AC as shown in Fig. 3.17.The major principal st i
prineipe] stooms e o jor . p ress acts along BD and minor

Strain along BD

_ Major principal stress _ Minor principal stress

- E mE

_ 100 0 1 1

_2x105._2x105x4 (?—n—=ZJ
1

~ 2000

Increase in diameter along BD
= Strain along BD x Dia. of hole

1
= 2000 ® 50 =0.025 mm
Strain along AC
- Minor principal stress _ Major principal stress
E mE
0 100

T 2x10° 4x2x10°
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1
=7 8000
Decrease in length of diameter along AC
= Strain along AC x Dia. of hole

1
"~ 8000
The circle will become an ellipse whose major axis will be 50 + 0.025 = 50.0256 mm
and minor axis will be
50 - 0.00625 = 49.99375 mm.

(- ve sign shows that there is a decrease in length)

x 50 = 0.00625 mm

3.5. GRAPHICAL METHOD FOR DETERMINING STRESSES ON OBLIQUE SECTION

Two cases are considered :

Q) A body. is subjected to direct stresses in two mutually perpendicular directions when
the stresses are unequal and alike. _ :

(i1) A body is subjected to direct stresses in two mutually perpendicular directions when
the stresses are equal and alike. .

3.5.1. A body is Subjected to Direct Stresses in two Mutually Perpendicular
Directions when the Stresses are Unequal and alike. Fig. 3.18 shows a rectangular bar
of uniform cross-sectional area A. The bar is subjected to two tensile stresses. It is required to
find the normal and tangential stresses graphically on the oblique plane FC.

L

D — Qblique "
] section 0 —
o, — i o
] K ——
| I‘ e
Tz
Tig. 5.18
Let o, = Major principal tensile stress,

o, = Minor pri_ﬁcipal tensile stress, and
8 = Angle made by the oblique section with the axis of minor principal stress.
Procedure. :
~ . 1. Draw two mutually perpendicular lines meeting at 0.
2. Take OA = Stress o, and OB = o, to some scale.
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3. Draw ie o . N e
Fig. 3.19. twao concentric circles with centre O and radii equal to OA and OB as shown in
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Fig. 3.19
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5. Through O, draw a line ODC ai right angles to MN, meeting the two circles at D and €,
6. From C, draw a line CE perpendicular to OA.

7. From D, draw a line DF perpendicular to CE.

8. Join OF. Then OF represents the resultant stress on the oblique plane.

9. From F, draw a line FG perpendicular to OC. Th
“ : , . Then OG represents the normal stress
on the oblique plane. And GF vepresents the tangential stress.

Normal stress = 0G and
Tangential stress = GF.
Proof, (See Fig. 3.19).

CD=0C-0D

. =0, -0, (v OC:OA:crlandOD=OB=02)
In right angled triangle OEC, £EOC = 5.

- , LOCE = 90° — 8.
In right angled triangle DCF, ZDCF = 90° - 9.
¥ LCDF =8 .
DF = CDcos8=(0,-0,)cos 0 - . v CD=o,~0y)

CF=CDsinb=(o, - ,) sin 6,
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In right angled triangle CGF, ~GCF =90 -9
: CG=CFcos{(90-0)=CFsin 8
= {0, — o,) sin 8. sin £ [~ CF={0,- g, sin 6]
= (0, - 0,) 5in? 0
0G=0C-CG =g, - (0, ~ Gy) gin? @
[+ OC=0,CG=(c,~ 0y sin? 8]
=0, -0, sin? 8 + g, 8in® 8 = o[l ~ sin? 8} + o, 5in? @

=0, cos 0 +0,sin? 0 ( 1-sin®0= cos? 9) D)
But from equation [3.5 (A)], normal stress across the oblique section is given by
o, =0, cos? 6 + 0, sin? O i)

Eduating equation (i) and (i), we get
OG = o, = Normal stress
Tangential stress, 0,=GF =CFsin(90-6) = CFcos 0
=(o, - o,) sinBcos B

= 01;02 2 sin § cos O

O; =0y
£ % sin 26.

GF represents the tangential stress.

3.5.2. Important Points. The normal stress tangential stress and resultant stress on
the obligue plane by the above method (if any one or both of o, and o,, are compressive) are
obtained in the same manner. Only the position of point F will change. The position of point F
will be as follows :

{{) The point F will be in first quadrant if o, and o, are tensile stresses (i.e., 0, and o,

are +ve).

(if) The point F will be in second quadrant if o, is compressive and g, is tensile (i.e., 0, is

- ve and g, is +ve). .
(iif) The point F will be in third quadrant if o, and o, are compressive (Le., o, and g, are
-ve). )

(iv) The point F will be in fourth quadrant if o, is tensile and o, is compressive (i.e., G is

+ve and G, is —ve).

Problem 3.2%. Solve the problem 3.5 by graphical method.

Sol. The data given in problem 3.5, is .
o, = 120 N/mm?, o, = 60 N/mm2, 8 = 30°.

Scale
Take 1 cm = 20 N/mm?
120 )
Then 01;%ﬁ6cmandc2=§6=3cm.

(i} Draw two mutually perpendicular lines meeting at O as shown in Fig. 3.20.

(ii) Take OA =6 ¢m and OB = 3 cm.
{iii) Draw two concentric circles with centre O and radii equal to OA = 6 cm and

OB = 3cm.
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(fv) Draw a line MN through O, making an angle 30° with OB.

(v) Through O, draw a line OC at right angles to MN, cutting the two circles at I and C.
From C, draw a line CE perpendicular to OA.

(vi) From D, draw a line DF parallel to OA, meeting the line GE at F.
(vii) Join OF, Then OF represents the resultant siress on the oblique plane.

(viii) From F, draw a line FG perpendicular to line OC. Then F@ represents the tangential
stress and O@ represents the normal stress,

(ix) Measure the lengths OF, FG and OG.
By measurements, we get
Length OF = 5.411 cm
.Length FG = 1.30 em
Length OG = 5.25 cm.
Resultant stress, o = Length OF x Scale
=5.41 x 20 ' (~ 1ecm'=20Nmm?)
= 108.2 N/'mm?, Ans. . '
o, = Length OG x 20 N/mm? = 5.25 % 20 = 105 N/mm?®, Ans.
Tangential stress, o, = Length FG x 20 N/fmm? = 1.30 x 20 = 26 N'mm?2. Ans.
Problem 3.22. Solve the problem 3.6 by graphical method.
Sol. Given : ‘
The data given in problem 3.6, is
oy = 200 N/mm?
0, = — 100 N/mm?
8 = 30°

Normal stress,
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‘As o, is + ve and cz'is - ve, the point F will be in fourth quadrant (see Art. 3.5.2) on

page 125).
Scale. Take 1 cm = 20 N/mm?
200 100
Then 01=-240—=10cmand02=—2€=5cm.

(i) Draw two mutually perpendicular lines meeting at O as shown in Fig. 3.21.

40,

Yoy

" Fig. 3.21

(ii) Take QA = 10 cm and OB = 5 cm,
(iif} Draw two concentric circles with centre O and radii equal to OA = 10 em and
OB = 5 cm.
(iv) Draw a line MIV through O at an angle of 30° with the line OB.
(v) Through O, draw a line OC at right angles to MN, cutting the two circles at C and .
{vi) From C, draw a line CE perpendicular to OA. Produce the line CE upto C'. Join the
line OC', cutting the circle of radins OB at D'
(vii) As the point F will lie in the fourth quadrant, the point F will be obtained by drawi?g
a line D'F parallel to OA.
{viii) Join OF. Then OF represents the resultant stress.

(ix) From F, draw F(7 perpendicuiar to line OC. Then 0G represents the normal stress,
and GF represents the tangential stress on the oblique plane.

_ {x) Measure the lengths OF, 0@ and GF.
From Fig. 3.21, by measurements,
Length OF =9.0 cm
Length OG = 6.25 cm
Length GF = 6.50 cm.
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Resultant stress = Length OF x Scale

=9.0x20 ¢ 1em =20 N/mm?)
_ =180 N'mm?2. Ans. :
Normal stress = Length OG x Scale = 6,25 x 20 = 125 N‘'mm?.  Ans.
Tangential stress = Length GF x Scale = 6.50 x 20 = 130 N/mm?. Ans.

3.6. MOHR’S CIRCLE

Mo_hr’s circle is a graphical method of finding nornﬁ;al, tangential and resultant stresses
on an oblique plane. Mohr’s circle will be drawn for the following cases :
_ (i) A body subjected to two mutually perpendicular principal tensile stresses of unequal
intensities. :

(i) A body subjected to two mutually perpendicular principal stresses which are un-
equal and unlike (i.e., one is tensile and other is compressive).

. (iif} A body subjected to two mutually perpendicular principal tensile stresses accompa-

nied by a simple shear stress.

. '3.6.1. Mohr’s Circle when a Body is Subjected to two Mutually Perpendicular
Principal Tensile Stresses of Unequal Intensities. Consider a rectangular body subjected
to two mutually perpendicular principal tensile stresses of unequal intensities. It is required
to find the resultant stress on an oblique plane.

Let o, = Major tensile stress .

o, = Minor tensile stress, and

€ = Angle made by the oblique plane with the axis of minor tensile stress.
Mohr’s circle is drawn as : (See Fig. 3.22).
Take any point A and draw a horizontal

Fr

line through A. Take AB =5, and AC =g, towards
rl‘ght from A to some suitable scale. With BC as
diameter describe a circle. Let O is the centre of
the circle. Now through O, draw a line OF f 2 B
marking an angle 26 with OB. o C,\ o b /
) From E, draw ED perpendicular on AB. : o »

Join AE. Then the normal and tangential stresses
on the oblique plane are given by AD and ED
respectively. The resultant stress on the obligue Fig. 8.99
plane is given by AE, -

From Tig. 3.22, we have

Length AD = Normal stress on oblique plane

Length ED = Tangential stress on oblique plane

Length AE = Resultant stress on oblique plane.

Radius of Mohr’s circle = T1- e
Angle ¢ = obliquity.
Proof. (See Fig. 5.22)
CO = OB = OF = Radius of Mohr's circle = 2 ;02
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AO=AC+CO . . e
_ 01—02=202+01—02=01+02
RCE 2 2
OD = OF cos 20
g, —Og (s 37 - Ty
= v OF = ———=
2 cos 20 ( 2 )
AD =A0 + 0D
gy +0y  Op—Oy
= + I —
2 2 cos 26
= o, or Normal stress
and ED = OF sin 28
0, -0
= _,1_2_.1 sin 20

= @, or Tangential stress.

Important points. (See Fig, 3.22)

(i) Normal stress is along the line ACB. Hence maximum normal stress will be when
point E is at B. And minimum normal stress will be when point E is at €. Hence maximum
normal stress = AB = o, and minimum normal stress = AB = o,

(if) Tangential stress (or shear stress) is along a line which is perpendicular to line CB.
Hence maximum shear stress will be when perpendicular to line CB is drawn from peint O.
Then maximum shear stress will be equal to the radius of the Mohr's circle.

(e = 52
(iif) When the point E is at B or at C, the shear stress will be zero.

(iv) The angle ¢ (which is known as angle of obliquity) will be maximum, when the line
AE is tangent to the Mohr's circle.

Problem 3.23. Solve problem 3.5 by using Mohr’s circle method.

Sol. The data is given in problem 3.5, is

o, = 120 N/mm? {tensile)
g, = 60 N/mm? (tensile)

8 = 30°.
Seale, Let 1 em = 10 N/mm?
120
Then %= g = 12 cm
and ‘ Gy = % =6cm
Mohr's circle is drawn as : {See Fig. 3.23).
Take any point A and draw a horizontal A C\ o o /
line through A. Take AB = o, = 12emand AC= '4 %" L
0, = 6 cm. With BC as diameter (i.e., BC=12-6 v
= 6 em) describe a circle. Let O is the centre of
Fig. 3.23

the cirele. Through O, draw a line OF making an
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angle 268 (i.e., 2 x 30 = 60°) with OB. From E, draw ED perpendicutar to CB. Join AE. Measure
lengths AD, ED and AE.

By measurements :

Length AD = 10.50 cm
Length ED = 2.60 cm.
Length AF = 10.82 cm

Then normal stress = Length AD x Scale _
=10.50 x 10 = 105 N/mm?, Ans.
= Length ED x Scale
= 2.60 x 10 = 26 N/mm?
= Length AE x Scale
=10.82 x 10 = 108.2 N/mm? Ans.

3.6.2. Mohr’s Circle when a Body is Subjected to two Mutually Perpendicular
Principal Stresses which are Unequal and Unlike (i.e., one is Tensile and other is
Compressive). Consider a rectangular body subjected to twe mutually perpendicular pringci-
pal stresses which are unequal and one of them is tensile and the other is compressive. It is
required to find the resultant stress on an oblique plane.

Let : o, = Major principal tensile stress,

g, = Minor principal compressive stress, and
6 = Angle made by the oblique plane with the axis
of minor principal stress.

Mohr’s circle is drawn as : (See Fig. 3.24) E

Take any point A and draw a horizontal line through A
on both sides of A as shown in Fig. 3.24. Take AB = g, (+)} towards
right of A and AC = 0,(~) towards left of A to some suitable scale.
Bisect BC at 0. With O as centre and radius equal to CO or OB,

draw a circle. Through O draw a line OF making an angle 20
with OB.

From E, draw ED perpendicular to AB. Join AE and CE.

Then normal and shear stress (i.e., tangential stress) on the

oblique plane are given by AD and ED. Length AE represents
" the resultant stress on the oblique plane.

.. From Fig. 3.24, we have
Length AD = Normal stress on obligue plane,
Length ED = Shear stress on obligue plane,
Length AE = Resultant stress on oblique plane, and
Angle ¢ = Obliquity.

Tangential or shear stress
Ans.

Resultant stress

Radius of Mohr's circle = CO or OB = S1r%

Proof. (See Fig. 3.24).
CO = OB = OF = Radius of Mohr's circle
g + Oy ' '
==
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A0 =0C-AC
01 +0y _01+03-20, 0y -0y
T2 2 2 2

AD=AO0 + OD

=AQ + OB cos 26 (~* 0D = 0E cos 20)

¥, —0g +0'1+0'2

== cos 29 [ OF =Radius = L;,GA] .
=g, or Normal stress
and ED = OF sin 26
= 5179 sin 20 ( OE=31%Ts
2 2

= g, or Tangential (or shear) stress. .

Problem 3.24. Solve problem 3.6 by using Mohr's circle method,
Sot. Given : The data given in preblem 3.6, is

o, =200 Nfmm?*

o, = - 100 N/mm? (compressive)

6= 30°
It is required to determine the resultant stress and the maximum shear stress by Mohr's
circle method. First choose a suitable scale.

Let 1 cm represents 20 N/mm?.

200 E
Then 017 o = 10 cm .
- 100
and 0y = == Sem _
Mohr's circle is drawn as given in Fig. 3.25. G LA 2

o]
Take any point A and draw a horizontal line through 100 —»-—— 200

A on both sides of A. Take AB = o, = 10 em towards right of
A and AC = g, = - 5 cm towards left of A. Bisect BC at O.
With O as centre and radius equal to CO or OB, draw a
circle, Through O draw a line OF making an angle 20 (i.e.,
2 x 30° = 60°) with OB. From E, draw ED perpendicular to
AB. Join AF and CE. Then AE represents the resultant
stress and angle ¢ represents the obliquity.

By measurement from Fig. 3.25, we have

Length AE =9.0cm

Length AD = 6.26 ¢m and length ED = 6.5 cm

Angle ¢ = 46°
Resultant stress = Length AE x Scale
=9.0 x 20 = 180 N'mm?2.  Aus.

Angle made by the resultant stress with the normal of the inclined plane =¢ =46°. Ans.
Normal stress = Length AD x 20
=6.25 x 20 = 125 N/mm?
= Length ED x 20
= 6.5 x 20 = 130 N/mm?®

Fig. 3.25

Shear stress
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Maximum shear stress. Shear stress is along a line which is perpendicular to the line
AB. Hence maximum shear stress will be when perpendicular to line AB is drawn from point O.
Then maximum shear stress will be equal to the radius of Mohr's circle.

. Maximum shear stress = Radius of Mohr's circle

200 + 100
=2 ;(’2 - ; = 150 N/mm?. Ans.

3.6.3. Mohr’s Circle when a Body is Sub-

Gy

A

Jjected to two Mutually Perpendicular Principal A c:f “a

Tensile Stresses Accompanied by a Simple Shear T T , T T
Stress. Consider a rectangular body subjected to two D * c
mutually perpendicular principal tensile stresses of f Oblique

unequal intensities accompanied by a simple shear Pk plane T

stress. It is required to find the resultant stress on an
oblique plane as shown in Fig. 3.26.
* Let o, = Major tensile stress A l l . #l l e
G, = Minor tensile stress YYvvy
1 = Shear stress across face BC and AD : ez
0 = Angle made by the oblique plane with Fig. 3.26
the plane of major tensile stress. -

According to the principal of shear stress, the faces AB and CD will also be subjected to
a shear stress of .

Mohzr’s cirele is drawn as given in Fig. 3.27.

Take any point A and draw a horizontal line through A.

Take AB = o, and AC = o, towards
right of A to some suitable scale. Draw per-
pendiculars at B and C and cut off BF and
CG equal to shear stress to the same scale.
Bisect BC at 0. Now with O as centre and
radius equal to OG or OF draw a circle.
Through O, draw a line OF making an an-
gle of 20 with OF as shown in Fig. 3.27.
From E, draw ED perpendicular to CB.
Join AE. Then length AE represents the
resultant stress on the given oblique plane.
And lengths AD and ED represents the
normal stress and tangential stress respec-
tively. Fig. 8.27

Hence from Fig. 3.27, we have

Length AE = Resultant stress on the oblique plane

Length AD = Normal stress on the obligue plane

Length ET} = Shear stress on the oblique plane.

Proof. (See Fig. 3.27).

1 1
CO= 2 B = 5

1
AO:AC+CO=02+§[01—02]

YYYYY

»

-
>
-

(o, - o,) (+ CB=o,-qy
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_20y+0;-03 G+ 0y

2 2
AD = AQ + OD

=N%9% L OF cos (26— ) [~ OD = OE cos (26 - )]
=Dt + OF [cos 20 cos o + sin 20 gin o]
= %cig- + OF cos 20 cos o + OF sin 20 sin «
:9—1{2——CF2 + OF cos o . cos 20 + OF sin o . sin 20
=EL%-G—2 + OF cos o . cos 20 + OF sin o . sin 28

' (- OF = OF = Radius)
= 9—1;—62~ + OB cos 20 + BIF sin 20

(+ OF cos'a=0B, OF sin o = BF)
Oy + 0y ) . . _
=—2--~_+COc0_526+-csm28 {- OB=C0,BF=1)
_91t93 05702 on s vsi Co=m]
= 2 + 5 cos 26+ T sin 26 ( 2
= g, or Normal stress _
Now ED = OF sin (20 — a} = OF (sin 28 cos a — cos 28 sin o)

= OF sin 26 cos-a — OF cos 28 sin o

= OF cos o . sin 28 — OF sin o . cos 20

=OF cos « . sin 20 — OF sin o . cos 20 {~+ OF = OF = Radius)
= 0B . sin 20 - BF cos 26 (- OF cos o= OB, OF sin o = BF}
=CO . sin 20 — T cos 20 (- OB=CO,BF =1

_ g, -0
=01—20—2— sin 20 — T cos 20 ( CO=F1—2““2"J

= 0, or Tangential stress.

Maximum and minimum value of normal stress. In Fig. 3.27, the normal stress is
given by AD. Hence the maximum value of AD will be when D coincides with M and minimum
value of AD will be when D coincides with L.

Maximum value of normal stress,
(o) . =AM = AO + OM

nomax

_01t0 o ( Ao=%2_,0M=OF=Radius]
2

- 91t 9%, loB? + BF? -+ Intriangle OBF, OF = JOB? + BF?)
5 (

2 -
_ o *+Ty (01—02] bt ( OB=91—20—2,BF=1}
- 2
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Minimum value of normal stress,
(0,) i =AL =A0 - LO

_0o1 12-02 _OF (-~ LO = OF = Radius)

' 2
_G1t9s 01702 .2
2 2

(i) For maximum normal stress, the point IJ coincides with M. But when the point D
coincides with M, the point E also coincides with M. Hence for mazimum value of normal
stress,

(*» Line OF coincides with line OM)

Aungle 28=0
o .
=— e
] 5 (@)
- _BE__ v ( BF:tOBmLUz]
Also tan2ﬂ—tana—OB—01_02 s 3
2
_ 27
~01—02-

(i) For maximum and minimum normal stresses, the shear stress is zero and hence the
planes, on which maximum and minimum normal stresses act, are known as principal planes
and the stresses are known as prinecipal stresses.

(zii) For minimum normal stress, the point D coincides with peint L. But when the point
D) coincides with L, the point E also coincides with L. Then

Angle W=n+a (-~ Line OFE coincides with line OL)
T o ..
=5 + 5 .5}

From equations (i) and (ii), it is clear that the plane of minimum normal stress is in-
clined at an angle 80° to the plane of maximum normal stress.

Maximum value of shear stress. Shear stress is given by ED. Hence maximum value
of ED} will be when E coincides with G, and D coincides with O.

Maximum shear stress,
{0) o = OH = OF (~+ OH = OF = radius)

= \fOBz + BF? (- In triangle OBF, OF = \fOBz + BF?)
2 o
- (cl—crs;J .2 [ OB=-1"°2 UZ,BF=1J
2 2
Probiem 3.25. A point in a strained matérial is subjectéd to stresses shown in Fig. 3.28.

Using Mohr’s circle method, determine the normal and tangential stresses across the obligue
plane. Check the answer analytically.
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4 35 N/mm”®
25 N.’mm2
- -
Obﬂdue 3 '
65 Nimm? plane B4 65 Nimm®
-] » 2
25 N/mm
" 35 Nimm®
Fig. 3.28
Sol. Given :
Major principal stress, o, = 65 N/mm?
Minor principal stress, o, = 35 N/mm?
Shear stress, T = 25 N/mm?
Angle of oblique plane, 6 =45°.
Mohr’s circle method ’
Let 1lem = 10 N/mimn?
65
Then =—=65¢
. T, 10 6.5 ¢m,
Ty = 35 _ 3.5 d 5
2 =19 =% cm an r_ﬂ)— =2.5cm

Mohr's circle is drawn as given in Fig. 3.29.

Fig. 3.29

Take any point A and draw a horizontal line through A. Take AB = G, = 6.5 cm and
AC = g, = 3.5 cm towards right of A. Draw perpendicular at B and C and cut off BF and €G
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equal to shear stress 1= 2.5 cm. Biseet BC at 0. Now with O as centre and radius equal to OF
(or OG) draw a circle. Through O, draw a line OF making an angle of 20 (i.e., 2 x 45° = 90°) with
OF as shown in Fig. 3.29. From E, draw ED perpendicular to AB produced. Join AX. Then
length AD represents the normal stress and length ED represents the shear stress.

By measurements, length AD = 7.5 ecm and

~ length ED = 1.5 cm.
- Normal stress (g,) =Length AD x Scale = 7.5 x 10 = 76 N/mm2, Ans.
(- lecm = 10 N/mm?)

And tangential stress (o,) = Length EI} x Scale = 1.5 x 10 = 15 N/mm?.  Ans.

Analytical Answers

Normal stress (0, ) is given by equation (3.12).

-~ Using equation (3.12),

_ 03 + 0 +'01—02

g, = 5 2 cos 20 + T sin 20
65+35 65-
=—;——+ 5235 cos (2 x 45°) + 25 sin (2 x 45°)
=50 + 15 cos 90° + 25 sin 90°
=504+16x0+25x1 (. cos890° =0, s5n90°=1)

=50+ 0+25=75 N'mm2, Ans.
Tangential stress is given by equation (3.13)
Using equation (3.13),

Z 5in 20—~ 7 cos 28

o, —
o, =

- 65-35
= sin (2 x 45) — 25 cos (2 x 45)

=158 90°-25¢c0s90°=15x1-25x0=15-0
=15 N/mm?. Ans.

Problem 3.26. Af a certain point in a strained matericl, the intensities of stresses on two
planes at right angles to each other are 20 Nimm? and 10 Nfinm? both tensile. They are accom-
panied by a shear stress of magnitude 10 N'mmZ. Find graphicaily or otherwise, the location of
principal planes and evaluate the principal siresses.

Sol. Given :

Major tensile stress, o, = 20 N/'mm?®
Minor tensile stress, o, = 10 N/mm?
Shear stress, T = 10 N/mm?

This problem may be solved analytically or graphi-
cally. Here we shall solve it graphically (i.e., by Mohr's
circle method).

Scale. Take 1 cm = 2 N/mm?
2 10

Then 01=‘"‘=10(lm, 02=-——=5cm
2 2
10

and T= 5 = 5 em.

Mohr’s circle is drawn as given in Fig. 3.30.

Fig. 3.30
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‘Take any point A and draw a horizontal line through A. Take AB = ¢, = 10 cm and AC =
o, = 5 cm towards right side of A. Draw perpendiculars at B and C and cut off BF =CG =t =
em. Bisect BC at 0. Now with O as centre and radius equal to OG {or OF), draw a circle cuttmg
the horizontal line through A, at L and M as shown in Fig. 3.30. Then AM and AL represent the
major prinecipal and minor principal stresses.

By measurements, we have

LengthAM 13.1 em and Length AL =1.91 em

LFOB (or 20) = 63.7°.

= Length AM x Scale
=13.1 x 2 N/mm? (-
= 26.2 N/mm?. Ans.
= Length AL x Scale
=191 x 2 = 3.82 N/mm?. Ans.

Major principal stress
1 em = 2 N/mm?)

Minor principal stress

Location of principal planes

28 = 63.7°
63.7°
0= 5 = 31.85°. Ans.

The second principal plane is given by
6 + 90° or 31.85° + 90° or 121.85° Ans.
Problem 3.27. An elemental cube is subjected to tensile stresses of 30 N/mm?2 and
10 Nimm?® acting on two mutually perpendicular planes and a shear stress of 10 N/imm?® on
these planes. Draw the Mohr's cirele of stresses and hence or otherwise determine the magnitudes
and directions of principal stresses und also the greatest shear stress.
Sol. Given :

Major tensile stress, o, =30 N/mm?

Minor tensile stress, ¢, = 10 N/mm?

Shear stress, T = 10 N/mm?

Scale, Take 1 cm = 2 N/mm?

Then o= ?;_O =15¢cm

0’2=%=5cm and 1:=12—0=5cm

Mohr’s circle of stresses is drawn as given in
Fig. 3.31. G

Take any point A and draw a horizontal line Max
through A. ' stress

Take AB = o, = 15 cm and AC = ¢, = 5 em to- 10|-|
wards right side of A. Draw perpendiculars at B and C l B M
and cut off BF = CG =t = 5 em. Bisect BC at 0. Now A L G oz 4 &
with O as centre and radius equal to OG {or OF), draw M= 10 g
a cirele cutting the horizontal line through A at L and - 3¢

M as shown in Fig. 3.31. Then AM and AL represents ¥
the major and minor prineipal stresses respectively.
And OH represents the maximum shear stress.
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6.

By measurements, we have
Length AM =171 cm
Length AL =293 cm
Length OH = Radius of Mohr's circle
= 7.05 cm
£FOB (or 28) = 45°,
Major principal stress
' = Length AM x Scale
=171x2 )
= 34.2 N/mm?. Ans.
Minor principal stress = Length AL x Scale
o =293x2 .
. = 5,86 N/'mm?2. Ans.
£FOB or 20 = 45°
= 325 = 22.5°. Aps.
The second principal plane is given by 6 + 90°. 7
Second principal plane =225 + 90 = 112.5°. Ans.
The greatest shear stress = Length OH x Secale
=7.05 x 20 = 141 N/mm?, Ans.

(- 1em=2Nmm?

1 cm = 2 N/mm?®)

HIGHLIGHTS

T
Fhe planes, which have no shear stress, are known as prineipal planes.
The stresses, acting on principal planes, are known as principal styesses. .
Analytical and graphical methods are used for finding the stresses on an oblique section.

When a member is subjected to a direct stress (¢) in one plane, then the stresses on an obligue
plane (which is inclined at an angle © with the normal cross-section) are given by

Normal stress, G, =0 cos? 8

Tangential stress, g, = - sin 28

Max. normal stress

I

il
rofa @ i

Max. shear stress

When a member is subjected to two like direct stresses in two mutually perpendicular direc-
tions, then the stresses on an obiique plane inclined at an angle 8 with the axis of the minor
stress (or with the plane of major stress) are given by :

Gy +0g O —0
Normal stress, o = b2 ZLTT2 s 20,

" 2

Tangential stress, o= 1% 599
¢ 2

- 2 2
Resultant stress, oy = Jo" + 0, .

‘T}';auang'l‘é made by the resultant stress with the normal of the.oblique plane, is known as obliquitly.

It is denoted by ¢. Mathematically, tan ¢ = g—‘.

n

PRINGIPAL: STRESSES AND STRAINS o 139

7. When a member is subjected to a simple shear stress (1), then the stresses on an oblique plane
are given as :
Normal stress, o, =T sin 26

Tangential stress, g, =— 1T ecos 20.

8. When a member is subjected to two direct stresses (0, 0,) in two mutually perpendicular directions
accompanied by a simple shear stress (1), then the stresses, on an oblique plane inclined at an
angle 8 with the axis of minor stress, are given by :

_O’1+02+0’1—02

Normal stress, cos 20 + T sin 26.

" 2
‘Fangential stress, o, = D=9 g 20 — T cos 20
e . L 2t
{a) Position of principal planes is given by tan 26 =
01 -0z

2

Oy + O o1 -0

=91+ NG -gp] 2
2 2

2
=G1+_G2_ O1-02| .2
2 2
\,‘(0’1 - 02)2 + 41:2

9g -0y

(B) Major principal stress

(¢) Minor principal stress

(d) Maximum shear stress =

b

{e) Condition for maximum shear stress, tan 20 =

9. Mohr's circle of stresses is a graphical method of finding normal, tangential and resultant stresses
on an obligue plane. .
10. Maximum shear stress by Mohr's circle method, is equal to the radius of the Mohr's circle.
11. The planes of maximum and minimum nermal stresses are at an angle of 90° to each other.

EXERCISE 3

(A} Theoretical Questiotis
1. Define the terms : Principal planes and principal stresses.

2. A rectangular bar is subjected to a direct stress (o) in one plane only. Prove that the normal and
shear stresses’on an oblique plane are given by

o
o, =ocos®B and Ut:E sin 26

where 6 = Angle made by oblique plane with the normal cress-section of the bar,
o, = Normal stress, and
o, = Tangential or shear stress.

3. A rectangular bar is subjected to two direct stresses (o, and o,) in two mutnally perpendicitlar
directions. Prove that the normal stress (g,) and shear stress {o,) on an oblique plane which is
inclined at an angle 9 with the axis of minor stress are given by

aJp -G
a,=91%92 G170 53
2

Uy~ Gy,
and G, = 1772 qin 98,

4. Define the term ‘obliquity’ and how it is determined.
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5. Derive an BXpression for the stresses on‘ an oblique plape ofa rectangulap body, when the body is 7 At g Point Wwithin a body stubjected o two mutual]y Perpendicu] sy directions, 1, Stresses arg
subjected to a simple shear stress. ‘ 100 Nimm?2 (tensila} and 75 Nimm? {tensile), Fach of the above Stressas, ig &ccompanijeq by a

6 A rectangylay body is subjected ¢ direct Stresses ip two murtually Derpendicylar directions sheayr _stz-gss of 78 N/mm?2 Determine the normal, shegr and resulian; stresses op an obligue
-Actompanied by a shear stress. Proye ‘that the normaj stress ang shear stregs on an eblique Plane inclineg 41 a1 angle of 45° With the axig of mingr tensile strogs,

[Ans, 150, 25, 152.07 N/mp?2)
8. For the broblem 7, determine - () the direction and magnitude of each of the Principa) stress apg
[€1))] magnitude of the greatest shegy stress.
' [Ans, 154.057, - 4.057 Wmm2 g = 85°, 468" ang 125° 46 8- Nimmz)
9. Direct Stresges of 180 N/mame tensile ang 120 Nfmmz2 Compresgive exist on twg Perpendicyly,
Planes at 5 certain poing jp 4 body. They are also accompanied by shear stresses op the planes.
i i m2,

plane inclineq at an angle g with the plane of major direct Stress, are given by

O1+ 05 a; .
S s I ] €08 20 + ¢ i 29

and .qz%ﬁ sin28-1:cos26. )
7. Derive 4N eXpression for the major and mingr Drincipaj stresses on ap eblique blane, whep the
body is subjected to direct stresses in two mutually Perpendicuiay directiong accompanjad by a
shear stresg.
Write g note on Mohyy circle of stresses,
9 A body is subjected 4 direct stresses in tw, mutually Perpendieylary directions accompanied by a

simple shear stress. Draw the Mohy's circle of stresses and explain how will yo obtain the prinei-

&

[Ans, () 118.137 N/mm2 (i) 180 N/mmn2]
10. Atg certain point iy , Strained material, the stresses on the two planes at right angleg 4, each

10 A bedy ig subjected tg direct stresseg jn t‘wo mutually Perpendicular directiong. How wi} you
determina graphically the resultant stregg trn an oblique plape when :
(i} the 5tresses are unequal ang unlike, and
(i) the stresses are inequal and Jije. ‘

11, Soive Problem 4, by graphiea) method,

12, Solve problem 5, by Braphical method,

13. Solve broblem 4, using Mohr'g circle of Stresseg.

14. Solve broblem 5, using Mohy's circle of stresses,

15, A point in 5 strained materia] ig subjected i stresses shown in Fig. 3.33.

Using Mohr's circla method, determing the normaj and tangentia] stresses aCross the oblique
plane. Checl the answer analytically. [Ans, 105 N/mm? 15 Nimm?2)

(B) Numeric{:al Problemg
1 a rectangular bar of cross-sectional arpqy 120\00 mm? g subjected to an axial load of 350 Nrmm?,
Determine the normal and shear stresses op 2 section which ig Inclined at gy angle of 3g° with the
|

normal Cross-section of the bar, | {Ans, 9,25 Nimm2 1.3 Nimmn?)
2. Find the diameter of 5 circular bar which g Subjected to an axial pul] of 150 kN, if the maximum
allowabie shear stregg 08 any section 75 gy N/‘mmz. {Ans, 3,989 cm)
3. A rectangylay bar of Cross-sectiona] area 10000 mm? is subjecteq t0 a tensile load P 44 shown
in Fig, 3,32, The Permissible normal and Lheap Stresses on the oblique plape BC are given
as 8 N/mm? ang 4 N/mm? respectively. Deter‘mine the safe valye of P, {Ans. 92 375 kN7

80 Nymum?
C
P
16. and 20 N/mm2 acting on twqg
4, mutially Derpendiculgy Planes are 100 N/mm?2 ar stress of 90 N/mm? o these planeg, Draw the Mohrs
and resultant stresses on a Plane inclined at 30° circle of stresses and hence o otherwige determine the magnitudes ang directiong of DPrineipa)
€ minor principal stress, ‘ [Ans, 0.875 N/mmz, 21.65 N/m,mz, 90.138] Siresseg and alsg the Ereatest shegr stregs,
5. The Principal stregges at a point in g bar are 160 N/mm? (tensile) ang 80 N/mm2 {compressive). [Ansg, 68.214, 11,72 N/mm?, g = g5 5o and 112.5°, 98 og Nimm?]
etermine the resultant Stress in magnitude ypq direction on a plap, Inclined at 60° to the aXis of 17, A straineg material is sybjoeteq t0 two dimensionaj stresses. Prove that the Sum of the normg]
the major Principal stregg Also determine the maximum intensity of sl;ear Stress in the matenzl Components of Stresses on any twe mutually perpendiculay planes ig constant
at the poin [Ans. 144.23 N/mm?, ¢ = 4? 57, 120 Nymm ] [Hint. Normaj Stresses on a plane inclined at g wigp ™major principal plape is given by
6. Ata PoInt in a straineq material, the Principal streggag are 140 N/mm? (tensile) ang 60 N/mm?
{compressive), Determine the resultant stregg 75 magnitude and direction On a plane inclineq gy o= At0y S-0y 05 26 6]
i " 2 2

45° to the axis of the mafor Principai stress, Whag is the maximum intensity of shear stress jn
the materia] ot the point 7 {Ans. 107.7 Niom? | g - g7+ 11.9, 100 N/mm?2?
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p——

MNormal stress o a plane inclined at (8 + g0°) is given by

o= 21_';—9?'- + 9—1——2—91 cos [2(8 + 907

- 9%3-2— + ‘_’liz—c-’l cos (180 + 20)

= 21_*231 -5 ’2"2 cos 20 i)
Adding () and (@) Ca ¥ o F¥=a 0T copstant}

18. Atapeint in a two Jimensional systert, the normal stress on two mutually perpendicula.r *
are o, and Oy (both alike) and shear stress is 1. Show that one of the pripcipal stresses is zero if

planes

1= Jop x o3

2
. . o + 0 g -0 9
[Hindt. Principal stresses = —-1——2—2' * (———"1 2 2} +T

2
+ O gy — O
= ‘———‘_-'01 5 2 . (—————-L 2) + 0109

= :
. - O
St L_‘ZLPQ-] =_f°1+°2if°1; 2
2

=0y + 0 and zerol-

19, A rectangu‘iar block of material is gubjected to & tensile stress of 100 N/mm? on one plane and a
tensile stress of 50 N/mm? on & plane at right angles, together with shear stresses of 60 N/mm?
on the faces. Find:. -

(i) the direction of principal planes,
(zit) magnitude of the greatest shear stress. _
[Ans. () 33° 41" or 123° 41 (i) 149 N/mm? and 10 N/mm? tensiles (iii) 65 Nimm?]

(ii) the magnitude of pr'mcipal gtresses and

4

~ &train Energy and Impaci Loading

 Strain Enorgy ond Impa 0P —

—

41, N IRODUCTION _ o
' Whenever 2 body is strained, the enevgy is abhsorbed in the body. The energy, which is
-ahsorbed in the hody due to straining effect ig known as strain energy- The straining effect may

' pedueto gradually applied load or suddenly applied 1oad or load with impact. Hence the strain
. energy will be stored in the body when the load is applied gradually or suddenly or with an

jmpact. The strain enersy stored in the body is equal to the work done by the applied load in
s_tretc}ﬂng the body- ) .

4.9. SOME DEFINITIONS

Before deriving the expressions for the gtrain energy stored in a body due to gradually

‘ ﬁppliéd 1oad or suddenly\applied load or lead with an jmpact, the following terms will be defined :

1. Resilience - .

9, Proof resilience, and

3. Modulus of resilience. .

4.2.1. Resilience. The total gtrain energy gtoredina body is commonly known as resil-
jence. Whenever the straining force is removed from the strained body, the body is capable of
doing work. Hence the resilience is also defined as the capacity of 2 ctrained body for doing
work on the removal of the gtraining force.

4.2.2. Proof Resilience. The maximum gtrain energy, stored in & body, is known as
proof resilience. The strain energy stored in the body will be maximum when the body i8 ~

stressed upto elastic limit. Fence the proof resilience is the quantity of strain energy storedin

a body when strained upto elastic limit.
4.2.3. Modulus of Resilience. 1t ig defined as the proof resilience of 2 material per
unit velume. It is an important property of a material. Mathematically,

Proof resilience
Modulus of resili = G of the body
o S0 res1. EI‘TFB Volume of the body

43. EXPRESSION FOR STRAIN ENERGY STORED IN A BODY WHEN THE LOAD IS

APPLIED GRADUALLY

In Art. 4.1, we have mentioned that the strain energy stored in a body is equal to the
work done by the applied load in stretching the body.. Lo
. Fig. 4.1 shows load extension diagram of a body under tensile test upto elastic limit. The
tensile lpad P increases gradually from zero 10 the value of P and the extension of the body

jincreases from zero to the value of x.
: 143
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The load P performs work in stretching the body. 4
This work will be stored in the body as sirain energy which K o M /
is recoverable after the load P is removed. LY SRR

Let P = Gradually applied load,

x = Extension of the body,

A = Cross-sectional area,

L = Length of the body, -

V = Volume of the body, §

E = Young’s modulus, '

U = Strain energy stored in the body, and T

& = Stress induced in the body.

Now work done by the load = Area of load ex-
tension curve (Shaded area in Fig. 4.1} : Fig. 41
= Area of triangle ONM '

O e X »
—* Extension

= % xPXx. _ o @)
But load, P = Stress x Area =0 x A _ _
and extension,  x = Strain x Length ( Strain = ELX?;]—I;T[ - Extension = Strain x L }
Stress : ) Stress
- = <> 8t =l
z % I, | ( rain = 7 J
- % x L. : ' A4)
Substituting the values of P and x is equation (i), we get -
! o 1¢?
Work done by the load ==xgxAx —xL==—xAxL
2 E "2 E A
o? ) B
= xV ~ { Volume V=A4xL)

2K
But the work done by the load in stretching the body is equal to the strain energy stored
in the body.
Energy stored in the body,

o? ' '
U=—xV. ' ‘ (4.2
o _ ( : )

Proof resilience, The maximum energy stored in the body without permanent defor-
mation (i.e., upto elastic limit} is known as proof resilience. Hence if in equation (4 2}, the
stress g is taken at the elastic limit, we will get proof resilience.

%2
Proof resilience =5F X Volume .(4.3)
where o* = Stress at the elastic limit.
Modulus of resilience = Strain energy per unit volume
&2
_ Total strain energy _ 2F xV o 1.4)
Volume TV O eE -4
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© 44, EXPRESSION FOR STRAIN ENERGY STORED IN A BODY WHEN THE LOADIS -

APPLIED SUDDENLY

When the load is applied suddenly toa bcdy, the load is constant throughout the proc-
ess of the deformation of the body.
Consider a bar subjected to a sudden load.
Let - P=1oad apphed gsuddenly,
" L = Length of the bar,
A = Area of the cross-section,
V.= Volume of the bar =A x L,
E = Young’s modulus,
x = Extension of the bar,
o = Stress induced by the suddenly apphed load, and
U = Strain energy stored.
As the load is applied suddenly, the load P is constant when the extension of the bar
takes place. :
Work done by the load = Load x Extension = P ® x. :
The maximum strain energy stored (i.e., energy stored upto elastic limit} in a body is
given by
o2
E .
2 .
_EXAXL : . (- Volume:AxL)
Equating the strain energy stored in the body to the work done, we get

U= x Volume of the body

o2 .
S i AxI= Pxx= Px xL. [ Fromequation(ti.l),x:%xL]

2E E
_ Cancelling xL to both sides, we get
oxA P ’
5 =P or o=2x e (4.5}

From the above equation it is clear that the maximum stress induced due to suddenly
applied load is twice the stress induced when the same load is applied gradually.
After obtaining the value of stress (o), the values of extension (x) and the strain energy
stored in the body may be calculated easily.
Problem 4.1. A tensile load of 60°kN is gmdmlly applied to o circular bar of 4 cm
diameter and 5 m long. If the value of E = 2.0 x 10° N/mm?Z, determine :
(i) stretch in the rod, :
(if) stress in the rod,
(1) strain energy absorbed by the rod.

Sol. Given:
Gradually applied load,
P=60kN=60x1000N
Dia. of rod, d =4 cm =40 mm
Area, A= x40% = 400 = mm?

Length of rod, L= 5 m =500 cm = 5000 mm
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Volume of rod, V=AxL=400xx 5000 = 2 % 108 z tum8
“Young’s modulus, E=2x105N/mm? I
Let x = stretch or extension in the rod,

' | 0= stress in the rod, and ,
U = strain energy absorbed by the rod.
load P 60000

. == — _— = . 2- .
Now stress, o = Area - A = 200, 47.746 N/'mm?. Ang

The stretch or extensgion is given by equation {4.1), -

o 47746 n
x=ExL=mx5000=l.19mm. Ans, ‘

The strain eﬁergy absorbed by the rod is given by equation (4.2),

U=0—2' xV= —»47;476}—, x2x 108k =35810 N-mm =385.81 N-m. Ans.
2F 2x2x 1065 : :
Problem 4.2, If in problem 4.1, the tensile load of 60 kN is applied suddenly determine
(&) maximum instantaneous stress induced,
(i) instantangous elongation in the rod, and
(iii) strain energy absorbed in the rod.
Sol. Given : . ;
The data given in problem 4.1 is d = 40 mm, Area = 400 7 mm?, L = 5000 mm, Volume =
"2x 108 x mm3, E = 2 x 105 N/mm? and suddenly applied load, P = 66000 N, :
() Maximum instantaneous stress induced ’
Using equation (4.5),

. P 60000 ‘ -
| O=2x—=9x 400 95.493 N'mm?®, Ans,
(i) Instantaneous elongation in the rod

Let x = Instantaneous elongation

o 95.493
Then t=7=xL=
E 2 x 10°

=238 mm. Ans,
(iii) Strain energy is given by,

x 5000 [see equation {(4.1)]

o? 95.493°%
U_'El:}'-xv~ 2x2x10°
= 143.238 N-mi. Ans. _ -
_ Problem 4.3, Calculate instantanesus stress produced in bar 10 cm? inarea and 3 m
long by the sudden application. of a tensile load of unknown magnitude, if the extension of the

% 2 x 108 x = 143238 N-mm .

bar due - to suddenly applied load is 1.5 mm. Also determine the suddenly applied load. Take

E =2 x10° Nimm2,

Sol. Given :

Area of bar, A =10 em? = 1000 mm? -
Length of bar, L =3 m = 3000 mm
Extension due to suddenly applied Ioad,

% =15mm ‘
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Youné‘s modulus, E=2x 105 N/mm?, _
Let o = Instantaneous stress due to sudden load, and

P = Suddenly applied load. o ‘ ]
"The extension x is given by equation (4.1),

g a
=9 s=—2 3000
x. ExL or 15 w108 * 0
o
= 18222107 00 Niwm?, Ans,
3000 .

Suddenly applied load .
The instantaneous stress produced by a sudden load is given by equation (4.5) as

P ) P
°=2XI or IOO=2x—~1000

P= }w; 50000 N = 50 kKN. Ans.

Problem 4.4. A steel rod is 2 m long and 50 mm in diameter. An axial pull of 100 kN i's

o suddenly applied to the rod. Calculate the instantaneous stress induced and also the instanta-

.neous. elongation produced in the rod. Tahe E = 200 GN/m?.

Sol, Given :
Length, L =2m=2x 1000 = 2000 mam
Diameter, . d =50 mm '

Area, : =g % 502 = 625 £ mm?

Suddenly applied load, . ‘
P=100kN =100 x 1000 N
Value of E = 200 GN/m?2 = 200 x 10° N/m? (- G=Giga=10%

o . .
_ 200 xﬁlO N/mm? (v 1m=1000mm .. m?= 10° mm?)

= 200 x 103 N/mm?
Using equation (4.5) for suddenly applied load, .

0$2x£i=2XEE£EE9NmmF=IM£GNMmﬁ Ans.
A 625 x
Let dL = Elongation
P 101.86
Then _ dl = 7 L= m x 2000 = 1.0186 mm. Ans.

.+ Problem4.5. 4 ﬁniform metal bar has a cross-sectional area of 700 mm? and a length of
L6 m. If the stress at the elastic limit is 160 Nimm?, what will be its proof resilience ? Determine

Sol. Given: . - :
Area, A = 700 mmn?
Length, " L=15m=1500 mm

Volume of bar, V=4 x L =700 x 1500 = 1050000 mm?
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Stress at elastic limit, o* = 160 N/mm?
Young’s modulus, E = 2 x 105 N/mm?
(i) Proof resilience is given by equation (4.3), as

e g 160?
Proof resilience = % Volume = ———— x 1050000
2E 2x2x10°
= 67200 N-mm = 67.2 N-m. Ans.
(ii) Let P = Maximum value of suddenly apphed load, and

_ P = Gradually applied ]oad
Usmg equatmn (4.5) for suddenly applied load,
P

o-=2xz : . (change p to p*) -
txA 16 ' :
p=2 ,: = 0;700 = 56000 N = 56 kN. Ans.
For gradually applied load,
T gt = B
or - Py=0*xA=160x700=112000 N = 112kN. Ans,

Problem 4.6. A tension bar 5 m long is made up of two parts, 3 metre of its length hus a
cross-sectional area of 10 em? while the remaining 2 metre has o cross-sectional area of 20 cm?2.
An axial load of 80 kN is gradually applied. Find the totel strain energy produced in the bar
and compare this value with that obtained in o uniform bar of the same length and having the
same volume when under the same load. Take E = 2 x 10° Nfmm?Z.

Sol. Given : : '

Total length of bar, L =5 m = 5000 mm

Length of 1st part, L, =3 m=3000 mm

Area of 1st part, A; =10 cm? = 10 x 100 mm2 = 1000 mm?

Volume of 1st part, :
V1 =A, x L, = 1000 x 3000 = 3 x 10° mm3
Length of 2nd part, = 2 m= 2000 mm
Area of 2nd part, A 20 em? = 20 x 100 mm? = 2000 mm2
Volume of 2nd part, V2 = 2000 x 2000 = 4 x 105 mm?
Axial gradual load, P =80kN = 80 x 1000 = 80000 N

80'kN ' T . 80 kN
hmaas il e m———— 10 om® === m s e 20¢em -  —
L e R
i - 3ecm e 2em - !
Fig, 4.2 -

i '_ where E = Modulus of Elasticity,
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. Young’s modulus E=2x%105 N.’mrn2 :
- Load 80000

Stress in lstpart o, = & = 1000 = 80 Nfmm?2
1
P 80000
Stress in 2nd part o, = -2;- =S060° = 40 N/mm?

Strain energy in 1st part,

2 2 .
o7 80 o

U, = EEL xV, = T2 10° x 3 x 10% = 48000 N-mm = 48 N-m
Strain energy in 2nd part,

2

U, = 75 % 4000000 = 16000 N-mm = 16 N-m

Iy

22 oy o=

28 2T 2x2x1

Total strain energy produced in the bar,
U=U +U; =48 + 16 =64 N-m. Ans.

Strain energy stored ina umform har _
Volume of uniform bar, V=V, + V, = 3000000 + 4600000 = 7000000 mm?
Length of uniform bar, L =5 m = 5000 mm

Let A = Area of uniform bar
Then V=AxL or 7000000 =A x 5000
7000000 2
A= 5000 - 1400 mm'
P _ 80000

. 2
Stress in uruform bar, o = %5000 = §57.143 N/mm’
Strain energy stored in the uniform bar,

2 2 '
57.143
U= — xV = —="___ % 7000000
2E 2% 2x10°

= 57143 N-mm = 57.143 N-m
Strain enerpy in thegivenbar _ 64 12. Ans

Strain energy in the uniform bar, 57.143
Problem 4.9. A bar of uniform cross-section ‘A’ and length ‘I’ hangs vertically, sub-

- - jected to its own weight. Prove that the strain energy stored within the bar is given by

Axp? x P
Ue ——E 2
6E

o = Weight per unit volume of the bar. (AMIE, Summer 1989)

Sol, Given :
A= Cross—sectmnal area,
L = Length of bar,
E = Modulus of Elasticity,
p= Welght per unit volume.
Consider an element at a distance ‘%’ from the lower end of the bar as shown in
Fig. 4.2 (a). Let ‘dx’ be the thickness of the element. :
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The section x-x will be acted upon by the weight of the bar

— L
of length =x. B ' 1 =lxp2xAxii_J_ci]'
Let W, = Weight of the bar of length x 2 E ) 3 0
. = (Volume of the bar of lefzgth x) - 1 x4 2
. X Welght of unit Volume 2R g 3
. =(A xxa) % p=pix ' : A vo? o LP i
As a result of this weight, the portlon dx will expenence a =8P T2 Ans,
small elongation dé. Then : dx L 6E
.. El o _l_ Problem 4.8. The maximum stress produced by a pull in « bar of length 1 m is
Strain in portion dx = Elongation in dx S NN 150 N/mm?2. The area of cross-sections and length are shown in Fig. 4.3. Calculate the strain
Length of dx X X energy stored in the bar if E = 2 x 10° N/mm?,
a y - -
G x T - T
. Weight acting on section x-x ' < 200 mmi- IOD%mma 200 5 |
Stress in portion dx =" — N i y
Area of section i y A l : B c l D
_px'_igx=pxx - Fig. 4.2 (a) -
" 475 mm | 50mm | 475 mm N
Also Stre.ss
Strain Fig. 4.3 .
_pxx _pxxxds Sol. Given : : T
(@) db Length of bar, 'L =1m=1000 mm
dx Max. stress, o = 150 N/mm? '
pxxxdx Part AB : Length, L, =475 mm
db="—p , Area, A = 200 mm?
Now the strain energy stored in portion dx is given by, " Part BC : Length, L, = 50 mm
dU = Average Weight x Elongation of dx Area, A, =100 mm?
' 1 ' Part CD : Length, L, =475 mm
= (-2" x Wx) x d8 Area, Aa = 200 mm? ]
Value of E =2 x 10° N/mm? '
- (l X p Ax) L PxEX dx - W In this problem, maximumn stress is given. Axial pull, P is not known. But stress in equal
2 E ? ’ x = pAz) to load/area. As load (or axial pull) for the bar is same, hence stress will be maximum, when
1 : e ' area will be minimum. Part BC is having less area and hence stress in part BC will be maxi-
=3 x p?Ax? x =z mum. As paris AB and CD are having same areas, hence stresses in them will be equal.
T Let 0, = Stress in part BC = 150 N/mm?
otal strain energy stored within the bar due to its own weight W is obtained by inte- S i AB ori CcD
g atlng the above equation from 0 to L. = tre.ss in part AB or in part :
L Now load = Stress x Area
U= OdU or - load = ¢, x 4, = 6,4,
a;A; 160 x 100 N
i . O, = —2—2 = =75 N/mm
=J‘ %szszx——- 1 Ai. 200'
o Now gtrain energy stored in part AR,
1 pixaA L, o2
=3%"g X x%dx Ul—zEle B
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where V, = Volume df part AB The strain in the ba'_r ig given by,
=A; x L, =200 x 475 Strain'e Stress
= 95000 mm?® : E
Bubstituting this value in equation (i), we get . 5L =g
’ 02 1€, - L E
U = ﬁﬂ— % 95000 - L= % % L - .(4.6)
752 o Work done by the load = Load x Distance moved . )
= axznien < 20000 = P(h +8L) 7 A5
- 1335.938 N-mm The strain energy stpred by the rod,
Strain energy stored in part BC, ' U= _;_’% <V = g% x AL : (i)
2 . N . R :
U, = -;3% xV, - Equating the work done by the load to the strain energy stored, we ge#
: ‘ . .
. R g .
150° . : : Ph+8L)= — . AL
=i—g"‘A2xL2 . (v Vy=A,xL,) . . 2E . Yo
2x2x10 : 2 R c
] . o o A 5L - —_—
or P h + L] =— AL [ E )
1502 . E 2E . .
= —————— x 100 x 50 = 281.25 N-mm oo ' a . o
2x2x10 or Ph+P'E‘L=§—E'AL
Energy stored in part CD, i 2
52 " or S AL-P.% L-Ph=0
Up= o5 x V;=1335.938Nm (= V=V, 05=0, . Uy=T)) 2E E
' Tatal strain energy stored, - - Multiplying by EALI—‘:’- fo both sides, we get
U=U, + U, + U, = 1335.938 + 281.25 + 1335.938 N-mm o 8L o 2E
= 2053126 N-mm. Ans. o*-P. g Lxmp-Phop=
" : : N ZIIIIIIIIIII eI NIY 0027007 2p 9PEhR
4,5. EXPRESSION FOR STRAIN ENERGY STORED o : 1 or ’ - .0~ VAR
IN A BODY WHEN THE LOAD IS APPLIED hvhe Load - 4 4L N
WITH IMPACT ‘ ] The above equation is a quadratic equation in ‘e,
2
: The load dropped from a certain height before the : / // 2P ® [EE] +4. 2PER b* & Jaace
"load commences to stretch the bar is a case of a load ap- 2 _ A A AL - i [ roots = - ]
-~ plied with impact. Consider a vertical rod fixed at the up- i o= 2x1 ' 2a
~- per end and having a collar at the lower end as shown in ‘ 2
_ Fig. 4.4. Let the load be dropped from a height on the col- _P * éﬂ + 8.PEh - P £ (f-] + 2PE
" lar. Due to this impact load, there will be some extension h TATV4A? 4.AL A A A.L
“intherod, o S ) PY 2PER ;
Let P = Load dropped (i.e., Ioad applied with impact) Coltar =2, [—J ST . + (Neglecting - ve root)
L = Length of the rod, : - ¥ A Al A ‘ '
A = Cross-sectional area of the rod, 1 L. F 1+ 2PER A’ -E + L 1+ 245k
V=Volume ofrod=A x L, . 8l "ATA AL PP A A P.L
£ = Height through which load is dropped, _ _l_ P 2AEHh 4.7
- 8L = Extension of the rod due to load P, } =4 (1+ 1+ P. L. o
E = Modulus of elasticity of the material of rod, . ; J ) : i
o= Stress induced in the rod due o impact load. Fig. 4.4 © After knowing the value of ‘0", the strain energy can be obtained.
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Problem 4.10. A load of 100 N falls through a height of 2 em on to e collar rigidly
attached to the lower end of a vertical bar 1.5 m long and of 1.5 cm2 eross-sectional area. The
upper end of the vertical bar is fixed.

Determine : :

(2) maximum instantaneous stress induced in the vertical bar,

Important Conclusions

(&) If 8L is very small in comparison with A.

The work done by load =P. A

Equatmg the work done by the load to the strain energy stored in the rod, we get

o?
P . h=— AL (i) maximum instantaneous elongation, and
SETh (iii) strain energy stored in the vertical rod.
0-2 - ZE P.A and o= _A_ L. " .(4-8) Take E = 2 x 105 N/mmzn
A.L ’ : Sol. Given :
(ii) In equation (. 7) if i = 0, we get Tmpact load, P=100N

Height through which load falls,
h=2cm=20mm

. ‘G——(1+J1+ )—~(1+1)——
which is the case of suddenly apphed load.

' f L=15m=1500 mm
Once the stress p is known, the corresponding instantaneous. extension (6L) and the Leng.‘t};(; bar, A=15cm?= 15 x 100 mm? = 150 mm?
strain energy (/) can be obtained. Area of bar, =L CLm I . 500 - 225-(—)00 ;
Problem 4.9. A weight of 10 kN fulls by 30 mm on a collar rigidly attached to a vertical Volume, . Vi=Ax : 50 xg B o
bar 4 m long and 1000 mm? in section. Find the instantaneous expansion of the bar. Take Modulus of elasticity, £ = 2 x 10° N/mm . . N
E =210 GPa. Derive the formula you use. (Bhavnagar University, Feb. 1992) Let © ¢ =Maximum instantaneous siress induced in the vertical bar,
‘ Sol. Given : . ‘ ' &L = Maximum elongation, and :
Falling weight, P=10 kN = 10,000 N U = Strain energy stored.
Falling height, h =30 mm _ (i) Using equation (4.7), . B
Length of bar, L=4m = 4000 mm : - : P . 2AER 100 2x 150 x 2x 10° x 20
Area of bar, A=1000mm? =3Pt A T IET
Value of . B =210 GPa = 210 x 10° N/m? 150 x
N .. _ s —_ 0 — - — F3
) (.. G=Ciga= 1'0 and Pa = Pasecal = 1 N/m?) (1 1+8000) = 60.23 N/mum?. Ans.
210x 1" N
BT ey (+ 1ri=1000 mm and m? = 10° mm?) (t) Using equation we,
10 ‘ 60.23 x 1500
210 x 100 N/mm® = 2.1 x 105 N/mm? oL = % x L= —2——1—5—— = 0.452 mm. Ans.
Let dL = Ingtantaneous elongation due to falling weight . .. b x 10
= Instantaneous stress produced due to falling weight 1o (:£i) Strain energy is given yz’ ) N
Ulsing equation (4.7, we get 1 U= xv=—202 . 555000 = 2045 N-mm
P 2EAR . I _ . 2E 2x2x10 ‘
=7 1+ 1+PxL 1o = 2.045 N-m. Ans.
C ' G Problem 4.11. The maximum instantaneous extension, produced by an unknown feli-
_ 10090 14014 2% 2.1x 10% x 1000 x 30 2 ing wezght through a height of 4 em in @ vertical bar of length 3 m and of cross-sectional are
1000 10000 x 4000 ’ - Sem?, is 2.1 mm.
. ) S Determine :
=10 (1 *yl+ 315) =10 (1+ v 316-) - i (i) the instantaneous stress mduced in the vertical bar, and
‘ =10 x 18.77 = 187.7 N/mm? . ' (it) the value of unknown weicht. Take E = 2 x 10° N/mm2
Now E= Stress _.G or 8L .o ' o ‘ Sol. Given :
Strain ( "511_) L E _ ; o Instantaneous extension, 8L = 2.1 mm ’
AL ‘ ]- Length of bar, L =3 m = 3000 mm
187. . R = % = 500 mm?
8L = 2 wp, = 1B7.7x 4000 _ 3.575 mm. Ans. | Area of bar, A=5cm )0 mm

E 2.1x10° . s & Volumeofbar, V=500 x 3000 = 1500000 mm?
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Height through which weight falls, & = 4 'cm = 40 am

Modulus of elasticity, £ =2 x 10 N/mm? '

Let © = Instantaneous stress produced, and
P = Unknown weight,

Stress

— or Stress =E x Strain
Strain

We know E=

Instantanecus stress = E x Instantaneous strain = E x %—

21 .
2 x 105 x 3000 N/mm® = 140 N/mm?, Ans._

Equating the work done by the falling weight to the strain energy stored, we get

heoly= S v
P(+6)=2—E—x

2 .
or P43 +2.1) = ﬂ? x 1500000 = 73500
2x2x10
‘ 73500
or P= o1 = 17458 N. Ans.

Note. The va.flue of P can also be obtained by using equation (4.7).

Problem 4.12. An unknown weight folls through a height of 10 mm oni ¢ collar rigidly
attached o the lower end of a vertical bar 500 cm long and 600 mm? in section. If the maximum
extension of the ro}d is to be 2 mm, what is the corresponding stress and magnitude of the
unknown weight ? Take E = 2.0 x 105 Nimm2, {AMIE, Winter 1984)

Sol. Given ;

Height thre

Length of thc‘a bar, L'=500 cm = 5000 mm

. Area of the bar, A = 600 mm?2

Maximum extension, 8L = 2 mm

Young’s modulus, E =20 x 10° N'mm?

gh which the weight falls, 4 = 10 mm

Let a =VInstantanegus siress produced in the bar, and
£ = Weight falling on the collar.
We know = St—re,sﬁ
Strain ‘
L - AN
Stress = E x Strain = E x % ( Strain = ““L—)

Substituting the known values, we get

o=20x10°%x 5000 = 80 N/'mm?2. . Ahs.
Value of weight falling on the collar :

Using equation (4.7), . ’

P [BAER)
q‘:z[}.*f‘ 1-+'_—'“‘*"P'L: J . . .\
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F N 2 x 600 x 2.0 x 10% x 10

' B0=—1I1

or : eoo[ +\/1+ P % 5000 }

| ' 48000 [~ 480000

or . P = 3 P

. 48000 . _ 1, 480000
o P + 5
Squaring both sides,
48000} 2x 48000 _, 480000
— +1- =1+
P P P
or 2304000000 _ 96000 = 480600 (cancelling 1 to both sides)
p? P p
o 2304000000 480000 96000 _ 576000
p» P P P _
or. . 331%9}2@@ = 576000 (cance]]mg% to both sides)
or : P=w=4000N=4kN. Ans.

576000

Problem 4.13. A bar 12 mm diameter gets stretched by 3 mm under a steady load of

8000 N. What siress would be produced in the same bar by a weight of 800 N, which fells
vertically through a distance of 8 et on to a rigid collar attached at its end ? The bar is initially

unstressed. Take F = 2.0 x 10° N/mmZ. (AMIE, Winter 1986)
Sol. Given :
Dia, of bar, ' d =12 mm
Area of bar, A= g (12)2 = 113.1 mm?
Increase in length, 8L =3 mm
Steady load, W=8000N
Falling weight, . P=800N
Vertical distance, A=8cm=80mm
Young’s medulus, E = 2.0 x 10° N/mm?
Let L = Length of the bar, and

o = Stress produced by the falling weight.
With steady load

'(Sbeady load)
Stress Area
kn E= = -
We know . Strain oL

L

[-8000]-
J Q000 L

or 2.0 x 105 = 1131/ 8

=—
[3) 1131 3
L
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7 - 20%10° x1131x3

2000 = 8482.56 mm

Now using equation (4.7), we get

_ 800 |, 2x1181x20x10°x 80
T 1181 8.0 x 84825

] N/mm?2 .

© =7.0734(1 + 1+ 53333 ) = 7.0734 x 24.1155
= 170.578 N/mm?2. Ans.

Problem 4.14. A rod 12.5 mim. in diameter is stretched 3.2 mm under a steady load

of 10 kN. What stress would be produced in the bar by a weight of 700 N, falling through
75 mm before commencing to-stretch, the rod being initially unstressed ? The value of E may
be taken as 2.1 x 10° Nimm?. : {(AMIE, Winter 1988)

Sol. Given : _ _

Dia. of rod, d = 12.5 mm

- Area of rod, A= g x 12,5 = 122,72 mm?
Inqréase in length, 6L = 3.2 mm .

Steady load, W =10 kN = 10,000 N
Falling load, P=T00N

Falling height, h =75 mm

Young’s modulus, £ = 2.1 x 105 N/mm?

Let

We k.t_low

L = Length of the rod,

¢ = Stress produced by the falling weight.

_ Stress
"~ Strain

(Steady lead J
_ Area

- (F)

10,000J

or 2.1x105=£}£_-72_

(%)

_ {10000 (L
12272 3.2
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_21x 10%-x 12272 x 3.2
- 10,000

Now using equation (4.7}, we get

_P(,, [ 2amn
CEAITN TP

700[ ‘/ 2x122.72x2.1x105x75}
1+ 41+

= 8246.7T mm

= 12272 700 x 8246.7

= 153.74 N/mm? Ans.

Problem 4.15. A vertical round steel rod 1.82 metre long is securely held at its upper
end. A weight can slide freely on the rod and its fall is arrested by a stop provided at the lower
end of the rod. When the weight falls from a height of 30 mm aboue the stop the maximum stress
recched in the rod is estimated to be 157 N/mm?. Determine the stress in the rod if the load had
been applied grodually and also the minimum stress if the load had fallen from a height of
47.5 mm.

Take E = 2.1 x 10° Nimm?2,

Sol. Given :

Length of rod, ) L =182 m=1.82x 1000 = 1820 mm

Height through which load falls, h =30 mm

Maximum stress induced in the rod, o = 157 N/mm?

Modulus of elasticity, E = 2.1 x 10° N/mm?

Let - 0, = Btress induced in the rod if the load is applied gradually and

0, = Maximum stress if the load had fallen from a height of 47.5 mm.
Strain energy stored in the rod when load falls through a height of 30 mm,

157 . <V
2x21x10

=0.05868 x V N.m
The extension of the rod is given by equation (4.6),

al
U= eV x Volume =

ﬁL:%lXL

157

© 21x10°
. Total distance through which load falls

=h+ 8L =30 + 1.36 = 31.36 mm
. Work done by the falling load = Load x Total distance

’ =P x 31.36
Equating the work done by the falling load to the strain energy stored, we get
P x31.36 =0.05868 x V

x 1820 = 1.36 mm
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P 005888

or v 3im " 0.001871

or L—0001871 (e V=AL

AL T . : o

P

or x =0.001871 x L = 0.001871 x 1820 =3.4

1st Case. If the Joad had been applied gradually, the stress induced is given by,
o = Load P
17 Area A

= 3.4 N'mm? Ans,
2nd Case. If the load had fallen from a height of 47.5 mm.

Let o, = Maximum stress induced.
Using equation (4.7}, we get
P 2AER
=1 1 =
a, A[ + +PxL} [Here o = 0.}
5
= 34|14 14 2X21x10° x475 [ P osan- 47.5)
3.4 x 1820 A

=34 (1 + 1t 3219.24)

. = 196.64 N/'mm?. Ans.
Problem 4.16. A vertical compound tie member fixed rigidly at its upper end, consists of
a steel rod 2.5 m long and 200 mm in dioameter, placed within an equally long brass tube 21 mm
in internal diameter and 30 mm external diameter. The rod and the tube are fixed together at
the ends. The compound member is then suddenly loaded in tension by a weight of 10 kN
falling through a height of 3 mm on to a flange fixed to its lower end. Calculate the maximum
stresses in steel and brass. Assume E_ = 2 x 10° Nimm?2 and E, = 1.0 x 10° N/mm?Z.

Sol. Given : |<— 30—1
Length of steel rod, L = 2.5 m = 2500 mm b 21—

D' f l d IR NNEEENEEENSNEEEN
ia. o steelrod, d =20mm Brass ? ]
- lube‘"“ﬁ/ é
Area of steel rod, A =+ x 20 ] ]
4 P=tokN [P g
= 100 7 mm? ; \ ;
Internal dia. of brass tube =21 mm @ ? \ ?
External dia. of brass tube =30 mm LN g 25m
Steel L~ )‘2\\ ?
Area of brass tube, A, = = (302 - 212) o é\ 1 3mm
4 Flange ? \ ?
= 114.75 & mam? v ] l
Length of brass tube, =250 cm | | | -
= 2500 mm

Fig. 4.5
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Weight, P=10kN=10,000 N

Height through which weight falls,
h=3mm

Young’s modulus for steel, E, = 2 x 10° N/mm?2
Young's moedulus for brass, E; = 1.0 x 105 N/mm?
Let o, = Stress in steel tube, and

O, = Btress in brass tube.
-As both the ends are fixed together,
Strain in steel rod = Strain in brass tube

ie., gs: = %Z‘ [ Strain = StrEess]
5
or : 05=0—:><E3=06xi:;§5=2xcb ()
Now volume of steel rod, V., = Area x Length
=A x L =100 =z x 2500
o = 250000 © mm?
Volume of brass tube, V, =4, x L =114.75 = x 2500 = 286875 mm?
Strain energy stored in steel rod,
2 2
U,= ;E xV, = % x 250000 7 (v 0,=20,)
= 7.854 o}
and strain energy stored in brass tube,
2
U, = -2-9];3? A =ﬁ3——1—0—5x286875n
= 4.506 ol.
Total strain energy stored in the compound bar;
U=U,+U,
= 7.854 o2 + 4.506 o2
=12.36 ol - i)
Work done by the falling weight = Weight (2 + L)
- = 10000 (3 + L) .(IiE)
As both the ends are fixed,
The strain in steel rod = Strain in brass rod
But strain in brass rod = [ Strain = Stm;ss}
. E, : : :
8L o
or ' L 1x10°
G
S = I e x 2500 (- L =2500mm)
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Substituting this value of 8L in equation (iii), we get
Work done by falling weight = 10000 (3.0 + 0.025 o) .{iv)
Now equating the work done by the falling weight to the total strain energy stored
{i.e., equating equations (iv} and (if)], we get
10000 [ 8 +0.025 0,] = 12,36 0}
or 30000 + 250 o, = 12.36 o
or 12.36 of - 250 o} — 30000 = 0
2 250 30000
or % ~1236 7 " 1236
or of — 20.226 0, - 2427.18 =0
The above equation is a quadratic equation.

20,226 + /202267 + 4 x 242718

g, = 5
_ 20.226 = /409.09 + 9708.72
B 2
_ 20.226 = 100587
- 2
= %26;1—9—@ (Neglacting — ve root)

. 60.4 N/mm?, Ans.
From equation (z), weget 0,=2x0,=2x60.4
= 120.8 N'mm?. Ans.

Problem 4.17. A vertical bar 4 metre long and of 2000 mm?Z cross-sectional area is fixed
at the upper end and has a collar at thé lower end. Determine the maximum stress induced

when a weight of : _
(i) 3000 N falls through o height of 20 cm on the collar,
(ii) 30 kN falls through a height of 2 em on the collar.
Take E = 2.0 x 105 Nimm?Z.

Sol. Given :
Length of bar, L =4 m = 4000 mm
Area of bar, A = 2000 mm?2

Volume of bar, V=4 xL = 2000 x 4000 = 8000,000 mm?
1st Case. Fallingweight, P, = 3000 N
Height, hy=20cm =200 mm
Let o, = Maximum stress induced.

In this case the falling weight is small as compared to second case. The small weight will
produce a small extension of the bar. Hence the extension in the bar will be negligible as
compared to the height of 20 em through which the weight falls.

- Using equation (4.8), we get
2EPh

AL
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2EP,
o WAL

_[2x2 %107 % 3000 x 200
G 2000 x 4000

or

. (- A =2000 mm2, I, = 4000 mm)
= 178.2 N/'mm2. Ans.

2nd Case. Falling weight, P, = 30 kN = 30000 N

Height, ) hy =2 cm =20 mm

Let 0, = Maximum stress induced.

In this case falling weight is having a large value. Hence the extension produced by a
large weight will be large. Moreover the height through which this weight falls is 2 cm only.
Hence the extension in the bar, in comparison to the height through which welght falls, is not
negligible.

Using equation (4.7), we get

£[1+ 1&%]

9= A P.L
o 21 1o 22 |

_ 800001, | 2x2000x2x 10% x 20
~ 2000 30000 x 4000

=15 (1 + 11.590) = 188.85 N/mm?. Ans.
Problem 4.18. A crane-chain whose sectional area is 6.25 cm? carries a load of 10 kN
As it is being lowered af ¢ uniform rate of 40 m per minute, the chain gets jammed sudoienly, at
which time the length of the chain unwound is 10 m. Estimate the stress induced in the chain
due to the sudden stoppage. Neglect the weight of the chain. Take E = 2.1 x 10° N/'mm?2.
(AMIE, Summer 1989}

Sel. Given :
Area, A = 6.25 cr? = 625 mm?
Load, W=10 kN = 10,000 N
Velocity, V = 40 m/min = ﬂ mfs = :32— m/s
Length of chain unwound 10m=10x 1000 mm

= 10,000 mm
Value of E =2.1 x 105 N/mm? .
Let ¢ = Stress induced in the chain due sudden stoppage.
K.E. of the crane =}—mVZ=i{Ef~)xV2 .

2 2l g



. STRENGTH OF MATERIALS

164

=3
=226.5 x 1000 N mm = 226500 N mmi )
When the chain gets jammed suddenly, the whole of the K E. of the crane is absorbed in

2
1(10000) (3] Nm=2265Nm
)

e I X
9.81

the chain. But the energy stored or absorbed in the chain

2
o
=35 xAxL
2
= x 625 x 10,000 N mm .30

2

_ o
2x2.1x10

Now K.E. of crane = Energy stored in the chain

2
\od
226500 = s x 625 x 1
or 00 27215107 % x 10,000
. 226500 x 2 x 2.1x 10°
& T 625 % 10,000

(226500 x 2 x 2.1x 10°
TV 625 x 10,000

= 123.37 N/mm?. Ans.

Problem 4.19. A cage weighing 60 kN is attached to the end of a steel wire rope. It is
lowered down a mine shaft with a constant velocity of 1 m/fs. What is the maximum stress
oroduced in the rope when its supporting drum is suddenly jammed ? The free length of the

ope at the moment of jamming is 15 m, its net cross-sectional area is 25 em2 and E
{AMIE, Winter 1990}

= 2 x 10% Nimm?®. The self-weight of the wire rope may be neglected.

Sol. Given :
Weight, W =60 kN = 60,000 N
Velocity, V=1mf
Free length, L =15m = 15,000 mm
Area, A =25 cm? = 25 x 100 mm?
Value of | E =2 %105 N/mm?
K.E. of the cage -1 mV2= E(E} x V2
- 2 2l g
1 {60,000 300G0
| 22 2 ldutubind
2"[ 9.81 )"1 Nm="ggy Nm
30000 x 1000 .
= T" N mm ...(Z)

This energy is to be absorbed (or stored) by the rope.
Let o = Maximum stress produced in the rope when its supporting drum is suddenly
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x 2600 x 15000 N mm

2 (92
5

But the maximum énergy stored
& 2
=—xAxL=
2x2x10

~Lid)

But K.E. of the cage = Energy stored in the rope

30000 x 1000 o

9.81 = ox2x105 * 2500 x 15000

- 30000 x 1000 x 2 x 2 x 10°
&= T 9.81 x 2500 x 15000

or
30000 x 1000 x 2 % 2 x 10° : ’
= = 180.61 N/mm2. An
\/ 9.81 x 2500 x 15000 N, 8.

or
4.6, EXPRESSION FOR STRAIN ENERGY STORED IN A BODY DUE TO SHEAR
B

STRESS
Fig 4.6 shows a rectangular block of length I, D D

(]
|0

height & and breadth b, fixed at the bottom face AB.
Let a shear force P is applied on the top face CD and ';'

2.

hence the top face moves a distance equal to CC|.
h

EJ)

Let © = Shear stress produced,
& = Shear strain, and
C = Modulus of rigidity.

» B

Now shear stress,
Shear force Ale

Area
- Areaoftop face =1x b)

Fig. 4.6

(
_ P
T ixb
P=txixb
. cC,
and shear strain, ¢= CB

CC,=CB. ¢
If the shear force P is applied gradually, then average load will be equal to —.

Work done by gradually applied shear force
= Average load x Distance

=§><CC1=%(rxlxb).(CB.¢)
(. p:txlxbandCCl’l:CB.qJ)
=%.1: Ixbxh. ¢ (- CB=h)
1 1 T )
=§.tx¢xlxbxh=§.tx-CTxVolumeofblock .
( ¢ = Shear strain:%]
=51><-EC—2XV (o V=Ixbxh)

jammed.
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But the work done is equal to the strain energy stored.
2

. T
Strain energy stored = 20 % v .{4.9)

Problem 4.20. The shear stress in a material af a point is given as 50 Nimm?. Deter-

mine the local strain energy per unit volume stored in the material due to shear stress. Take
C =8 x 10¢ Nimm?. -

Ll

Sol. Given :

Shear stress,
Modulus of rigidity,
Using equation (4.9),

T = 50 N/mm?
C = 8 x 10 N/mm?

50%
2x8x10%
= 0.015625 x Volume
Strain energy per unit volume

_ 0.015625 x Volume
Velume

2 ‘
- T
Strain energy =20 x Volume = x Volume

= 0.015625 N/mm?, Ans.

HIGHLIGHTS

The energy stored in a body due o straining effect is known as strain energy.

Resilience is the total strain ener i v ili .
- gy stored in a hody. Resilience is also defined as the capaci
a strained bedy for doing work on the removal of the straining force. ‘ pa ity of

The maximum strai i i ili
iy ain energy stored in a body is known as proof resilience. The proof resilience is

Proof resilience = —— x Volume

2E
where o = Stress at the elastic limit.

The? proof resilience of a body per unit volume is known as meodulus of resilience.
The maximum stress induced in a body is given by

P
0= e if the load P is applied gradually

=2 — ... if the load P is applied suddenly

Bl 2ARR) :
=73 7 | if the lo?d P is applied with impact

where A = Cross-sectional area of the body,
h = Height through which load falls,
E = Modulus of rigidity,
L = Length of the body.

The maxim es8 induced d)‘
u due to sudd ¥
m sir duced in a bo enl app]‘.led load is twice the stress induced

If the extension produced in a rod due to i i
; o impact load is very small in comparison with i
through wh1ch the load falls, then the maximum stress induced in body Ii)s gi‘.'erxll";‘::;«r fhe height

o [PE PR g
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where P = Impact load,
A = Height through which load falls.
To find the expression for the stress induced in a body either by suddenly applied load or by an
impact load, the strain energy stored in a body is equated to the work done by the load.
The energy stored in a body dus to shear stress (1) is given by '
s :
U= o xV
where V = Volume of the body, and
¢ = Modulus of rigidity.

EXERCISE 4

(A) Theoretical Questions

Define the following terms :
(i) Resilience

(iii) Impact loading, and
Define resilience, proof resilience and modulus of regilience.

Find an expression for the strain energy stored in a body when
(i) the load is applied gradually (iD) the load is applied suddenty and

(iii) the load is applied with an impact..

Prove that the maximum stress induced in a body due to suddenly applied load is twice the
stress induced when the same load is applied gradually. B
Derive an expression for the stress induced in a body due to suddenly applied load and hence
find the value of extension produced in the body.

Prove that the maximum strain energy stored in a body is given by,

(i) Strain energy
(iv) Spring.

2
o
= — 1
U 5 x Volume

where o = Stress at the elastic limit.
Explain the terms : Gradually applied 1oad, suddenly applied load, and load ‘applied with an

impact.
Prove that the stress induced in a body when the load is applied with impact is given by,

022[1_,_ 1 ZAEh}
A

"PL
where P = Load applied with impact,

A = Cross-sectional area of the body,
# = height through which load falls, L = Length of the body, and
E = Modulus of elasticity.

If the extension produced in a rod due to impact load is very small in comparison with the height
through which the load falls, prove that stress induced in the body will be given by

2EPh
o= AL
Prove that the strain energy stored in a body due to shear stress is given by,
2
Us o xV
2C
where 1 = Shear stress,
€ = Modulus of rigidity, and

V = Volume of the body.
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11,

10,
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Explain the following terms : (i) Proof stress, (i) Proof resilience, and (ii) Modulus of resilience.
{Bhavnagar University, Feb. 1992)

(B) Numerical Prdblems

A tensile load of 50 kN is gradually applied to a cireular bar of 5 ¢m diameter and 4 m long. If the

value of E = 2.0 x 10° N/mm?, determine : (i) stretch in the rod, (i) stress in the rod, and
(i) strain energy absorbed by the rod.  [Ans. (1) 0.0509 cm, (i) 25.465 N/fmm?® (iii) 12.73 Nm]
Ifin question 1, the tensile load of 50 kN is applied suddenly, determine : (i) masimum instanta-
neous stress induced, (i) instantaneous elongation in the tod, and (i) strain energy absorbed in
the rod. . [Ans. (i) 50.93 N/mm2, (if) 0.1018 em (i} 50.93 Nin]
Caiculate instantaneous stress produced in a bar 10 cm? in area and 4 m long by the sudden
application of a tensile load of unknown magnitude, if the extension of the bar due to suddenly
applied load is 1.35 min, Also determine the suddenly applied load. Take E = 2 x 10° N/mm?.
T ; {Ans. 67.5 N/mm?, 33.75 kN]
A uniform metal bar has a cross-sectional area of 6 cm® and a length of 1.4 m. If the stress at the
elastic limit is 1.5 tonne/em?, find the proof resilience of the bar. Determine also the maximum
value of an applied load, which may be suddenly applied without exceeding the elastic limit.
Calculate the value of the gradually applied load which will produced the same extension as that
produced by the suddenly applied load ahove, Take F = 2000 tonnes/ecm?.
A tension bar 6 m long is made up of twe parts, 4 metre of its length has a cross-sectional area
12.5 em* while the remaining 2 m length has a cross-sectional area of 25 em?. An axial load of
5 tonnes is gradually applied. Find the total strain energy produced in the bar and compare this
value with that obtained in a uniform bar of the same length and having the same volume when
under the same load. Take E = 2 x 106 kgflem?, [Ans. 242 kgfiem, 1.054)
A load of 200 N falls through a height of 2.5 em on to a collar rigidly attached to the lower end of
& vertical bar 2 m long and of 3 ¢m? cross-sectional area. The upper end of the vertical bar is
fixed, Determine : ({) maximum instantaneous stress induced in the vertical ba\r, (ff) maximum
instantaneous elongation, and (i} strain energy stored in the vertical rod. Take E
= 2 x 106 kegflom?. fAns. (i} 58.4 N/mm? (i) 0.0584 em (iiZ) 511.5 Nm]
The maximum instantaneous, produced by an unknown falling weight through a height of 4 cm.
in a vertical bar of length 5 m and of cross-sectional area 5 ¢m?, is 1.80 mm. Determine - (i) the
instantaneous stress induced in.the vertical bar and (ii) the values of unknown weight.
Take £ =2 x 10% kgffem?. [Ans. (@) 72 N/mm? and (i} 775.1 NJ
An unknown weight falls through a height of 20 mm on a collar rigidly attached to the lower end
of a vertical bar 5 m long and 800 mm? in section, If the maximum extension of the rod is to be
2.5 mm, what is the corresponding stress and magnitude of the unknown weight ? Take
E = 2.0 x 108 kgfiem?. {Ans. 1000 kgfiem?, 444.44 kef]
A bar 1.5 em diameter gets stretched by 2.5 mm under a steady load of 100 kgf. What stress
would be produced in the same bar by a weight of 120 kgf, which falls vertically through a
distance 5 ¢m on to a rigid collar attached at its end ? The bar iz initially unstressed. Take
E =20 x 10° kgfiem? [Ans, 1309.44 kgfem?}
A vertical round steel rod 2 m long is securely held at its upper end. A weight can slide freely on
the rod and its fall is arrested by a stop provided at the lower end of the rod. When the weight
falls from a height of 2.5 em above the stop, the maximum stress reached in the rod is estimated
to be 1450 kgffem?. Determine the stress in the rod if the load had been applied gradually and
also the magimum stress if the load had fallen from a height of 4.5. Take E = 2.0 x 10° kgflem?.
[Ans. 39.743 kgfiem?, 193.42 kpficm?2]
A vertical compound tie member fixed rigidly at its upper end, consists of a steel rod 3 m long
and 20 mpn dismeter, placed within an equaliy fong brass tube 20 mm internal diameter and
20 mm external diameter. The rod and the tube are fixed together at the ends. The compound
member is then suddenly loaded in tension by a weight of 1200 kgf falling through a height of

&
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mm an i 3 imu tresses in steel and brass.

flange fixed to its lower end. Caleulate the maximum s s

gssumoen; 0:12 x lgGS kgffem? and E, = 1.0 x 106 kgffem?. [Ans. 1173.5 kgffem?®, 586.76 kgflem®]
E

A circular rod 5 em in diameter and 3 metre long hangs vertically and has a collar securely

i i induced : ({} when a weight of 250 kef falls -
attached to the lower end. Find the maximum stress in L;)ci: " (f s ool ok

il ight of 250
gl m;glh lf(}"’a;(lgg/t;l:s};e collor, G when & welght o [Ans. (i) 1635 kgflem?, (if) 1767 kgflem?]
i : % ' 5 a
The shear stress in 2 material at a point is given as 45 N/mn;". i]{)f;tct;r'rrgn;: ;243 Eﬁ;ﬁéﬁam energy
i i . e C = L
per unit volume stored in the material due to shear stress. Ta e 365 N
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Centre of Gravity and Moment of Inertia

5.1. CENTRE OF GRAVI_TY

Centre of gravity of a body is the point through which the whole weight of the body acts.
A body is having only one centre of gravity for all

positions of the body. Tt is represented by
C.G. or simply G.

5.2. CENTROID

the same point.

5.3. CENTROID OR CENTRE OF GRAVITY OF SIMPLE PLANE FIGURES

(Z) The centre of gravity (C.G.) of a uniform

(iz) The centre of gravity
triangle meet.

(i) The centre of gravity. of a rectangle or of a parallelogram is at the point, where its

diagonal meet each other. It is also the point of intersection of the lines joining the
middle points of the opposite sides.

(iv) The centre of gravity of a circle is at its centre,

rod lies at its middle point.
of a triangle lies at the boint where the three medians® of the

5.4. CENTROID (OR CENTRE OF GRAVITY) OF AREAS OF PLANE FIGURES BY
THE METHOD OF MOMENTS )
Fig. 5.1 shows a plane figure of total area A whose centre of ¥ r
gravity is to be determined. Let this areaA is composed of 2 number Areaa,
of smail areas @y, By, By, @y oo ete. ’

A=al+a2+a3+a4+

Letx, = The distance of the C.G. of the area a, from axis OV

. Xy

%, = The distance of the C.G. of the areaa, from axis 0Y — X,

% = The distance of the C.G. of the area a4 from axis OY %

x4 = The distance of the C.G. of the areaq 4 from axis OY D

and go on. fu N s
The moments of ail small areas about the axis OV M —
= AiXy + g%+ agrs +agr, + (E) Fig 5.1

*The line connectin

g the vertex and the middie point of the opposite side of 2 triangle is known
as median of the triangle.
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Let G is the centre of gravity of the total area A whose distance from the axis OY is (Ji;i_)
f total area about OY = Ax _ .
,;Een m:nnelrel?st:f all small areas about the axis OY must be equai to the moment of total
0 I3 0 g3 X
rea abmftrt[ile same axis. Hence equating equations {f) and (i), we ge
a

G2y + Aoy + Oglg + O X, + o = AX : _
_ 09Xt g%y +Qg%a + 0%y * ... GRE
X =

ot A

= g+ Gy e -
e I? aéa;: 2the gnom;nts of the small areas about the axis OX and also the moment of
we ‘ :
total area about the axis OX, we will get

_@yyt GVt Ug¥p F Gyt 52
y= A E
where 5 = The distance of G from axis OX

i from axis OX
= The distance of C.G. of the area : o
o = The distance of C.G. of area a,, a,, o, from axis OX respect.:lvely. -
?f]ii’ 3(f;hentre of Gravity of Areas of Plane Figures by Integration Method. The
equatim.:ls (5.1} and (5.2) can be written as

a;x; 4 5o a;¥;
x= an y= o
SRS =)
here i=1,23,4,... '
" x, = Distance of C.G. of area g, from axis OY and
i is OX. ‘
. = Distance of C.G3. of area g, from axis N
Th viiue of i depends upon the nu;nber of small areas. If the small areas are large in
e

- N - - s ] 1 - .
IlumbeI mathelllat‘l(:au? Spﬂaklng lnfuute mn number ) 1] then the summa tions in the abOVe eq Ll‘ a,-
tions Cal(l be I‘eplaced b}’ lntegrahlon. Let the Sn:la].l areas are !epIBSBHtEd by dA instead of ‘a 3

then the above equations are written as :

o Jztdd (52 4)
X = jdA
.l da (5.2 B)
anﬂ : y= (dA
where Jx* dA =3Zxa;
JdA =3,
*dA = Zya, .
Also I ;* = Distance of C.G. of area dA from axis OY

i f area dA from axis OX.

y* = Distance of C.G. o N

i f a Line. The centre of gravity of a lin
id {or Centre of Grawty? of : centt °

hich fn:fbec :;zli';ltt o(r curve, is obtained by dividing the given line, into a large number o‘

whic] t

hs as shown in Fig. b.1 {a). ) ) . .

el I;E?cesntre of gravity is obtained by replacing dA by dL in equations (5.2 A) and (5.2 B)

Jx*dL -(820C)

Then these_equations becomer % = TaL
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Y
i "‘\
L
— x* dl
y* \
| B
o X
Fig. 5.1 {a)
-~ and i JJ’ *dL (5.2 D)
. aL :

. where  x* = Distance of C.G. of length dL from y-axis, and
¥* = Distance of C.G. of length dL from x-axis.
If the lines are straight, then the above equations are written as ;

Fa lel + L2x2 + L3x3 P, “_(5‘2 E)
Ly+Lg+Lg+...... '

5 Ly + Loy, + Lgya +.. '___(5.2 F
Ly+ Lo+ Lg+......

* 5.5. IMPORTANT POINTS

B {2) The axis, about which moments of areas are taken, is known as axis of reference. In
_ the above article, axis OX and OY are called axis of reforence. -
y (i£} The axis of reference, of plane figures, is generaily taken as the lowest line of the
" figure for determining ¥, and left line of the figure for caleulating z.
(zif) If the given section is symmetrical about X.X axis or ¥-Y axis, then the C.G. of the
" section will le on the axis is symmetry.

5.5.1. Centre of Gravity of Composite Bodies. The centre of gravity of composite
~ bodies or sections like T-section, I-section, L-sections ete. are obtained by splitting them into
_ rectangular components. Then squations (5.1) and (5.2} are used.

Problem 5.1. Find the centre of gravity of the T-section shown in Fig. 5.2 (a).

- Sol. The given T-section is split up into two rectangles ABCD and EFGH as shown in

* _Fig. 5.2 (b). The given T-section is symmetrical about ¥-¥ axis. Hence the C.G. of the section

will lie on this axis. The lowest line of the figure is line GF. Hence the moments of the areas are
~-taken about this line GF, which is the axis of reference in this case.

’ Let ¥ = The distance of the C.G. of the T-section from the bottera line GF

(which is axis of reference)
@, = Area of rectangle ABCD = 12 x 3 = 36 cm? ]

3
¥, = Distance of C.G. of area a, from bottom line GF = 10 + 5= 11.5 cm

a, = Atea of rectangle EFGH = 10 x 3 = 30 cm?

i F = 10 5 cm
¥, = Distance of C.G. of area a, from bottom line GF = g =5em.

K—12ﬁfm—-———>j
A

4a——12cm—H* ) : BT
sfm ’ : 3¢m
T D i C T
10 cm : 10 ¢cm
@
i
glilr
B3 om - »3 ?‘TH_
Fig. 5.2 (&) Fig. 5.2 (&)
Using equation (5.2), we have
S _ WYty 4t AeY (v A=a,+a,)
Y= A )+ g
_ 36 x 11.5{30:45 _ 414 + 150  8.545 cm. Ans.
36 + 30 66

Problem 5.2. Find the centre of gravity of the I-section shown in Fig. 5.3 (o). .
Sol. The I-section is split up into three rectangles ABCP, EFGH and éKé,Mfish ih:evznﬁ ;:
Fig. 5.3 (b). The given I-section is symmetrical abqut ?—Y axis. Hence the C.G. 1(-,) the section
will lie on this axis. The lowest line of the figure line is ML. Hence the moment o
taken about this line, which is the axis of reference.

l-10 cm » }_

A Y
=10 cm -»l _,L ) e

1Scm
iBcm ®
—ipl  [—— 2 cm
2cm
J H G K
2cm | @ |l. 2_T(_:m
M
M 20 cm ——¥ f4—— 20 cm ——»l
(b}

Fig. 5.3

Let ¥ = Distance of the C.G. of the I-section from the bottom line ML
a, = Area of rectangle ABCD =10 x 2 = 20 cm?

2
' i = S =18
y, = Distance of C.G. of rectangle ABCD from bottom line ML =2 + 15 + 9 cm
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ay = Area of rectangle EFGH =15 % 2 = 30 cm?

. 1 :
¥y = Distance of C.G. of rectangle EFGH from bottom line ML, = 9 + —; =2+7.5=95cm
@, = Area of rectangle JKLM = 20 x 2 = 40 cm?

) 2
¥3 = Distance of C.G. of rectangle JELM from bottom line M7, = 3= 10cem

Now using equation (5.2), we have ¥ = E&E‘gj’z_*’%
= a1 T Opys +a3y;
o +ag + ag
_20x18+30x9.5+40x1
B 20 + 30 + 40
. B360+285+40 685
= 90 T80
=%.611 cm. Ans,
Problem 5.3. Find the centre of gravity of the L-section shown in Fig. 54.
Sol. The given L-section is not symmetrical about any
section. Hence in this case, there will be two axis of references.
The lowest line of the figure (i.e., line GF) will be taken as axis
of reference for calculating ¥. And the left line of the L-gection

{i.e., line AG) will be taken as axis of reference for calculating
x-

(v A=a +ay+ay,)

The given L-section is split up into two rectangles ABCD
and DEFG, as shown in Fig. 5.4. :

To Find §
Let ¥ = Distance of the C.G. of the I-section from bottom
line GF
a, = Area of rectangle ABCD = 10 x 2 = 20 ¢m?
¥, = Distance of C.G. of rectangle ABCD from bottom line GF

=2+%=2+5=7cm
@, = Area of rectangle DEFG =8 x 2 =16 cm?
¥, = Distance of C.G. of rectangle DEFG from bottom line GF
= -22- =10 cm, ‘
Using equation (5.2), we have

¥ + AgYs

y= where A=g, +a,

_ MY +asy; 20x7+16x1 140+ 16

@y + iy 20+16 38
156 13
——36**3=4.33cm
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To Find X .
Let ¥ = Distance of the C.G. of the L-section from left line AG
x; = Distance of the rectangle ABCD from left line AG

= % =1.0em
x, = Distance of the rectangle DEFG from left line AG
= g =4.0 cm.
Using equation (5.1), we get

Xy T lgXg

X= where A=a, +a,

@%; +asxy 20x1+16x4

(- a,=20anda,=186)

ay +ay 20+16
20+64 84 7
= “2olog .
=3¢ 3¢ 3 -2>%8cm

Hence the C.G. of the L-section is at a distance of 4.33 cm from the bottom line GF an
2.33 em from the left line AG. Ans.

; 1 ' ; i he plane
Problem 5.4. Using the analytical method, determine the centre of gravity of t
uniform laming shown in Fig. 5.5. (U.P.Tech. University, 2001-2602 ; AMIE, Summer 1975)

Sol. Let ¥ be the distance between ¢.g. of the lamina and the bottom line AB.

Area 1 :
a, =10 x 5 =50 cm?
5 .
yl_-§=2.5cm
Area 2
a2=%xr2=gx252=9.820m2
5
y2=§=2.5cm
Area 3
ag = hat =12.5 cm®

Using the relation, S

Y1 +3oYs +@3)s

y= ay +ag + g
_50x25+9.82x2.5+12.5x6.67 em = 232.9 - 3.99 em.
- 50+9.82+125 72.32
Similarly, let X be the distance between ¢.g. of the lamina and the left line CD.
Area 1 . : .
e, = 50 cm?

10
x, =25+ 5 =75cm



" ie., by taking the area of the cut-out hole as negative.
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Area 2
a, = 9.82 cm®
4 4.25
ty=25- 1 =25 em=Lddem

3 3n
Area 3 :
oy = 12.5 em?
x;=2.65+5+2.6=10cm.
Now using the relation,

0y, + Qo + gy 50X TH+9.82x1.44 +12.6% 10

X =

@) + Qg + Oy 50 +9.82 +12.5
_sldd '
=728 T

Henee the C.G. of the uniform lamina is at a distance of 3.22 cm from the bottom line AB
and 7.11 em from the lefi line CD. Ams.,

Problem 5.5, From a rectangulor lamine ABCD
10em x 12 em a rectangular hole of 3 cm x 4 cm is cut as
shown in Fig. 5.6.

Find the c.g. of the remainder lamina.

Sol. The section shown in Fig. 5.6, is having a cut
hole. The centre of gravity of a section with a cut hole is
determined by considering the main section first as a com-
plete one, and then subtracting the area of the cut-out hole,

Let ¥ is the distance between the C.G. of the section
with a cut hole from the bottom line DC.

@, = Area of rectangle ABCD = 10 x 12 = 120 cm?

¥, = Distance of C.G. of the rectangle ABCD from bot-
tom line DC

12
=% = 6 cm
a, = Area of cut-out hole, ie., rectangle EFGH,
=4%x3=12 cm?

¥, = Distance of C.G. of cut-out hole from bottom line DC

=2+%=2+2=4cm.

Now using eguation (5.2 ) and taking the area (a,) of the cut-out hole as negative, we get

F= (alyw_l Aazyg ]* where A=a, -a,

— & + &
*¥ = X1 T B 4t for cut-hole area a, is taken — ve. Hence
ay +ap
— a —-a
¥ = 1¥i — GoYa

a —dg
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= %‘_%zﬁ.}’rg (- ve sign is taken due to cut-out hole)
1~ g

_120x6-12x4 720-48 622

=T 120~ 12 108 oeeem

To Find x ‘ .
Let ¥ = Distance between the C.G. of the section with a cut hole from the left line AD
x, = Distance of the C.G. of the rectangle ABCD from the left line AD
=— =5¢cm

2
x, = Distance of the C.G. of the cut-out hole from the left line AD

=5+1+§=7.5cm.

2
Using equation (5.1) and taking area (a,) of the cut hole as negative, we get
= _ QX — Qoky B
x__al—-az (v A=a,-a,)
_120x5-12x75 _600-90 510 —472crﬁ
T 120-12 - 108 108 7 ’

Hence the C.G. of the section with a cut hole will be at a distance of 6.22 cm from bottom
line DC and 4.72 cm from the line AD. Ans.

Problem 5.5 (A). Determine the co-ordinates

X, and Y of the centre of ¢ 100 mm diameter circular
hole cut in a thin plate so that this point will be the
centroid of the remaining shaded aree shown in Fig.
5.6 (a). (U.P. Tech. University, 2001-2002)
Sol. The given shaded area is equal to area of a

thin rectangular plate of size 200 mm x 150 mm minus
the area of a triangle of length 100 mm and height 756 mm
minus the area of circular hole of dia. 100 mm as shown
in Fig. 5.6 (b). < 200 mem .
Let A, = Area of rectangular plate

=200 x 150 = 30000 mm?
A, = Area of triangle
100 x 75

h
W—100 mm —»{

——150mm—> <

Pig. 5.6 (a)

Y4

-— 2 e
= 3750 mm - le—100 mm—+l€—100 mm—»

A, = Area of hole
- g (100%) = 2500x mm?

" The centre of hole is the centroid of the shaded
area. Hence X and Y, is the co-ordinates of the cen-
tre of the hole and also the co-ordinates of the centroid
of the shaded area.

For area A, X
200 L—zoo mm——————>»

100 ~£(-)--75mm
* =g = Amm Yy = T = Fig. 5.6 ()

le—— 150 mm —»

!
l
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For area A,,

2
x, =100+ 3 x 100 = 166.67,

2
y2=75+§x75=125mm
For area A,, xy=Xoandy, =¥,
Now using equation (5.1} and taking areas A, and A, as negative, we get
Ajxy — Agxy —~ Agxg _ 30000 x 100 - 3750 x 166.67 — 2500% x X

X = X.= =
A, — A, - A, {30000 - 3750 — 2500:)
" or X (30000 — 3750 — 2500m} = 30000 x 100 - 3750 x 166.67 — 2500x x Xo
X~ (30000 - 3750) — 2500x x X =30000 x 100 — 3750 x 166.67 — 2500 x X
or X, (30000 — 3750) = 30000 x 100 — 3750 x 166.67
(Cancelling 2500 x 7 x X, on both SIdes)
26250 X, = 300000 - 625012.5 = 2374987.5
X, = Z20N0 - 90.47 mm. Ans.
s o Ay —Agys - Agys
Similarly, F=Y,= A= Ay — Ay
_ 80000 x 75 - 3750 x 125 - 2500x x Yg
(30000 - 3750 — 2500x)
or ¥ {30000 - 3750 — 2500x) = 30000 x 75 — 3750 x 125 — 25005 x Y.
. or ¥ (30000 - 3750) = 30000 x 75 — 3750 x 125
(Cancelling 2500x x Y, on both sides)
or ’ : 26250Y . = 30000 x 75 - 3750 x 125
~= 225000 - 468750 = 1781250
S NN

Problem 5.5 (B). A semi-circular areq is
removed from the trapezoid as shoumn in Fig. 5.6 (c).
Determine the centroid of the remaining area.

(U.P. Tech. University, 2000-2001)

Sol. The given shaded area is equal to the
area of a thin rectangular plate of size 100 mm x
(150 + 100) mm plus the area of the triangle of
length 250 mm and of height (150 — 100) = 50 mm »X
minus the area of semi-circular area of diametsr le——— 150 mm—vilm
100 mm as shown in Fig. 5.6 (). '

Let A, = Avea of rectangular plate Fig. 5.6 ()

= 100 x 250 = 25000 mm?

=<

4~ 150 mrm ——]

[+—100 mm—»]

_ngf__ﬂ:x502
2
250 x B0

Ay = Area of the triangle = —g - =6250 mrm?

A, = Area of semi-circle = = 1250x mm?
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p—

X 250 :
= Distance of C.G. of area A, from y-axis = 5 = 126 mm

y, = Distance of C.G. of area A, from x-axis = 3 = 50 mm

100
= Distance of C.G. of area A, from y-axis = 150 + 5= 200 mm

4r 4 x50 200
= Distance of C.G. of area A, from x-axis = o =—5— = B

s 500
= Distance of C.G. of area A, from y-axis = 250 x 3" 3

50 350

= Distance of C.G. of area A, from x-axis = 100 + Ty

%, 3= Dlstance of C.G. of the shaded area from y and x-axis.
Now using equation (5.1) and taking area A, as negative, we get
= Ay - Agxy + Agxy

®]

- Az + A3
500
95000 x 125 — 12505 x 200 + 6350 x ——
x= 25000 — 12507 + 6250
_ 3125000 - 785398+ 1041666 _ o e 0
97323
Similarly,
' 200 350
' 00 x 50 - 12501 x —— + 6250 x
- Ay = Agyg + Agyy - 250 " I
YETUA C A, + Ay 27323
_ 1250000 - 83333+ 729166 _ (oo
27323

. Centroid of the given section = (¥, ¥) = {123.75 oom, 69.38 mm). .
5.5.2. Problems of Finding Centroid or Centre of Gravity of Areas by Integration

Method. o
Problem 5.6. Defermine the co-ordinates of the C.G. of the area OAB shown in Fig. 5.7,

if the curve OB represents the equation of e parabola, given by

y= kx2
in which OA = 6 units
and AB = 4 unifs. -
Sol. The equation of parabola is y = hx? )

First determine the value of constant &. The point B is lying on the curve and havmg co-
ordinates
x=6andy=4 .
‘ Substituting these values of equation {i), we get
' 4=kx62=36k
4

k=6

]
Ol
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Substituting the value of % in eguation (1), we get
_1l
y= 9 x . i)
or x* =9y
or x=3y (iid)

Consider a strip of height- i i
. ¥ and width dx h
Fig. 5.7. The area dA of the strip is given by o s n

dA = yx dx
The co-ordinates of the C.G. of this area dA are x and 4
. 2

= Distance of C.G. of area dA from y-axig = x
and distarice of C.G. of area dA from x-axis = 2.
2

x*=x and y*:-%

Let ¥ = Distance of C.G. of total area QAR from axis OV

¥ = Distance of C.G. of total area OAB from axis OX,
Using equation (5.2 A), we get

o

2
X
Buty = Y from equation (i7).

jﬂsxx %ixdx ) é_[:xa dx

=
6 42 T1 2
J.[) ?& '9-[03: o
[ra [5] Lo
) 061: . 4 0=Zx6
J‘xzdx [xajr Exﬁs
0 3 3
o
1 3
=ZX“]‘:‘X6=4-5- Ans,
Using equation (5.2 B), we get
ra
y:
J‘dA

where y* = Distance of C.G, of érea dA from z-axis

= % (here)
dA = ydx

CENTRE OF GRAVITY AND MOMENT-OF INERT1A 181

J’y*dA=J' %@A:_[:%xydhj%dx

2
16 5, 16 «? {
= _ == _— -y
Zjoy o 2-[0[9] &
6 .4 6 5 7°

___l x_(j'g;=l><i x4dx'=lxi'“x_
“2Jp 81 2 8lb 2 5
1.1 6 6

]
w|¥,
N

6
6 6 x” if«*] 1 6% 6
AL dA = dr=| Z—de=="—| =-x—-=—
# faa-fo _-[n 9 9[ 3]0 93 27
&
s Ara g5 w6
j da 6 810 €
27
1l 368 )
T30 T30 5° )
Problem 5.7. Determine the co-ordinales of the C.G. v4 yax
. 2 2
of the shaded area befween the parabole y = % and the Y=%
straight line y = x as shown in Fig. 5.8. D
Sol. The equations of parabola and straight line are A
2 ATy
y= T A7) X 1
y=x 30 Yy
The point 4 is lying on the straight line as well as on Ok_.x_. dx X
the given parabola. Hence both the above equations bolds Fig. 5.8

good for point A. Let the co-ordinates of point A are x, ¥.
Substituting the value of y from equation (i) in equation (), we get

2 )
1= or 4= io=x
4 x
Substituting the value of x = 4, in equation (#),
y=4

Hence the co-ordinates of point A are 4, 4.
Now divide the shaded area into large small areas each of height y and width dx as

shown in Fig. 5.8. Then area dA of the strip is given by
dA =ydx = (.‘Y]__yz}dx
¥; = Co-ordinate of point D which lies on the straight line OA
¥, = Co-ordinate of the point E which lies on the parabola OA.
The horizontal co-ordinates of the points D and E are same.

(EiE)

where
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The valu_a_as of y, and ¥, can be obtained in terms of x from equations (if) and (ij, V

- z2

yi=x and y,= vy
Substituting these values in equation (i),
2
x
dA = [x - -Z} dx .(IU)
The distance of the C.G. for the area dA from y-axis is given by,
x¥o=x
And the distance of the C.G. of the area dA from x-axis is given by,
# . X Y=Y
Y=Yyt g =yt Ty (v y=y,~y)
- 2Ys + ¥ -y A1ty
2 2
x+ ﬁ -
- 4 - %
=3 ( y1=xandy2=z—]
YO |
=3 1 )

Now let ¥ = Distance of C.G. of shaded area of Fig. 5.8 from y-axis
¥ = Distance of C.G. of shaded area of Fig. 5.8 from x-axis.
Now using equation (5.2 A), i

%
,E:f}cde where x* = x
dA =
= x——4— dx [See equation (iy}]
* I
jx dA:Dx x—T dx (v x varies from 0 to 4)
4 3 4x4
48 44 64
T3 Taxa g 16
x4 3
_64-48 16
T3 3
and - jdA= 4( —i‘:—de
o

2 2T e g
2 3x4| 2 3x4

_16_16 48-32 a6

2 3 6 6 ‘ . v
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16 -
s¥dA
I G R S
I dA 16 3 16
Now usi tion G2 B), §-12 04
ow using equation (b. X Tda
%2 .
where ¥ = [x + T] [From equation (v)]

4

1p4 o & 1 ﬁ_ 2°
_20(x 16de‘2[3 5% 16

_%ﬁ_f}gpa%]

0

2|3 5x18| 203 5
641 1 5-3
= —=-— =32 -
2[3 5} (15)
_sax 28
*15 15
and j dA = }é@ (From equation (vi)]
64

# —_—
M_ 15 _64 6 _8  Aps
5

5.5.3. Problems of Finding Centroid or Centre of Gravity of Line-Segment by
Integration Method

Problem 5.8. Determine the centre of gravity of a Ve
quadrant AB of the arc of a circle of radius R as shown in ’

arc of a circle radius R, is obtained by dividing the curved

Fig. 5.9 (a).
Sol. The centre of gravity of the line AB, which is an T
line AB into a large number of elements of lenpth dL as &

shown in Fig. 5.9 (a).
The equation of curve AB is the equation of circle of b"

. dx
radius R. -
. The equation of curve AB is given by 0 bty B X
x?+y? = R2 ——pR ——s '
Difierentiating the above equation, Fig. 5.9 (&)

2xde+2ydy=0 [+ R is constant}
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or 2y\dy =—2cdx
. -2xdx -xdx
o dy = = )
2y y .

) Cﬂnsi.der an element of length dL as shown in Fig. 5.9 (¢). The C.G. of the length dL is at
a distance x* from y-axis and y* from x-axis.

Now using equation (5.2 D) for ¥, we get

N
5= .
| L 73]
Let us express dL in terms of dx and dy.
But o dL = (fdx? + dy?
2
; —xdx { -
- a'x?‘«s-( xy ] ( From (i), dy = "de
2
2 X
= |dx® + = dx?
Y
%2 32 e x?
= 1+ —5 =dx Z
Y y
RY
= dx ;{ (- x2+y2=R2)
& }
= 7 . dx.
Bubstituting the value of dL in equation {z),
J‘y*x%.dx I yx—;idx
= = * =
J. oL J. 1L (o y*¥=y)

far  far [21@]

(+ [dL is total length of arc of one quadrant of a circle)

_RxR 2R
= —2-1':—@ =?. Ans.
4

Similarly, the value of ¥ can be calculated. Due to symmetry this value will also be

2R
4 equal to — .
: L
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2nd Method Y4

Here dL =R d8
y*=Rsin®
x¥ =R cos @

‘ =2
J' y* dL L (R sin 6) x (R d6)

= [Pra

Now ¥=

w2 /2
j R?sinode Rzr sin 6 d6
_ 0 _ 0

7t/ 2 - /2
Rdo R o d0

0
ni2
RZ[— €os B] - R[cos (-JE} -~ €08 0]

Fig. 5.9 (b)

/2 = T
R 5]
o 2
~R0O-1 2R
T - T :

2

Ans.,

Similarly,
. wl2 9 /2
Jx*dL J (ReosBYx(Rdo) R j cos0d6
=20 - 0

* Ja J’:dee R:mde

=iz T, =TT a
A o)

Probiem 5.9. Determine the cenire of gravity of the area of the circular sector OAB of
radius R and central angle o as shown in Fig. 5.10. '

Sol. The given area is symmetrical about x-axis. Hence
the C.G. of the area will lie on x-axis. This means ¥ =.0. To
find %, the moment of small areas are to be taken along y-axis.
Divide the area OAR into & large number of triangular ele-
ments each of altitude R and base Rd9 as shown in Fig. 5.10.

Such triangular element is shown by OCD in which altitude
OC = R and base CD = Rda. The area dA of this triangular

element is given by,

b7
R [sin G:|
o _ R[sin90°-sin0°] R 2R

OCxCD RxRdo
2 2

R% do

2

dA =
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The C.G. of this triangular element is at @
where OG:%xOC:ng

3
The distance of C.G. of area d4 from y-axis is given by,

x*:OchosB:%RxcosB
Now using equation (5.2 A),

a/2 (9 R de
j'x*dA 2-[0 (chosﬂ}[ 3 J

¥=

/2 pp2
[ aa o[ E g
o 2
/
RY a2 6.de [sin e]a ’
3 Jo _2E o
2 12 00/ 2
E... “ do 3 [e:[
2 J o
sin (EJ |
2R 2 4R ., («a .
=3 [E‘_) —gsm(zj. Ans.
2
The area OAB is symmetrical about the x-axis, hence
¥ = 0. Ans.

For a semi-circle, o = = = 180°, hence

_ 4R [n:)
=—sin|=

3a 2

4R . [ISDJ 4R
= —sin|{ —=|="—,

Ixx 2 3

Problem 5.10. Determine the centre of gravity of a semi-circle of radius R as showr in
Fig. 5.10 (a).

Sol. This problem can also be solved by the
method given in problem 5.9. The following other
methods can also be used. Due to symmetry, ¥ = 0.
The area AOB is symmetrical about the Y-axis, hence
X = 0. The value of 7 is dbtained by taking the mo-
ments of small aveas and total area about x-axis,

1. Considering the strip parallel to Y-axis
Arvea of strip, dA = v, dx . -
The distance of the C.G. of the area dA from

Pk hd
x-axis is equal to 5

Moment of area dA about x-axig

- =dA. % : Fig. 5.10 (a)

: 87
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hd
== _.dA
2
24 C . (~+ dA =y.dx)
=5 ydx |
AP
2 - ’ a
Moment of total area A about x-axis is obtained by integrating the above eguatmn.
. Moment of total area A about x-axis
2
- L de
i
=" ﬁdx (. x varies from - B to R)
“lr2
But equation of semi-circle is
x% 4+ y2 = R2 or y:=R2-x%
Substituting this value of ¥ in the above equation, we get
Moment of total area A about x-axis
R 2 _ .2
j (R E: ) e
-R 2
- 3 R
- 1 B2 x- x_]
2 3 x
3 R}ﬂ
| L i I LY S P H
2] 3
__1_— Ra_}f}_ l_ps R )}
T2 3 3
1{ 2R s R°Y 1|2r® [ 2R%)|
=33 )i s 3
1f2R® oR'] 1 4R’ 2R o
"33 8 |T2 3 3
Let ¥ = Distance of C.G. of the total area of semi-circlg from x-axis.
2
The total area of semi-circle is also equal to
. Moment of this total area about x-axis
| _5, R (i)
} y 2 I3 - | X
Equating the two values given by equations (7) and (if}, we get
xR* 2R

YXT3T T g
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a
2R X_2_2 :ﬂ . Ans.
_ 3 R 3n
Hence the location of C.G. of semi-circle is [ %J Ans.
o

2. Considering the strip parallel to x-axis
Area of strip, dA = 2x . dy

The distance of the C.G. of this area from x-axis is ¥y
<. Moment of this area about x-axis

=y dA _L
=Y. 2xdy e
= 2ty dy B x—f T
But, we know x2 + ¥i= R"'
~RE_

B 5} -A‘\Z

or €= R -yt Fig. 5.10 (b)
Substltutmg the above value of x in equation (i), we get
Moment of area dA about x-axis,
C=2JR%_y? . y.dy
_ Moment of total area A about x-axis will be obtained by integrating the above equation
from OtoR,
*. Moment of area A about x-axis
= fo 2JR? _ 42 .ydy (" y varies from O to )
R 2 _ 23278
——J‘ VR? - y% (- 2y)dy = - (B -y
0 3/2 A
~ 210y 2R - i)
3 =3 i
Also the moment of total area A ahout x-axis = 4 x ¥y ”
R?
~-where A = Total area of semi-circle = 5
¥ = Distance of C.G. of area A from x-axis
2
Moment of total area A about x-axis = xy ' (gt}
Equating the two values given by equations (if) and (i),
=R® _ 9R?
HY = ——
2 3
. 3
r -2 R
3n
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Problem 5.11. To determine the centre of
gravity of the area shown in Fig. 5.10 (c) given by
2 2

a
Sol. Consider a small strip of thickness dx

parallel toy-axis at a distance of x from the y-axis.
Avea of the strip, dA = y.dx

The C.G. of area dA is at a distance % from
. x-axis.

Moment of the area dA about x-axis

Let us substitute the value of ¥% in terms of .

2
The given equationis *_, ¥ =1

a? b
b
32 1 2?2 a¥-x "
o B2 a? a®
. B2
2_ U0 2 o
or yi= o3 (a* - x%)

Substituting the value of ¥? in equation (i), we get
Moment of total area about x-axis

o L2 B2 %2 -

=%JD %(az—xz)dx=§a7[azx———:|
a

52 [ aa] 22 2a® ab?

ad - ar =T

Za
The total area A of the given figure is given by

A=J dA=I y.dx
2
i b* b (2 i
From equation (if), y=[—§(a2—x2)} =E(a %)
a

: . b 9 am
Now equation (iv)is, A= ID ;(a -x°)"" Ldx

Fig. 5.10 {c)

_J
=5 dA
= % . ydx (v dA =y.dx)
3
=2 dx
2 ’ -
. Moment of the total area about x-axis
= r ﬁ L dx (-~ x varies from O to a) ...
0 2

(@

.. {id)

- (iiE)

.(iv)

LA
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22 *_EM;Z
[ (a® ) }_a['ti:l

.ab * :
T ( fo a? -x% de= “_Z-J w(0i)

*

4

Let ¥ = the distance of C.G. of the total area A from x-axis.
Then moment of total area A about x-axis
=Ax ¥y
rab  _

=7 - y . (i)

The equations (iii} and (vii) give the moment of total area about x-axis. Hente equating
these equations, we get

mab o _ab”
2 773
_ ab® 4  4b
Yys—.—F—=— . S.
3 mab 3n

To find X, take the moment of small area d4 about y-axis.
The C.G. of area dA is at a distance of x from y-axis.
Moment of area dA about y-axis =x.d4 .
=x.y.dx (~ dA =ydx)
Moment of total area A about y-axis is obtained by mtegratmn "
Now moment of total area A about y-axis

= J‘ x.y.dx (+  x varies from O to a)

—I x. —-(a -x2V2 gy [ y= P—(az ~ 222 from equation (v‘)]

=""I x.(a2 W2 b J' (- 2) x(a? —x)V? g
alte o

{(-2)
b [@2-x232] _p o?
__b |- b ay_ D"
“20 [ 82 |, 8z 07" 3 -~ wiid)
Also the moment of total area 4 about y-axis
= A b4 f .(wc)

where x = Dist_ance of C.G. of total area A from y-axis.
Equating the twe values given by equations (viii) and Gx),

Axx:g?——
3

*Please refer some standard TextBook of Mathematics,

a . ’ a
I 2%~ x® dr = [Ex‘hﬁ RN sin1 2] o +—1a2 gin™! (1)
e} 2 2 aly 2

1 2(:‘1:] et
e R o
2 \2 4
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x= b;“z - ba® [ A= %b sce equation (vi)]

x= fl-_(._t and y = éé
3

5.54. Ceni_:roid of Velume. Centroid of dv
volume is the point at which the total volume —Y
of a body is assumed to be concentrated. The G
vohnme is having three dimensions f.e., length,
width and thickness. Hence volume is meas- I
ured in [length]. The centroid {i.e., or centre of z z
gravity] of a volume is obtained by dividing the Q
given volume into a large number of small vol-
umes as shown in Fig. 5.10 (d). Similar method
was used for finding the centroid of an area in
which case the given area was divided into large  x
number of small areas. The centroid of the vol-
ume is hence obtained by replacing dA by dv in
equations (5.24) and (5.28).

Then these equations becomes as

Fig. 5.10 (d)

- Ix* dv ' (5.3 A)

[ a

) _
and I yrdv (53 B)

jdu

As volume is having three dimensions, hence third equation is written as

j 2 dv ' (5.3 C)

| av

where  x* = Distance of C.C. of small volume dv from y-2 plane (i.e., from axis oy}
) ¥* = Distance of C.G. of small volume dv from x-z plane (i.e., from axis ox)
2% = Distance of C.G. of small volume dv from x-y plane

Z=

and x, ¥, # = Location of centroid of total velume.

Note. If a body has a plane of symmetry, the centre of gravity lies in that plane. If it has two
planes of symmetry, the line of intersection of the two planes gives the position of centre of gravity. If it
has three planes of symmetry, the point of intersection of the three planes gives the position of centre of
gravity. )
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Problem 5.12. A right circular cone of redius R of the base and of height h is placed as
shown in Fig. 5.10 (e). Find the location of the centroid of the volume of the cone.

Sol. Given :
Radius or cone = R
Height of cone = A

e— h ——

ke

Fig. 5.10 (e)
In the Fig. 5.10 (e}, the axis of the cone is along x-axis. The centroid will be at the x-axis.
Hence, ¥y =0and 7 =0.
To find 5, consider a small volume dv. For this, take a thin circular plate at a distance

x from Q. Let the thickness of the plate is dx as shown in figure and radius of the plate is . The™
centroid of the plate is at a distance ‘=’ from 0. Hence x* = x.
Now volume of the thin plate, .
dv = r? x dx L)
Let us find the value of r in terms of x.
From similar triangles, we get
R_h

r X

~ Rxx
or r= A

Substituting the value of r in equation (i), we get

dv=x (R x "]2 dx )
n . :

Now x is given by equation (5.3A) as
x*dv fxdv i
e R

[ _J'_dz;
=Ix.m(R;x)2,dx { dU=n[§"_x

= Here x* = x]

2
> } dx from equation (i)
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2 ok
2 ch
nx %-{0 xtdx
[~- Limits of integration are w.r.t. x. And x varies from O to k]
ho
4

[x }
4
$h . Ans.

il

x¥ T4

3
0

. Problem 5.13. A hemisphere of radius R is placed as shown in Fig. 5.10 (f). The axis of
symmetry-is along z-axis. Find the centroid of the hemisphere.
Sol. The hemisphere is placed as shown in 7
Fig. 5.10 (). The axis of symmetry is taken as Z-axis.
The centroid will be at the Z-axis. Hence ¥ = 0 and
y=0.
Radius of hemisphere = E. ¥
To find 7, consider a small volume dv of the
hemisphere. For this, take a thin circular plate at a R
height z and thickness dz. Let %’ is the radius of this l
plate. o
Then dv = Area of section x thickness .
= my? x dz (8
{*r Area of any section for sphere #¥X
or hemisphere = nr?, Here r=y)

dz

<¥

. Fig. 5.10 ()
The centre of gravity of the small volume is at

a distance z from O. :
Let us now, find the value of y in terms of z.
From Fig. 5.10 {f), we have
R2= 22 4+ 52
or y%= R2_ 2
Substituting the value of ¥2 in equation (i), we get
dv =mfR?2 - 2" x dz (i)
As in this case, the axis of symmetry is Z-axis. Hence ¥ and ¥ are zero. The distance of
the centroid from x-y plahe is given by equation (5.3C) as

s_ .J'z* dv
Idu

where z* = Distance of centroid of the small volume dv from x-y plane.

=z[In the present case}
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w=jzdv
I3

J'z x U R? - 22) dz
=4 e [+ From equation (i), dv = n(R2 ~ 2%) x dz]
_[ wR? - 22) dz

jR MR 2 - 2% dz

j n(R® - 2%) dz
[The limits of integration are according to dz. Here z varies from O to R}

JBZ 2T [Rxr R (R
2 4 o 2 4 4 3

- = = < =—R. A.ns...
3 R . R3 2 a 8
[R2z_?} -I:REXR—?] §R
a

5.6. AREA MOMENT OF INERTIA

Consider a think lamina of area A as shown in Fig. 5.11. AY Lamina of
Let x = Distance of the C.G. of area A from the axis OY. argah
y = Distance of the C.G. of area A from the axis OX.
Then moment of area about the axis OY
= Area x perpendicular distance of C.G. of area from :
axis OY : ' vy .
=Ax w(8.3D) - x — 'L
Equation (5.3D) is known as first moment of area about o

the axis OY. This first moment of area is used to determine the
centre of gravity of the area.

If the moment of area given by equation (5.3D) is again multiplied by the perpendicular
distance between the C.G. of the area and axis OY (i.e., distancex), then the quantity (Ax). x = Ax?
is known as moment of the moment of area or second moment of area or area moment of inertia
about the axis OY. This second moment of area is used in the study of mechanies of fluids and
mechanies of solids.

Similarly, the moment of area (or first moment of area) about the axis OX = Ay.

v

Fig:5.11

And second moment of area (or area moment of inertia) about the axis OX = (Ay) .y = Ay2. -

If, instead of area, the mass (m) of the body is taken into consideration then the second
moment is known as second moment of mass. This second moment of mass is also known as
mass morment of inertia.

Hence moment of inertia when mass is taken into consideration about the axis OY = mx?
and about the axis OX = my®.

Hence the product of the area (or mass) and the square of the distance of the centre of
gravity of the area (or mass) from an axis is known as moment of inertia of the area (or mass)
about that axis. Moment of inertia is represented by I. Hence moment of inertia about the axis

" OX is represented by I, whereas about the axis OY by I
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The product of the area {or mass) and the square of the distance of the centre of gravity .
of the area ‘or mass) from an axis perpendicular to the plane of the area is known as polar
moment of inertia and is represented by J.

Consider 2 plane area which is split up into small areas a,, a,, &y, ... etc. Let the C.G. of
the small areas from a given axis be at a distance of r, ry, ry, ... ete. as shown in Fig. 5.12.

Then the moment of inertia of the plane area about the given axis is given by

I=ar®+agy? +agry® + .. ' ‘ (5.4)
or I=Zar? ..(5.5)

7. RADIUS OF GYRATION

Radius of gyration of a body (or a given lamina) about an axis Given
is a distance such that its square multiplied by the area gives mo- axis
ment of inertia of the area about the given axis.

For the Fig. 5.12, the moment of inertia about the given axis is
given by equation (5.4) as

I=o;r?+ag,?+ aar32 + o ()

Let the whole mass (or area) of the body is concentrated ata
distance k from the axis of reference, then the moment of inertia of
the whole area about the given axis will be equal to A%2.

If AR? = I, then % is known as radius of gyration about the
given axis.

pe |1 (5.6)
A

5.8. THEOREM OF THE PERPENDICULAR AXIS

Theorem of the perpendicular axis states that if I, and Iy, be the moment of inertia of
a plane section about two mutually perpendlcular axis X- X and Y Y in the plane of the section,
then the moment of inertia of the section I,, about the axis Z-Z, parpendicular to the plane
and passing through the intersection of X-. X and Y-Y is given by

Iz =T+ Iy
The moment of inertia I is also known as polar moment of inertia.
Proof. A plane section of areaA and lying in plane x-y is 7
shown. in Fig. 5.18. Let OX and OY be the two mutually per-
pendicular axes, and OZ be the perpendicular axis. Consider a
small area dA.
Let x = Distance of dA from the axis OY
y = Distance of dA from axis OX
r = Distance of dA from axis OF
Then 72 = x2 + y2
Now moment of inertia of dA about x-axis Fig. 5.13
= dA x (Distance of dA from x-axis)?
 =dA xy%

Plane
section
of area A
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Moment of inertia-of total area A about x-axis, Iy = EdAy2.
Similarly, moment of inertia of total area A about y-axis, I, = ZdAx?
and moment of inertia of total area A about z-axis, I TdAr?
= ZdA [x2 + ¥ (v rP=ax?iy?)
= TdA x% + TdA v2
=Ly + Iy
or - Iy =l + Iy ‘ -(5.7)

The above equaticn shows that the moment of inexrtia of an area about an axis at origin
normal to x, ¥ plane is the sum of moments of inertia about the corresponding x and y-axis.

In equation (5.7), I;; is known as Polar Moment of Inertia.

5.9. THEOREM OF PARALLEL AXIS

It states that if the moment of inertia of a plane area about an

axis in the plane of area through the C.G. of the plane area be repre-

- sented by I,, then the moment of the inertia of the given plane area

ahout a parallel axis AB in the plane of area at a distance A from the
C.G. of the area is given by

Ip=I.+AR%
where I, = Moment of inertia of the given area about AB
I, = Moment of inertia of the given area about C.G.
A = Area of the section '
h = Distance between the C.G. of the section and the axis AB.
Proof. A lamina of plane area A is shown in Fig. 5.14.
Let X-X = The axis in the plane of area A and passing through the C.G. of the area.
AB = The axis in the plane of area A and parallel to axis X-X. '
h = Distance between AB and X-X.
Consider a strip parallel to X-X axis at a distance y from the X-X axis.
Let the area of the strip = dA
Moment of inertia of area dA about X-X axis = dAy2
Moment of inertia of the total area about X-X axis,
Iy or Ig=3dAy? i)
Moment of inertia of the area dA about AB
=dACh + yP?
_ = dA[A2? + ¥? + 2hy]. -
. Moment of inertia of the total area A about AB,
I, = ZdA[R® + ¥% + 2hy]
= TdAh? + ZdAy® + ZdA 2hy.
. As h or h? is constant and hence they can be taken outside the sumimation sign. Hence
the above equation becomes ’ '
I,z = hZdA + ZdAy? + 2hZdAy. _
But 3dA = A. Also from equation (i), Zd4y? = I,. Substituting these values in the above
equation, we get

Fig. 5.14

Ip=h% A+I,+2h ZdAy. (7))
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But dA . y represents the moment of area of strip about X-X axis. And ZdAy i-epresents
the moments of the total area about X-X axis. But the moments of the total area about X.X axis

- is equal to the product of total area (A) and the distance of the C.G. of the total area from X-X
-axis. As-the distance of the C.G. of the total area from X-X axis is zero, hence ZdAy will be

equal to zero. ‘ _
Substituting this value in equation (if}, we get
‘ Lp=h2 A+l +0

Cor L=Ig+ AR _ _ (5.8}

_ Thus if the moment of inertia of an area with respect fo an axis in the plane of area
{and passing through the C.G. of the area) is known, the moment of inertia with respect to any
parallel axis in the plane may be determined by using the above equation.

5.10. DETERMINATION OF AREA MOMENT OF INERTIA

. The area moment of inertia of the fellowing sections will be determined by the method

of integration : - R

1. Moment of inertia of a rectangular section,

2. Moment of inertia of a circular section,

3. Moment of inertia of a triangular section,

4. Moment of inertia of a uniform thin rod.

5.10.1, Moment of Inertia of a Rectangular Section

1st Case. Moment of inertia of the rectangular section about the X-X axis pass-
ing through the C.G. of the section.

' Fig. 5.15 shows a rectangular section ABCD having width = b and depth = d. Let X-X is
the horizontal axis passing through the C.G. of the rectangular section. We want to deter-
mined the moment of inertia of the rectangular section about X-X axis. The moment of inertia
of the given section about X-X axis is represent by Iy

Consider a rectangular elementary strip of thickness dy ‘at P

a distance ¥ from the X-X axis as shown in Fig. 5.15.° = A B T
Area of thestrip =5 . dy. ¢ d
. . cy LTI T -
‘ Moment of inertia of the area of the strip about X-X axis = ? ' 2
Area of strip x ¥% ¥ *

: = (b . dy) x y% = by%dy. X X
Moment of inertia of the whole section will be obtained by ng~

; .. d,  d

integrating the above equation between the limits — 2 to 3 x L : }_

1% iz Fig. 5.15
= 2y — 2
Iax = .[—dfz byldy="b Lﬂz ydy _ _
(-+ b is constant and can be taken outside the integral sign)

<[5]-3{ET-(4)]

d/2

A5 )5E ]



198 " STRENGTH OF MATERIALS

b 2d° b : | (5.9)

Similarly, the moment of inertia of the rectangular section about ¥-¥ axis passing through
the C.G. of the section is given by

3 - :
Iyy= ‘%; (5.10)
Refer to Fig. 5.15 (g} v
Area of strip, dA=d xdx S Lol B
M.O.L. of strip above ¥-Y axis = dA x 12 ‘ '
= (d x dx) x x2 (v dAd=d.dv d Z
=dxx®xdx : '
/
37 b/2
Iyyz_l.wzdxxzxdx=d{§—} 7z
-b/2 3 s 7
di(by ( bY? ® b [
=§[(§J '('EJJ NI R
Y
d ba 63 d b3 dbs . Fig.'5.l5 (a)
“3E T8 |Ts e T

2nd Case. Moment of inertia of the rectangular section about a line passing
through the base. ’ :

Fig. 5.16 shows a rectangular section ABCD having width = &
and depth = d. We want to find the moment of inertia of the rectangu-
lar section about the line CD, which is the base of the rectangular
section.

Censider a rectangular elementary strip of thickness dy at a
distance y from the line CD as shown in Fig. 5.16.

Area of strip = b . dy.
Moment of inertia of the area of strip about the line CD LTI
' = Area of strip . ¥* . .
=b.dy .y =by?dy. D
~ Moment of inertia of the whole section about the line CD is ob- "Fig. 5.16
tained by integrating the above equation between the limits o to d.
Moment of inertia of the whole section about the line CD.

= -J':_ byidy = b J.: ¥y

374 3
bd :
=pid_| 8¢
f: 3 :L 3 . {5.11)

3rd Case. Moment of inertia of a hollow rectangular section.

Fig. 5.17 shows a hollow rectangular section in which ABCD is th i i
EFGH is the cut-out section; ' * i the main secfion end

e—p—» .
A B

dy

Ol
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 elementary circular ring of radius  and thickness ‘dr’. Area of eir-

The moment of inertia of the main section ABCD ahoutX-X axis is given by equation (5.7),

_ud JP—
o Tmo T
where b = Width of main section g r F
d = Depth. : /4— b—*
The moment of inertia of the cut-out section EFGH about x| / """" F1Ax
X-X axis l1
3 | 7
-bd LA

12
where b, = Width of the cut-out section, and
d, = Depth of the cut-out section.
Then moment of inertia of hollow rectangular section about X-X axis,
Iy = Moment of inertia of rectangle ABCD about X-X axis—moment of inertia of rectangle
EFGH about X-X axis . t -
bd®  bd)?

12 12

. 5.10.2, Moment of Inertia of a Circular Section. Fig. 5.18
shows a circular section of radius R with O as centre. Consider an

cular ring
=2nr. dr. . _ .
In this case first find the moment of inertia of the circular
section about an axis passing through O and perpendicular to the
plane of the paper. This moment of inertia is also known as polar
moment of inertia. Let this axis be Z-Z. (Axis Z-Z is not shown in
Fig. 5.18). Then from the theorem of perpendicular axis, the moment of inertia about X-X axis
or Y-Y axis is obtained.
Moment of inertia of the circular ring about an axis passing through O and perpendicu-
lar to the plane of the paper
= (Area of ring) x (radius of ring from O
=@ . dr) . r?
= 2nridr AD)
Moment of inertia of the whole circular section is obtained by integrating equation (i)
between the limit O to B. ‘ _
Moment of inertia of the whole section about an axis passing through O and perpen-
dicular to the plane of paper is given as :

Iy,= J.OR 2nr? dr = 21 JGR ridr

4R 4 4
con|Te| con Bl T
4 o 4
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. D
B =
ut B

where D = Diameter of the circular section

x (DY apt
=T, |2 = . ..{5.
2z 2"(2) 32 612

: 4
or  Polar moment of inertia = %

But from the theorem of perpendicular axis given by equation (5.7), we have T 2z =Ly + Iy
But due to symmetry, Iy = Iy

I
4 4
LA 1 _aD (5.13)
32 "2 64 . :

Moment of Inertia of a hollow cireular section
Fig. 5.19 shows a hollow circular section.
Let D = Diameter of outer circle, and
d = Diameter of cut-out circle.
Then from equation (5.13), the moment of inertia of the cuter

circle ahout X-X axis = EE— D,

And moment of inertia of the cut-out circle about X-X axis

=1 g4 ¥
534 Fig. 5.19

Moment of inertia of the hollow circular section, about X-X axis,

I = Moment of inertia of outer circle—moment of inertia of cut-out cirele

=T dt== (D4 - d4]
64 64 64

Similatly, I, = 6_“1 [D* - d4).

5.10.3. Moment of Inertia of a Triangular Section

1st Case. Moment of inertia of a triangular section about its base.

Fig. 5.20 shows a triangular section ABC of base
width = b and height = . Consider a small strip of thickness
dy at a distance y from the vertex A.

Area of the strip, = DE . dy D)

The distance DE in terms of y, b and k is obtained from
two similar triangles ADE and ABC as

DE »y

BC &

DE=BC.Z
A

Fig. 5.20
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b (- BC=5)
. TR _
Substituting this value of DE in equation (i), we get
by
Area of strip . =5 dy.

Distance of the strip from the bé_alse =(h—¥)
Moment of ihertia of the strip about the base .
= Area of strip x (Distance of strip from base)
by _ 2=b_y(hm 2 . dy. .
=5 dy . (A-yF== ¥

The moment of inertia of the whole triangular section ahout the base Iz} is obtained by
ihtegratihg the above equation between the limits O to h. .

h
Ino= |, 2151 dy

0 h
S ym-yrdy
hJo

(-~ band h are congtants and can be taken outside the integral sign}

e o

i B (Pt et 2kt
J'Oy(h2+y2—2hy)dy_h O+ 50— 2k dy

+ X

h
[yzhz v L"ﬂ]

+
ni{ 2
b ., 6+3—8] oh? L i
b o[l -
_bh® (5.14)
T 12

2nd Calase. Moment of inertia of the triangular section about an axis passing
through the C.G. and parallel to the b_ase. .

Consider a triangular section of base = b and height = &
as shown in Fig. 5.21. Let X-X is the axis passing through the
C.G. of the triangular section and parallel to the base. .

The distance between the C.G. of the triangular section

h
and base AB = 3

Now from the theorem of parallel axis, given by equa-
tion (5.8), we have
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Moment of inertia about
BC = Moment of inertia about C.G. + Area x (Distance between X-X and BC)?

. B
or Ipe=I+Ax (E]

h 2
Ip=Ige-Ax (EJ

bh°  (bxhY (RY bh® bxh
=73 —[ 2 )(EJ | . IBC=—1-2— and Area = 5
_br® bR eR*(3-2)
12 18 36
bh®
| Y _ ...(5.15)
Problem 5.13 (A). Determine the moment of iner- A
tia of the section about an axis passing through the base
BC of a triangular section shown in Fig. 5.21 (a). :
(U.P. Tech. University, 2002-2003) 90 mm

Sel. Given :
Base, b = 100 mm ; height, 2 = 90 mm.

Moment of inertia of a triangular section about an B ‘ »
axis passing through the base is given by equation (5.14) as 100 mm

G

. éﬁ Fig. 5.21 (&)
BCT g
3
= “100;;90 = 6.075 x 10° mm?, Ans.

5.10.4. Moment of Inertia of a Uniform Thin Rod. Y
Consider a uniform thin rod AB of length L as shown in dx
Fig. 5.22. X i e

Let m = Mass per unit length of rod, and A B

M = Total mass of the rod <—L;>|
=mxL : (D)
Suppose it is rﬂqulred to ﬁnd the moment of inertia of Fig. 5.22

the rod about the axis Y-¥. Consider a strip of length dx ata
distance x from the axis Y-V,
Mass of the strip = Length of stnp x Mass per unit length
=dy.m or m.de. .
Moment of inertia of the strip about Y-¥ axis
' = Mass of strip x x2
={(m.dx).x?
= max?dx.
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Moment of inertia of the whole rod (Iyy) will be obtained by 1nteg‘ratmg the above equa-
txon between the limits O to L.

Iyy = J.OmeZ dr=m .LLxg dx (~ m is constant)
= m _ -
3 o 3
3 a2 .
= mLa. L, ﬂg‘ [~ m.L=M from equation (i)]

5.10.5. Moment of Inertia of Area Under a Curve of given Equation. Fig. 5.22 {a)
shows an area under a curve whose equation is parabolic and is given by
x = kyE Y4
m which y=5b when x=ga
" Suppose it is required to find the moment of
inertia of this area about y-axis. Consider a strip of
thickness dx at a distance x from y-axis.

The area of strip, dA =y dx D)

.,
)

CRR R
SESS

*+

B b
Let us substitute the value of y in terms ofx in EEE
the above equation. The equation of curve is EEE
x = ky? gD §§3
First find the value of %, o > Ly
Wh b, Hence above equation a | X
en y = b, x = a. Henc . x
becomes
a = kb? 5.22 (a)
a
or k= b—2
Substituting the value of ‘¢’ in equation (if), we get
=" 32 or 42= i3
p% a
vz
b2x b ( i
=|— =—/x . {iid)
%) % | -
Substituting this value of y in equation (i), we get '
b :
dA = ——.x .dx
Ja

The moment of inertia of elemental area (dA) about y-axis

. . b
=2_ =x2.—-—, xdx
Fdh=atg
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Moment of inertia.of the total area about y-axis is obtained by integrating the above

equation between the Iimi ) L a , 20 16x4 1 64 '
en‘ g imits O to a. (- . varies from O to a) Using the relation, ¥ = a’zl :Zzy?‘ = )(2{9) : 16 2 8(;; = % =6.777 cm.
‘ 1+

Hence the C.G. of the given section lies at a distance of 6.777 cm from GF. Now find the
momendt of inertia of the T-section.

Now, Let I = Moment of inertia of rectangle (1) about the horizontal axis and passing
through its C.G. :
Moment of inertia of rectangle (2) about the horizontal axis and passing
through the C.G. of the rectangle (2)

A, = The distance between the C.G. of the given section and the C.G. of the

rectangle (1)
=y, ~ 7 =9.0-6.777 =2.223 cm

b |72 ] 2 b 2
o =, — 2 _ & 2
_a'[7/2 7 ,_a.a _7ba. Ans.
To find the moment of inertia of the gi i wnl
‘ ¢ given area about x-axis, the element shi i
Fig. 5.22 (a) can be considered to be a rectangle of thickness dx. The moment of inertiaoof thllrsl

elemient about x-axis is equa] to the moment of inertia of the rectangle about its base.
Moment. of inertia of the element about x-axis’

Iy

2

It

3 G

dx. y? ' gt : hy= The distance between the C.G. of the given section and the C.G. of the rec-
=3 : [ it is — whereb=dxand d = y] Eangle_ (2)
The moment of ihertia of the given area ab is 1 i ' 1 - =¥~y = 6777 - 4.0 = 2777 cm.
’ t x- i : I
above equation between ‘the limits O f; a. about x-axis s obtained by integrating the 4 - ' 10x2° 4
i ) s R i Now Ig, = 5 = 6.667 cm’
S St dx. ) : i
| Ixx'_'-L 3y “J.ay_-dx ' : £ : 2x8?
v 3 : : : I, = —; =86.333 em*.
{i Ax ] dx : From the theorem of parallel axes, the moment of inertia of the rectangle (1) about the
= Iu L . b Jx g . horizontal axis passing through the C.G. of the given section
(i . 3 ' s ¥= J—; x from equation (ui)] =1Ig + a1h12 = 6.667 + 20 x (2.223)
i N
- [ dxa o [ﬁ | - 6.667 + 98.834 = 105.501 om*.
3a™ o 8a%% | -5/2 R 1 Similarly, the moment of inertia of the rectangle (2) about the horizontal axis passing
B2 ., 2, Py through the C.G. of the given section .
=3 aafz- B a™c = G b la= T ab®  Ans. . =1Ig + a2h22 = 85.333 + 16 x (2.777)2
Problem 5.14. Fig. 5.23 shows a T-section of dimensions : = 85.333 + 123.387 = 208.72 em™.
10 x 10 x 2 cm. Determine the moment of inertic of the section A 0 om——>| i - . The moment of inertia of the given section about the horizontal axis passing through

the C.G. of the given section is,
I =105.501 + 208.72 = 314.221 cm*. Ans.

XX
The moment of inertia of the given section about the vertical axis passing through the

C.G. of the given section is,

about the horizontal and vertical axes j
¢ ‘ . , passing through the cen-
tre of gravity of the section. Also find the polar moment of inertia
of the given T-section. :
) Sol. F:irst of all, find the location of centre of gravity of the
given T-section. The given section is symmetrical about the axis
Y-Y and hence the C.G. of the section will lie on Y.V axis. The

2x10° 8x2?
I = ——— %
» 12 12

given section is split up into two rectangles ARCD and EF |
calculating the C.G. of the section. and EFGH for =166:67+5.33 =172 cm%. Ans. i
o L G o . . !
‘ Let ¥ = Distance of the C.G. of tlie section from the bot- 2 cm:— ’ _Now the polar moment of mgrtla (I, s obtained from 4]
tom line GF ) Fig. 5.23 , equation (5.7) ag : @
o S =1 _+1 .
@; = Area of rectangle ABCD = 10 % 2 = 20 cm? Lp=Lut 1y, '
. ‘ - - _ 4 . 1
¥, = Distance of C.G. of the area a, from the bottom line GF =8 + 1 =9 em =314.231 + 172 = 486.231 om”.  Ans d Gl
@y = Area of rectangle EFGH = 8 x 2 = 16 em? Problem 5.15. Find the moment of inertia of the se.zetion i ® : ] 2em
: shown in Fig. 5.24 about the centroidal axis X-X perpendicular M 2 Olc\r(n L
to the web. (AMIE, Summer 1977}

95 = Distance of C.G. of rectangle EFGH from the bottom line GF = < = 4 em ‘
2 Sol. First of all find the location of centre of gravity of the

given figure. The given section is symmetrical about the axis
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Y-Y and hence the C.G. of the section will lie on Y- ¥ axis. The given section is split ﬁp into
three rectangles ABCD, EFGH and JELM. The centre of gravity of the section is obtained by
using

Y+ AeYs + G .
F = 1)1 PR 33 _ . ...(l)
ap + Qg + 0y
where ¥ = Distance of the C.G. of the secflon from the bottom line ML

a, = Area of rectangle ABCD = 10 x 2 = 20 em?
¥; = Distance of the C.G. of the rectangl® ABCD from the bottom line ML
=2+10+'%=12+1=13cm
¢, = Area of rectangle EFGH = 10 x 2 = 20 cm?
¥ = Distance of the C.G. of rectangle EFGH from the bottom line ML
=2+%=2+5=7cm ‘
= Area of rectangle JKLM = 20 x.2 = 40 cm?
y3 = Distance of the C.G. of rectangle JKLM from the bottom line ML
“s
Substituting the above values in dquation (i), we gét
20x13+20x7+40x1

= -;— = 1.0 em,

¥= 20 + 20 + 40
260 + 140+ 40 440
—80————-@=5.50cm

The C.G. of the given section lies at a distance of 5.50 cm from the bottom line ML. We
want to find the moment of inertia of the given section about a horizontal axis passing through
the C.G. of the given section.

Let I = Moment of inertia of rectangle (1) about the horizontal axis passmg through

its C.G.

= Moment of inertia of rectangle (2} about. the horlzontal axis passing through
the C.G. of rectangle (2)

Iéz = Moment of inertia of rectangle (3) about the horizontal axis passing through
the C.G. of rectangle (3)
= The distance between the C.G. of the rectangle (1) and the C.G. of the given

section
=y,—- ¥ =13.0-5.50="750cm
hy = The distance between the C.G. of rectangle (2) and the C.G. of the given
secf:mn

=y,— ¥ =7.0-550=150ecm

hq = The distance between the C.G. of the rectangle (8) and the C.G. of the given
section .

= ymy3=5.50—1.0=4.5cm
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10 x 2° .
Now Ig = 15 = 6.667 cm

2 x 10° .

Ig, = 9= 166.667 em
20 x 2°

= = 4
Ig, = = ;— =13.338 em*.

From the theorem of parallel axes, the momeni of inertia of the rectangle (1) about the
horizontal axis passing through the C.G. of the given section

= Ig, +ah,?=6.667 + 20 x (7.5)°

=6.667 + 1125 = 1131.667 em*.
Similarly, the moment of inertia of the rectangle (2) about the horizontal axis passing
through the C.G. of the given section

= Ig, + a,h,? = 166.667 + 20 x 1.5%

= 166.667 + 45 = 211.667 cm*.
And moment of inertia of the rectangle (3) about the horizontal axis, passing through
the C.G. of the given section ' ‘
= Ig, +0ghy® = 13.333 + 40 x 4.5

=13.333 + 810 = 823.333 ecm?
Now moment of inertia of the given section about the horizontal axis, passing through

the C.G. of the given section 7
= Sum of the moment of inertia of the rectangles (1}, (2) and (3) about

the horizontal axis, passing through the C.G. of the given section
= 1131.667 + 211.667 + 823.333 = 2166.667 cm*. Ans.

Problem 5.15(A). Deiermine the polar'moment of inertia of I-section shown in
Fig. 5.24 (a). (All dimensions are in mn). {U.P. Tech. University, 2001-2002)

Sol. Let us first find the location of C.G. of the given
section. It is symmetrical about the vert1c31 axis, hence C.G. 80 ¥

lies on this section. 12
Now, . A, = Area of first rectangle ¥
=80 x 12 = 960 mm?
A, = Area of second rectangle 150 15
[(160 - 12 - 10) x 12] |
=128 x 12 = 1536 mm? _ | o) I "
A, = Area of third rectangle A x
=120 x 10 = 1200 mm? e—120——
¥, = Distance of C.G. of area A, Fig. 5.24 (a)

from bottom line

=150 - % = 144 mum
¥, = Distance of C.G. of area A, from bottom line

128
:10&~2—=74mm
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¥, = Distance of C.G. of area A, from
bottom line = L; =5 cm.
¥ = Distance of C.G. of the given section
from bottom line.
The C.G. of the section is cbtained by using,
Ayy + Agys + AsgYs
A+ Ay + 4y
960 x 144 + 1536 x 74 + 1200 x 5
960 + 1536 + 1200
138240 + 113664 + 6000 257904

3696 T 3696
= 69.779 =~ 69.78 cm.

Location of centroidal axis is shown in Fig. 5.24 (5). 3
{{) Moment of inertia of the given section about X-X _
M.O.L of the rectangle ® about centroid axis X-X is given by, ; :

IHI=(IG1)X+A1Xh12 where h1=(.’)’1—.7)

Y o=

80 % 12% ‘
= 2nX2E L 060(144 — 69.78)% = 5.3 x 108 mm* 180

Y
12 "
M.O.I of rectangle @ about centreid axis X-X is given by, i
Iy =gy + Ay x hy? where fy=(y;~ F)

12 x 128° X :
==X 4 1536 x (74 - 69.78)2 T }

69.78 mm
=2.12 x 10° m*
and L, =(Ig )y + Ay x BP where hy=(y,-3) I

Y

120 = 10° ) o
= ———— 4 1200 x {5— 6978) =5.04 x 10°* mm’ Fig. 5.24 (b)

12
s L= Ty + Ty + Iyra
= 5.8 x 109+ 2,12 x 10° + 5.04 x 10% mm*
= 12.46 x 10% mm*
(ii} M.O.L of the given section about Y-Y

12 x 80° -

Ly = (I )y = =5~ =521 x 10° mm? = 0.521 x 10° rom*
128 x 12° :

Ty = Ug, )y = ——;2— = 18.432 x 10° mm?* = 0.018432 x 105 mm?
10 x 120°

Iypy=Ug)y= g5 = 144 x 10° mm?

Iyy = Typy # Dy + Iy
=0.521 x 10° + 0.018432 x 10 + 1.44 x 10¢ mm* = 1.979 x 10° mm*
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Polar moment of inertia (I,;) is given by,
Iy=ln+ I,
=12.46 x 10° + 1.979 x 10° mm*
=14.439 x 10° mm!. Ans.

Problem 5.16. Find the moment of inertia of the area shown c D5
shaded in Fig 5.25, about edge AB. S Som

Sol. Given : circle

Radius of semi-circle, R = 10 cm 25 cm

Width of rectangle, &b =20cm
Depth of rectangle, d=25cm

Moment of inertia of the shaded portion about AB A By
= M.O.L of rectangle ABCD about AB Me— 20 cm —»
— M.OQ.L of semi-cirele on DC about AB Fig. 5.25
M.O.L of rectangle ABCD about AB
3 .
= % {see equation (5.11}]
20 x 25°
= —— =104.1 4
. 12 104.167 cmy

M.0.1 of semi-circle about DC

1 .
=3 x [M.O.L. of a circle of radius 10 cm about a diameter]

1 e 1 =
2 ><|:64 ] 2x o1 x 201 = 3:925 o

Distance of C.G. of semi-circle from DC

4r 4x10
"375__—_311: =424 cm

ar?  mx 107

Ares of semi-circle, A = 5T
M.O.L. of semi-circle about a line through its C.G. parallel to CD
= M.O.L of gemi-circle about CD — Area x [Distance of C.G. of semi-circle from DCP
= 3925 — 157.1 % 4.24?
= 3925 — 2824.28 = 1100.72 em?
Distance of C.G. of semi-circle from AB
=25-4.24=20.76 cm
M.O.I of semi-circle about AB = 1100.72 + 157.1 = 20.762
= 1100.72 + 67706.58 = 68807.30 em*
- M.O.L of shaded portion about AB
= 104.167 — 68507.30 = 35359.7 cm*. Ans.

=157.1 ¢cm?
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Problem 5.16 (A). Find the moments of inertia about the centroidal XX and YY caes of
the section shown in Fig. 5.25 (a). (U.P. Tech. University, 2002-2003)

Sol. First find the location of the C.G. of the given figure:

Let a, = Area of complete rectangle va
=BxD —B2—
a, = Area of removed rectangle portion 1
_B.,D_BD 7 @
2 2 4 b i
B D
x, =—,¥, == and T
et o2 - DJ2
N B N 1 (B) 3B l
e Bl Rl / .
2 212 4 B %
D 1(DY 3D
Ye=gt3le )T Fig. 5.25 (a)

where (x,,y,) and {x,, y,) are the co-ordinates of the C.G. of the complete rectangle and cut out
rectangle respectively. Area a, is negative.

B _BxD 35
Now 5= Q1% — da¥s 2 4 4
a; —ag —SnBD
4
2
B'xD 3 pap 5 ppe
__2 16 _18 .3 .
3 8D 3pgp 12
1 4
D _BD 3D
. P b e - T 24 4
Similarly, ¥= ooy =
~BD
4
BD®* 3 2 B o2
-=BD* —BD
_._2. 16 .16 -5
%BD 3pp 12

Now draw the centroidal axes XX and YY as shown in Fig. 5.25 (b).
Let I, = M.O.L of complete rectangle @ about controidal axis X-X
= M.Q.I. of complete rectangle @ about horizontal axis passing through its C.G.
+ Area of complete rectangle @
x Distance between X-X axis and horizontal axis passing through the C.G. of
rectangle @ (By theorem of parallel axis) [v Iy = Ig.. +4,2,°]
i 3 .

BD
= +BxD) Iy, - 5P

12
3 2

LB [ 252 [+ 5-2.5-82]
12 2 12 2 2
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and
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=Dy — Ly

_138D° 19BD® 52BD®-19BD° _33BD’

144 576 576

Iy = Ly — vy
where
=lg, + A %l - x]?

576

Iy = MLO.L of rectangle @ about centroidal axis Y-y

3 2 2
_DB +BDX[E_§§] _DB® BDxB” 13
12 2 12] T 12 | 144 144

Ty = Ig, + Al - I

3

D, (BY
2 \z +B_D[§§d_§§]2_DB3 , DB® _19DB°

12 4|4 12 192

13 83_191333 33

= T4g 576 576

5.11. MASS MOMENT OF INERTIA
Consider a body of mass M as shown in Fig. 5.26.

36

576

DB® = 0,0573 DB3. Ans.

Let x = Distance of the centre of gravity of mass M froin axis OY

'y = Distances of the C.G. of mass M from axis OX
Then moment of the mass about the axis OY =M . x’

211
= _BDS + _B_DS =£BD3 Y‘:—sz——-r B2 [+
T 12 144 144 PR
Similarly, Jypy = gy + Ay % A2 . Dr2b?
B (DT ! 4
PR X - X
=L_2_+§2x[y2_5;]2 . TT
12 5 1‘)1 ¥=50/12 D/2
o a2 b7 .
s ) _T_ % 5B/12-»
=§2,+@[3_Q'_@] —z— ¥
192 4 | 4 12 _
Fig. 5.25 (b}
[.. _3D o _52]
. y2 2 :y 1
_BD° BD x{gf _BD® 168D’
T19z 0 4 12 192 4x 144
BD® BD® 3BD+ 168D 19BD®
192 36 576 576
Now Iy = M.O.I. of given section about centroidal axis X-X

=0.0573 BD®. Ans.
Similarly, the M.Q.1 of the given section about centroidal axis ¥-Y is given by



'MAasses My, My, My ...... ete. Let the C.G. of the small

"inertia of the body about the given axis is given by

212 7 STRENGTH-OF MATERIALS

Body of

The above equation is known as first moment of
Mass M

mass about the axis OY.

If the moment of mass given by the above equa-
tion is again multiplied by the perpendicular distance
between the C.G. of the mass and axis OY, then the
quantity (M . x) . x = M . 2% is known as second moment
of mass about the axis OY. This second moment of the
mass (i.e., quantity M . x?) is known as mass moment of
inertia about the axis OY.

Centroid

Similarly, the second moment of mass or mass
moment of inertia about the axis OX X
=(My).y =My Fig. 5.26

Hence the product of the mass and the square of
the distance of the centre of gravity of the mass from an
axis is known as the mass moment of inertia about that
axis. Mass moment of inertia is represented by I, . Hence
mass moment, of inertia about the axis OX is represented
by (I,,),, whereas about the axis OY by €.,

" Consider a body which is split up into small

/ Given axis

Mass m,

Mass m,

areas from a given axis be at a distance of ry, ry, ry
...... ete. as shown in Fig. 5.27. Then mass moment of

Io=mr2+mr?+mgr?+ .
= Zmr?

If small masses are large in number then the sum-
mation in the above equation can be replaced by inte-
gration. Let the small masses are replaced by dm in-
stead of m’, then the above equation can be written as

Im=‘[ 2 dm

Fig. 5.27

..(3.16)

5.12. DETERMINATION OF MASS MOMENT OF INERTIA

The mass moment of inertia of the following bodies Wlll be determined by the method of
integration :

1. Mass moment of inertia of a rectangular plate,

2. Mass moment of inertia of a circular plate,

3. Mass moment of inertia of a hollow circular cylinder.
5.12,1, Mass Moment of Inertia of a Rectangular Plate

() Mass moment of inertia of a rectangular plate about X-X axis passmg through
the C.G. of the plate,

Fig. 5.28 shows a rectangular plate of width b, depth ‘d’ and uniform thickness ¢’ Con-
sider a small element of width 4’ at a distance %’ from X-X axis as shown in Fig. 5.29,

Here X-X axis is the horizontal line passing through the C.G. of the plate.
Area of the element =& xdy

o d
" between the limifts - —to— .
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%
=
— %/'// A : B
i T ] &
X [T 7 I T T T dre
d ] . y l .
C.G. T
X : di2
/ _L
Y__— o ¢
"1\1./ b —— b ~——»|
' Fig. 5.28 Fig. 529

. Mass of the element = Density x Volume of element
='p x [Area x thickness of element]
=px[bxdyxt] [
= pbt dy

Mass moment of inertia of the element about X-X axis

) = Mass of element x y°.
= (pbt dy) x y2 = pbt y* dy
Mass moment of inertia of the plate will be obtained by mteg'ratmg the above equation
d

p = Density and ¢ = thickness]

2 2
/g dr2
= 2dy =p bt 2 d
T e J'_m pbt y? dy =p J:m y* dy .
(- p, b, t are constant and can be taken outside the integral sign]

2] (e -]

4/3
pbt[d® [ a®)|_ppt[a® d°]_pbt 2d°
3|8 |"s)|T3|8 8] 8" 8
_bbt 5 bd? BT
EERERLAET

3 . B
But bd” is the moment of inertia of the area of the rectangular section about X-X axis.
1

This moment of inertia of the area is represented by I_..
(), =pxtxl, .(6.18)

where (I ) . = Mass moment of inertia of the plate about X-X axis passing through C. G of the
m'xx

plate. ‘
I, = Momient of inertia of the area of the plate about X-X axis.
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Again from equation (5.5), we have
bd®
Iy =p22.
(U= 5

2

=pbxdxt'x—13

(. M = Mass of the plate = p x Volume of the plate = p x [b x d x £])
1
o e M2
kT Md .{5.19)

Similarly, the mass moment of inertia of the rectangular plate about Y-Y axis passing

through the C.G. of the plate is given by '
1
(), = 1z Mb2,

(6) Mass moment of inertia of the rectangular
plate about a line passing through the base. 5

Fig. 5.30 shows a rectangular plate ABCD, having
width = b, depth = d and uniform thickness = £. We want to
find the mass moment of inertia of the rectangular plate

about the line CD, which is the base of the plate. Consider
a rectangular elementary strip of width b, thickness ¢ and d

. (5.20)

AI*—b—DlB
.

depth ‘dy’ at a distance y from the line CD as shown in '

Fig 5.30. - Ay
Area of strip, dA=b.dy I T T
Volume of strip =dAxt=b.dy.t=b.t.dy v | ' E
Mass of the strip, dm = Density x Volume of strip D B c

=plb.t.dy)=p.b.t.dy
Mass moment of inertia of the strip about the line CD
= Mass of strip . y2
=dm.y2=3%.dm
Mass moment of inertia of the whole rectangular plate about the line €D is obtained by
integrating the above equation between the limits 0 to d.
- Mass moment of inertia the rectangular plate about the line CD

:_[:3#.dmmf:y2.(p-b-t-dy)

Fig. 5.30

[ dm:p.b.-t.dy]

4 .
=p.l;».t,‘J;J y2dy [~ p,band ¢ are constant]
37 3 2 -
¥ d d
=p.b.t.{—| =p.b.t .—=p.b.t.d.—
p [3 L p.b.¢ 3 =P b.t.d 3
M.d*
- (5.21)

[~ p-b.t.d=Mass of rectangular plate = M]

- gection.

- ABCD about X-X is given by equation
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(c) Mass moment of inertia of a hollow rectangular piate.
Fig. 5.31 shows a hollow rectangular plate in b 5

which ABCD is the main plate and EFGH is the cut-out A ///// / ////
E T ¢

The mass moment of inertia of the main plate

' d
1 — by » |
= Md2 X %
The mass moment of inertia of the cut-out sec- d
tion EFGH about X-X axis : H § &
1
=1g ™’ i
where M = Mass of main plate ABCD o c
=p.b.d.¢ Fig. 5.31
m = Mass of the cut-out section EFG.
=p.b .d,.¢t :
Then mass moment of inertia of hollow rectangular plate about X-X axis is given by
. 1 2 1 a .
U = 35 Md® = o mdy®. ..(5.22)
5.12.2, Mass Moment of Inertia of a Circular Plate
Fig. 5.32 shows a circular plate of radius R and thick- v
ness ¢ with O as centre. Consider an elementary circular
ring of radius 7’ and width dr as shown in Fig. 5.32 (a). _
Area of ring, dA =2mr . dF - dar
Volume of rving = Areaofringxt=dA.¢ d
=2nr.dr.t ) r
Mass of ring, dm = Density x Volume of ring % 5 X
= p(@rrdr.t) Kttz J
In this case first find the mass moment of inertia
about an axis passing through O and perpendicular to the
plane of the paper i.e., about axis Z-Z.
. Mass moment of inertia of the circular ring about
axig Z-Z Y
Fig. 5.32

= (Mass of ring) x {radius of ring)?
=dmxri=(p.2mrdr.)xr?=p. ¢t 2nrddr
The mass moment of inertia of the whole circular plate will be obtained bysintegrating
the above equation between the limits O to R. .
~. Mass moment of inertia of circular plate about Z-Z axis is given by

it R
(Im)zz=_[0 p.t.2nr3dr=2rc.p.tj0 ridr

B
4
=2:tp.t[{1~:l
. -0
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R4
=g.p-t. 5

=2x.p.t.
2. p 2

4
4
Now mass of circular plate,
M = p x Volume of plate
=pxmR?xt :
[Volume of plate = Area x ¢ = nR2 x ¢]
Substituting this value in above equation, we get '
R® MR® -
] )zz—panzxtx?— 2 ..(5.28)

But from the theorem of perpendicular axis gwen by equa-
tion (5.7}, we have

Fig. 5.32 (a)

L=l +1,
or )y =T + (L),
And due to symmetry, we have (1,),, = {T,),,
Lok = @)y, = @0, /2

[MRz] MR2

...(6.24)

5.12,3, Mass Moment of Inertia of a Hollow Circular Cylinder
Let R, = Outer radius of the cylinder
R, ='Inner radius of the eylinder
L = Length of the cylinder
M = Mass of cylinder
= Density x Volume of cylinder
=px :"I:[R(}z-— REAxL i)
dm = Mass of a circular ring of radius ‘r’ width ‘dr’ and length I [Refer to Fig. 5.32]
= Density ¥ Volume of ring = p x Area of ring x L
=px2mrdrxLl
Now mass moment of inertia of the cireular ring about Z-Z axis
= Mass of ring x (radiug)?
= (p x 2wrdr x L) x r?

The mass moment of inertia of the hollow circular cyhnder will be obtained by integrat-
ing the above equation between the limits B; to R,

+. Masgs moment of inertia of the hollow cn'cular cylinder about Z-Z axis is given by,
B ,
), = IR'_ (px2mrdr.L)r?

By
Fo rt
_pxznxLJ& r**dr:px2nxL[~Z-L

3

4_p4
=px2nxL x[%ﬁl

CENTRE OF GRAVITY AND MOMENT OF INERTIA o -2 4
R, -R* ‘
=px2wxLx [ﬂﬂ 1 ][R02+R.52]

[ R 4 Ri4 - (Rﬂ?.__ Riz)(Roz + Riz)]

R;

=pxmRZ- R2]><Lx-(§—°;—-l

=j‘_4_(R.;2ﬂ.. I pXﬁX(an-—Ri2)=M]

_ Uy M 2+RY

Now T =), e ﬁ_}_z_o___

_ 5.12.4. Mass Moment of Inertla of aRight Clrcular Cone of base Radius R, Height
H and Mass M about its Axis
Let R =Radius of the base of the cone,
H = Height of the cone,
M = Mass of the cone

1
= Density x Volume of cone = p x 3 aRZx H
Consider an elemental plate of thickness dy and of radius
# at a distance y from the vertex (as shown in Fig. 5.32 (@),
: R
We have, tana= -Em% SoxE XY
Mass of the elemental plate,
dm = p x Volume

=p x {mx® % dy) A H—HB
2 .2

=px |:;; E xay x dy] [ n = %—y] Fig. 5.32 (&)
H

The mass moment of inertia of the cireular elemental plate about the axiz of the cone
(here axis of the cone is Z-Z axis of the circular elemental plate) is given by equation (5.23) as

Mass of plate x radius®

Z,),, = 2
J@mar? _dms? ¢ ren
2,2
=|:px g’xdy}x% 1: dm =px gdy]
px nR2y? 2,21 1 _ By
= 2 xdyx[ = XE x o
pxﬂ:R‘ixy d -

Now the total mass moment of inertia of the circular cone will be obtained by integrat-
ing the above equation between the limits O to H. : :
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" 515
Hanéxy4 an‘{ x{ya:l

= d= I

Unde=Jo 3T P gt "5 ,
puR'*xH_ﬁ_me‘*xH
ToH* T 5 25
pnR? x H

But mass of cone, M= T3

_pnR xH R%x3

e L T

3 2 3 2 . -

=M><ZEJ—R=EMR : ..(5.25)

5.13. PRODUCT OF INERTIA

The Fig. 5.83 shows a body of area A. Congider a va
small area dA. The moment of this area about x-axis is
¥ . dA. Now the moment of y . dA about y-axis is xy dA.
Then xy dA is known as the product of inertia of area d4

.. with respect to x-axis and y-axi.s. The integral J-xy dA is
known as the product of inertia of area A with respect to x
and y axes. This product of inertia is represented by Ixy.
I, =fxydA ..(5.26)
Hence the product of inertia of the plane area is ob-

tained if an elemental area is multiplied by the product of o
its co-ordinates and is integrated for entire area.

The product of inertia {I.,) can also be written math-
ematically as

>

L,=Ey,A =20 A) + 29,4, + ..(5.264)
where x,y; = co-ordinates of the C.G. of area A,

Note. (i) The product of inertia may be positive, nega- %
tive or zero depending upon distance x and ¥ which could be
positive, negative or zero.

(&) If area is symmetrical with respect to one or both dA dA
of the axes, the product of inertia will be zero as shown in I— X —pie— x >l
Fig. 5.34. The total area A is symmetrical about y-axis. The
small area dA which is symmetrical about y-axis has co-ordi-
nates (x, ¥) and (- x, y}. The corresponding product of inertia
for small area are xydA and — xydA respectively. Hence prod-
uct of inertia for total area becomes zero.

(i) The product of inertia with respect to centroidal Fig. 5.34
axis will also be zero. '

Problem 5.17. Fig. 5.35 (a) shows a plane area. Determine the product moment of iner-
tia of the given area. All dimensions are in mm. _ .

" 8ol. Divide the given area into two parts. The first part is a rectangle and second part is
& right angled triangle. Take x-axis and y-axis as shown in the Fig. 5.35 (b). The areas and
location of their C.G. are given below : :

CENTRE OF GRAVITY AND MOMENT OF INERTIA 219

Y4
e 40 ——» _
Fy
. GGy @
90 a0 . .
(20, 45) C-fia
(50, 30}
h 4 @ >
o 7 ' g Ot —p—— 30— X
3 70 »

1G] &)
' Fig. 5.35
Area of rectangle, A, = 90 x 40 = 3600 mm?.

The co-ordinates of C.G. of rectangle @ are : x, = 20 mm,; y, = 45 mm.

90 x 30
Area of triangle, Ay = g = 1850 mm?.

The co-ordinates of C.G. of triangle @ are :
1
x2=40+%x30=40+10=50mm;y2=§ x 90 = 30 mm.

 The product of inertia of given area is given by equation (5.26A) as
- Ly =% A + 24,
=Ax)y +Agtays
=3600 x 20 x 456 + 1350 x 50 x 30
= 3240000 + 2025000 == 5265000 mm*, Ans.

5.14. PRINCIPAL AXES
The principal axes are the axes about which the preduct of inertia is zero.
The product of inertia (, .} of plane area A with respect to x and y axes is given by
equation (5.26) as
I,= J xy dA
But the moment of inertia of plane area A aboutx-axis [1, ] or abouty-axis [I 1is given by
In=jy2dA and Iyy:_l'x’-’cLA
The moment of inertia is always positive but product of inertia may be positive (if both
x and y are positive), may be negative (if one co-ordinate is positive and other is negative) or
may be zero (if any co-ordinate is zero).
Fig. 5.36 (o) shows a body of area A. Consider a small area dA. The product of inertia-of
the total area A with respect to x and y-axes is given as

I,= j xy dA : | : ---(i)-
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[Here x' is + ve, but y' is ~ve]

@ ®

Fig. 5.36

Let now the axes are rotated anticlockwise by 90° as shown in Fig. 5.36 (b) keeping the
total area A in the same position. Let x, and y, are the new axes. The co-ordinates of the same
small area dA with respect to new axes are x’ and ¥'. ‘

Hence the product of inertia of the total area A with respect to new axes x; and y,

‘becomes as

£
Now let us find the relation between old and new co-ordinates. From Figs. 5.36 (a) and
5.86 (b), we get

Iy =J- x'y' dA (2

x=-y andy=x'
or y=-rxandx' =y
Substituting the values of x' and ¥’ in equation (i{), we get

leyl=_[(y)(—x)dA=-—nydA =_I5:y ( nydA:Ixy)

The above result shows that by rotating the axes through 90°, the product of inertia has
become negative. This means that the product of inertia which was positive previously has
now become negative by rotating the axes through 90°, Hence product of inertia has changed
its sign. It is also possible that by rotating the axes through certain angle, the product of
inertia will become zero. The new axes about which product of inertia is zero, are known as
principal axes. : '

Note. {i) The product of inertia is zero about principal axes.

(ii) As the product of inertia is zero about symmetrical axis, hence symmetrical axis is the princi-
pal axis of inertia for the area.

(i#i) The product of inertia depends upon the orientation of the axes.

5.15. PRINCIPAL. MOMENTS OF INERTIA .

¥ig. 5.37 (2) shows a body of area A with respect to old axes (x, ¥} and new axes (x;,y,)-
The new axes x, and y, have been rotated through an angle 6 in anticlockwise direction. Con-
sider a small area dA. The co-ordinates of the small area with respect to old axes is (x, y)
whereas with respect to new axzes, the co-ordinates are x' and y’. The new co-ordinates (x’, ¥')
are expressed in terms of old co-ordinates (x, y) and angle B-as [Refer to Figs. 5.37 (b) and
5.37 ()]
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¥ Total area A

Fig. 5.37

) x' =ysin@+xcos0. : G0
and ¥y =ycosO0-xsin@ ' BN (73]

The moment of inertia and product of inertia of area A with respect to old axes are
=] yda, 1,-[22da and I,=[wyaa AB2T)

Also the moment of inertia and product of inertia of area A with respect to new axes
will be
I-"‘lxl :J‘ @,1)2 dA, IJ’LJ’[ = J. (x'PdA and 1113'1 = I x'y' dA
Let s substitute the values of &', ¥ from equation (i) and (i) in the above equations,
we get

L= ¢7dd
=I (ycos8-xsin@?dA - [+ 3 =ycos8—xsin 6]
=j (4% cos? 6 + x* sin® 6 — 2ty cos 6 sin 8) dA

=j y2c052BdA+_[ xzsinzﬁdA—J- 2xy cos 0 sin 6 d4
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=cosZBjy2dA+sin2G.[ x2dA-m2cosﬁsin9J. xy dA

(+» After rotation, the angle 8 is constant and hence
cos? 8, sin® 0 and 2 cos 8 sin # are constant)

= (cos? O)], + (sin® 0)1,, — (2 cos B sin O)I,, (5.2TA)
(v [y da-1,,[ +* da-1, ond [ wyda=1,)
Similarly, I, = [ &?d4
=I(ysm8+xcose)2dA [+ x' =ysin 0+x cos 0]
=J {32 sin2 8 + x% cos® 6 + 2xy sin 6 cos 0) dA
=J. yzsinzedA+j xzcoszedA+I 9xy sin 6 cos B dA

=sin29J y2dA+cos2Bj xsz+2sinecoseI xy dA
(- 6 is constant and hence gin 0 and cos 6 are constants})
=sin?6.7,_ +cos?0L +2sinBcos 0, ..(6.27B)

( _[ ¥ dA=Ixx,I «rdA=1,, andj xydA=Ixy)
Adding equations (5.274A) and (5.27B), we get

Loy + Ly =1 [sin? 6+ cos2 0] + I, [sin® B + cos? 6]
+2sin@cos 01, —ZsinﬁcoseIxy
=L +1, [~ sin?6+ cos2 8=1] ..(5.270)

The equation (5.27C) shows that sum of moments of inertia about old axes (x, ¥)and new
axes (x,, ¥,) are same. Hence the sum of moments of inertia of area A is independent of orien-

tation of axes. Now let us find the value of Lis, =Ly

Substracting equation (5.278) from equation {5.27A), we get
Loy = Ly = 0082 61, +sin®0L -2cosBsind,
~lsin® 07 +cos®@ L, +2cos0sin0L]
=1, (cos® 6 - sin? 8) + I, (sin? 0 - cos?B) -4 cos 0sin 0.1
=T (cos® § - sin” §) - I, (cos? 80— sin? 8)— 4 cos O sin B L,
=L 1) (cos2 8 —sin® 8} 2 x 2 cos B s5in 6 x I,

=, - I”) cos 20 — 21:3, sin® 0 L(B.27D)
( cos? u LHCOS2 L0y =}_-c§_s2ﬂ

cos® 6 — sin® 0 = cos 26 and 2 sin B cos B = sin 20 J

Now let us find the values of I, . and I, intermsofl_, I, and 6.
Adding equations (5.27C) and (5.27D), we get
2. =+ L1+, -1 ) €08 20— 2I sin 24]
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or e # Iyy) U = Ty) o526 - 1 sin 20 A5.2TE)
3

e 9

To find the values of {,, , substract equation (5.27D) from (5.27C). Now substracting

equatlon (5.27D) from equation (5.27C), we get

2L, =, +1,)-[, ~1T,) cos 20 - 2L sin 26]

a +I ) (-.,c-I }
oy, = = 5 W TE W e0g 20 +1,,sin 20 AB2TR

Product of Inertia about New Axes

Let us now find the value of I, ,, in terms of I and angle 9.
We know that leyl =J' (x’)(y’) dA
Substituting the values of ' and y', we get

Iy = J {y 5in 8 + x cos 8)(y cos & — x sin ) dA

(v x=ysin@+xcosBandy =y cos b-xsin0)
or Iy, = I@2sm6cose xy51n29+xy cos? B - x2 cos 0 sin 8) dA
=I ¥ sinBcosBclAw_[ xysinzﬂdA+I xycoszﬂdA—I x2 cos 0 sin 6 dA

=sin6cosej ysz—sin2I xydA+cosZBI xydA—cosBsinej x2 dA

("> 8 is constant and hence sin 8, cos # are constants)

2 sin § cos & . 2cos0Bsin b
g =TT T J ysz—sm2BIn+coszﬂfly—--~T j x? dA
( Ixyd.A=Ixy)
sin 20 sin 20

¥y
(v [s*da-L.[+*aa-1,)
=I—ﬂsin2B+I {cos? § — sin? 8) — Ly gin 9
2 xy 2
I, -1,

= —T—y— sin20 + 1, (cos2 B — sin® @)

_ 2 in2 B eV
= 'Ixx+Ixy(cos 0 - sin® 0} — ) I

U - 1,0 .
=-— s 20 + 1, cos 20 ‘ (5.27G)
(+ cos® 0 - sin® @ = cos 20)
Direction of Principal Axes

We have already defined the principal axes. Principal axes are the axes about which the
product of inertia is zero. Now the new axes (xl, ¥,) will become principal axes if the product of

inertia given by equatlon (5.273) is zero (Le., I, =10
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For principal axes, L.y, =0

ar e - I-"_'J’) sin 26 + I_ty cos 20=0

2
or (I_“:_IJQL) sin 20 = - I, cos 26
2
or sin20 - 21, - 21,y
cos 20 I, -1, I,-IL,
21
or tan 20 = ——2’— {(5.27TH)
Iy -IL.

The above equation will give the two vaiues of 26 or 6. These two values of 0 will differ
by 90°. By substituting the values of @ in equations (5.27E) and (5.27F), the values of principal
moments of inertia (I, xyry a0 I, ) can be obtained. If from equation {5.27H), the values of

sin 26 and cos 28 in terms of Ixy, I, andl .y 8T8 substituted in equation (5.27E), we get

Io+D, (U, -1)°
am = 5 = 2 +I;y2 .

These are the values of principal moment of inertia.

Problem 5.18. For the section shown in Fig. 5.38 (a) determine :

(i) Moment of inertia about its centroid along (x, y) axis.

(ii) Moment of inertia about new axes whick is turned through an angle of 30° anticlock-
wise to the old axis. :

{iii) Principal moments of inertia about ifs centroid.

All dimensions are in cm.

Sol. Given : ,

The Fig. 5.38 (¢) shows the given section, It is symmetrical about x-axis. The C.G. of the
section lies at O (origin of the axes). To find moment of inertia of the given section, it is divided
into three rectangles as shown in Fig. 5.38 (6). First the moment of inertia of each rectangle
about its centroid is calculated. Then by using parallel axis theorem, the moment of inertia of
the given section about its centroid is obtained. :

AY
T i e
af i
40 i
te_ 6 T 1 4l @*062 ______ i
10 p——do—s | a0 ; GOC-Q—.Q ¥
30 - — >
3 JL i E j
k= i — 1cT|<——

—
-
-

@
Fig. 5.38
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(a) Consider rectangle (1)

The C.G. of rectangle (1) is at a distance of 20 cm from x-axis and at a distance of 25 cm
from y-axis.
) U = Ugh, + Ak ) ‘
where (I}, = M.O.L of rectangle (1) about x-axis passing through the centroid of the given
figure of the given section.
(I3);, = M.O.L of rectangle (1) about an axis passing through C.G. of rectangle (1) and
parallel to
. bd®
X-aXl§ = ————

12

g 3
= -—0—:21—0— (Here b = 10 and d = 30)

= 2.25 x 10¢ cm*
A, = Area of rectangle (1) = 16 x 30 = 300

(k%) = Distance of C.G. of rectangle (1} from x-axis

=20
Substituting the above values in equation (1), we get

(I}, = 2.25 x 10 + 300 x 202
=2.25 x 10¢ + 12 x 10*
= 14.25 x 10% cm* (A

Similarly, the M.Q.L of rectangle (1) about y-axis passing through the centroid of the
given figure is given by,

@), = Ugh, + Alhy)?

3 3
where Uy, = % - 30%10" = 0.25 x 10* e
(k,y} = Distance of C.G. of rectangle (1} from y-axis = 25
(J'yy)1 =0.25 x 10* + 300 x 25 (- A1 = 300)
=0.25 x 10* + 18.75 x 104
=19 % 104 em* L(B)

(b) Consider rectangle (2)
The C.G. of this rectangle coincides with the C.QG. of the given section. Hence

bd® 60 x 10°
I = e——=— =, 4 4
(I.)a 5 5 0.5 x 10%* em LAC)
. ' 3 '
© and ()= }9{_59— =18 % 10* em? D)

{c) Consider rectangle (3)

The C.G. of rectangle (3) is at a distance of 20 cm from x-axis and at a distance of 25 cm
from y-axis. Hence k.x = 20 cm and kgy = 25 cm.

Now Iy = Uy, + Ayllgx)?
_ 10x30°

TR (10 » 30)20)% = 2.25 x 104 + 12 x 10% = 14.25 x 10¢ em?
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and (L) = Ughy, + Aglesy)?
_ 30x 103

12
{i) Moment of inertia of complete section about its centroid

L=+ Ty + Uy
=14.25 x 10* + 0.5 x 10* + 14.25 x 10* em*
=29 x 10* cm?.  Ans.
and _(I )1+( )2+(I )
_19>< 104+ 18 x 104 + 19 x 10*
=56 x 10 em?. Ans.
(ii) Mement of inertia of complete section AY

+ 800 x 25% = 0.25 x 10* + 18.75 x 10* = 19 x 10* em?.

about new axes which is turned through an angle Cc,@u
of 30° anticlockwise. > | F
Here 6 = 30°. @ |20
Let us first calculate the product of inertia of E® v >
: C.G.2.] 3 X
whole area about old axes x, y. i 0 T

{a) Consider rectangle (1)
A, =10 x 30 = 300.

- The C.G. of rectangle (1) is at a distance of 20 em
above x-axis and at a distance of 25 cm from y-axis.
Hence co-ordinates of this C.G. are

x,=—25emand y, = 20 cm.
(6} For rectangle (2)
Ay =10 x 60 = 600 em?. The C.G. of rectangle (2) lies on the origin (0). Hence x, = 0 and

C.G.3

—25———#
Fig. 5.38 ()

¥y =10
(¢) For rectangle (3)
A, =10 x 30 = 300 cm?
The C.G. of rectangle (3} is at a distance of 20 cm below x-axis and at a distance of 25 em
from y-axis.
Hence co-ordinate of this C.G. are : x4 = 25 cm and y; = (- 20 cm).
“The product of inertia (I, ) of the whole figure is given by equation (5.26A) as
L, =Axy, + Ageoyy + Agxgyy
=300 x (- 25) x 20 + 600 x 0 x § + 300 x 25 x (— 20)
=— 15 x 104 + 0 + (= 15 x 10% '

= 30 x 10% em? v t7
Now the moment of inertia of the complete section K 8 Xy
about the new axes (x, ¥,) can be obtained from equations ] D e v
(5.27E) and (5.27F) as RS - 39‘
ool (I, =1,) . e ,
e, = 2 Ry 5 Y cos 26— 1, sin 26 /",—'- T x
where I =29x10%em® I =56x10%cm?, _ b
I, =- 30 x 10* cm® and § = 30° ‘

Fig. 538 {d}
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4 4 4 4
;o _29x10% +56x10"  29x10° ~56x10% | ano ¢ ag . 108 gin 600

EE 2 2

=425 % 10t - 13.5 x 10 x % + 30 x 10* x 0.866

= 85.75 x 10* + 26 x 10* = 61.75 x 10* cm?, - Ans,

Ie+l, I.-1, _
Iy = 7 - cos & + I sin 20
_29x10% +66x10% 29 x10* - 56 x 10*

cos 60° + (— 30 x 10% sin 60°

2 2
= 42.5 % 10% + 6.75 x 10% ~ 26 x 10¢ = 23.25 x 102 cm*, Ans.

{iii) Principal moments of inertia about the centroid

) The principal moments of inertia are the moments AY
of inertia about the principal axes. /ﬂ ¥y
The direction of principal axes is given by equa- . s
tion (6.27H) as _ | sz
of il .
tan20= — % A Feease %
- T 7 2
¥y T / N
2 x (- 30 x 10%) ™~
56 x 10* - 29 x 10* .
i
- 4 %y
_ -60x107 2.999 )
27 x 10* Fig. 5.38 (e)

As 26 is negative, hence it lies in 2nd and 4th guadrant.
28 = tan™! (— 2.222)
=~ 65.77° and 114.23°

or =- 32.88° and 57.12°

The +ve angle is taken anti-clock and — ve angle is taken clockwise to the existing axes
x and y. The principal axes are shown asx, and y, in Fig. 7.38 (¢). The moment of inertia along
these axes is the principal moment of inertia. Hence by substituting 8 = — 32.88° and 57. 12 in
equations (5.27E) and (5.27F), we get principal moment of inertia.

max, : .
- -I
(1} Latly L 52 008 28~ L sin 20

2

| 29x10* +56x10°  29x10% -56x10*
= 5 * 3 _ _
% c08 (- 2 x 32.88)— (- 30 x 109 sin (- 2 x 32.88)
{~ &=-32.88
= 42.5 x 104 - 13.5 x 104 x 0.41 + 30 x 10* x (- 0.912)
= 42.5 x 104 5.535 x 10% - 27.36 x 104
=9.605 x 10* cm?
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d + IL,.-1,. .
an (Iym] == 2 AR 3 2. cos 20 + I sin 20
ntin.
= 42.5 x 10* + 5.535 x 10* + 27.36 x 10 = 75,395 x 10 cm?
Hence principal moment of inertia are
1. =75.395x 10 cm*. Ans.
I, =9.605x10cm® Ans.
Alternate Method
The principal moments of inertia can also be obtained by
{ 2
I =Ixx w1, . {,-Ly o7 2
min. 2 2 i
_29%x10* +56x 10* /(29 x 10* - 56 x 10%)*
= 3 = 3 (=80 x 10)
=425 % 10% = (- 13.5x 101)2 + (- 30 x 104)2
=425 x 10* = 104 x 32.89
=(42.5 + 32.89) x 10* and (42.5 — 32.89) x 10*
= 75.39 x 10% and 9.61 x 104 cm*
1.\& L e =639 x 10%em? and I, =9.61 x 10* cm?
owl —and[l . are the required principal moment of inertia. Ans.
HIGHLIGHTS
1. The po?nt, through which the whole weight of the body acts, is known as centre of gravity.
2. Thet pgmt, at which the total area of a plane figure is assumed to be concentrated, is known as
centroid of that area. The centroid and centre of gravity are at the same point. '
3. The centre of gravity of a uniform rod lies at its middle point,
;. g:e gg of a triangle lies at a point where the three medians of a triangle meet
. e C.G. of a parallefogram or a rectangle is at a poi its di -
puint where its d 1
6. The C.G. of a circle lies at its centre. inganel mest each ofher
7. The C.G. of a body consisting of different areas is given by
= 1%y + 2axg + Ggxg + ... and y _ d1¥1 + doyg + O3yg + ...,
) ) o+ dg +ag + ..l Gy +dy +ag +......
where ¥ and ¥ = Co-ordinates of the C.G. of the body from axis of reference
€y, Qy, Tgy wuens = Different areas of the sections of the body
Xy, Xy, Xy, ... = Distances of the C.G. of the areas a, q,, ay, ...... from Y-axis
. Ig?, ¥g: Y31 e = Distances of the C.G. of the areas ay, a,, ag, ..... from X-axis
. a given section i i i i ,
aXiEg';ym ;Z:r;?n is symmetrical about XX axis or Y- ¥ axis, the C.G. of the section will lie on the
N .

The moment of inertia of an area (or mass) is i
. about an axis is the product of area {or mass) and
square of the distance of the C.G. of the area (or mass) from that axis. It is represented by L.
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10.

11.

12.

13.

14.
15.

16.

17.

i

Radius of gyration of a body (or a given lamina) is the distance from an axis of reference where
the whole mass (or area) of the given body is assumed to be concentrated so as not to after the

moment of inertia about the given axis. It is represented by k. Mathematically, & = E .

According to theorem of perpendicular axis L, = Ly + Iy where I and Iy = Moment of inertia
of a plane section about two mutually perpendicular axes X-X and Y-Y in the plane of the section,
I, = Moment of inertia of the section perpendicular to the plane and passing through the inter-
gection of X-X and ¥-Y axes.
According $o the theorem of parallel axis Iz = I + Ah2, where

I, = Moment of inertia of a given area about an axis passing through C.G. of the area
I,; = Moment of inertia of the given area about an axis AB, which is parallel to the axis passing
through G

h = Distance between the axis passing through (¢ and axis AB

A = Area of the section.

Moment of inertia of a rectangular section :

. . . ) bd®

(i) about an horizontal axis passing through C.G. = o

a2

(ii) about an horizontal axis passing through base = ek

4
Moment of inertia of a circular section = a4

Moment of inertia of a triangular section :
3

(i) about the base = 12
73 .

{ii) about an axis passing through C.G. and parallel to the base = T

where b = Base width, and & = Height of the triangle.

The C.G. of an area by integration methed is given by
[dA [dA

where x* = Distance of C.G. of area dA from y-axis
y* = Distance of C.G. of area dA from x-axis.

The C.G. of & straight or curved line is given by

Jy* dL )
TdL

EXERCISE 5

{A) Theoretical Questions

and ¥ =

Define centre of gravity and centroid.

Derive an expression for the centre of gravity of a plane area using method of moments.
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3. What do you understand by axes of reference ?
4. Define the terms : moment of inertia and radius of gyration.

5. State the theorem of perpendicular axis. How will you prove this theorem ?
6. State and prove the theorem of parallel axis.
7. Find an expression for the moment of inertia of a rectangular section :

() about an horizontal axis passing through the C.G. of the rectangular section, and

(i) about an horizontal axis passing through the base of the rectangular section.
(AMIE Summer, 1985)

8. Prove that the momrent of inertia of a circular section about an horizontal axis (in the plane of
- nD{
the circular section) and passing through the C.G. of the section is given by e
9. Prove that moment of inertia of a triangular section about the base of the section
_
Tz

where & = Base of triangular section, and
h = Height of triangular section.

10. Derive an expression for the moment of inertia of a triangular section about an axis passing
through the C.G. of the section and parallel to the base,

11. Show that I = I, + Ah? where I, is the moment of inertia of a lamina about an axis through its
centroid and lying in its plane and % is the distance from the ‘centroid to a parallel axis in the
same plane about which its moment of inertia is Iy, A being the area of the lamina.

12, State and prove the parallel axes theorem on moment of inertia for a plane area.

13. Prove that the moment of area of any plane figure about a line passing through its centreid is
ZEero, ’

14. - Bhow that the product of inertia of an area about two mutnally perpendicular axis is zero, if the
area is symmetrical about one of these axis. (U.P. Tech. University, 2002-2003)

15. . Determine an expression for mass moment of inertia of hollow steel cylinder of mass M, outer
radius R, inner radius R, and length L about its axis. The hole in the eylinder is concentric.

(U.P. Tech. University, 2002-2008)

16. Derive an expression for mass roment of inertia of a right eircular cone of base radius R, height
H and mass M about its axis, (U.P. Tech. University, 2001-2002)

(B) Numerical Problems
1. Find the centre of gravity of the T-section shown in Fig. 5.39. [Ans. 8.272 cm]
—— 12 crmn—»

12 cm

12 cm

2cm .

Fig. 5.39
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2. Find the centre of gravity of the I-section shown in Fig. 5.40.
[Ans. 6.44 cmi

{
g
+
e

ra
o
3

—

[Hint. o, =8 x 2 = 16 em? @, = 12 x 2 = 24 cm?,
' a,=16x2=32;y,=2+12+1=15,

[e] ’

=2
u__@__-..-_

¥,=2+6=8,y,=1 12
= B1Y1 t CapYs + d3)3 | 4 l—
YT e ag + ag ik
L ! +
16x15+24 x8+32x1 & 2cm
= 16+ 24 + 32 e— t6om — 1 T
=24O+192+32=@___6_44cm] Fig. 540
72 72
3. (a) Find the centre of gravity of the L-section shown in Fig. 5.41. [Ans, ¥ =1.857, ¥y = 3.857]
—p2 CMjg—
8cm
10 em
2-fm
X
- “+— Gom —»
- Fig. 5.41
(b) Find the moment of inertia of ISA 100 x 75 x 6 about the centroidal XX and Y¥ axis, shown
in Fig. 5.41 (e). © (U.P. Tech. University, 2001-2002)
—» 6 j¢
100 @

e —y

P ® 8

j——— 75 mm ———ﬂ?

Fig. 5.41 (o)

[Hint. Locate first ¥ and first y
@, = 100 x 6 = 600 mmﬂ,x1=3 mm, y, = 50

: 69 .
a2=69x6=414mm2,x2=6+“2" =405
¥y =3 mm

- - Br¥1tagxy  600.x8 + 414 x 40.5 _ 18.31 mm
a) +ag 600 + 414

_ @y +agyy B600x50+414x3

- = 30.81
Y v 600 + 414 mm
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Now find the moment of inertia about centroidal X-X axis :

Iy = U6, + ok

6 x 100° ) 6 x 100°
_Sx W Loy 2XU - 2
o +600x 0 - §) 5 + 600(50 - 30.81)
= 720.95 x 10* mm*.
69 % 6°
Le = UG, ), + aghyt = —— + 414y, — 5)?

 69x 6%

+ 414(3 - 30.81) = 321.428 x 107
Ty = Iy, + Ty = 720.95 x 10° + 321,428 x 10° = 1042.378 x 10° mm*. Ans.
To find M.O.1 about centroidal axis Y-Y '

100 x °
12

& x 69°

Ly =Ug ) + o)z - )= + 600(3 — 18.31)% = 142.437 x 10° mm*

+ 414(40.5 - 18.31)% = 368.1 x 10% mm*

Ly, = g ), + gy - E) =

Iyy. =Ty, + Iyyg = {142,437 + 368.1) x 10° mm* = 510.537 x 10° mm®* Ans.]

4. From a rectangular lamina ABCD 10 em x 14 cm a rectangular hole of 3 cm x 5 em is cut as
shown in Fig. 5.42. Find the centre of gravity of the remainder lamina.

[An&. ¥ =4.7cm, ¥ = 6.444 cm]

F

—

o
Q
3

n,
o
El

¢

Fig. 5.42

5. For the T-section shown in Fig. 5.39, determine the moment of inertia of the section about the
horizontal and vertical axes, passing through the centre of gravity of the section.

fAns. 567.38 em?, 204.67 cmt)

6. For the Isection shown in Fig. 5.40, find the moment of inertia about the centroidal axis XX
perpendicular to the web, [Ans. 2481.76 cm?]

7. Locate the C.G. of the area shown in Fig. 5.43 with respect to co-ordinate axes. All dimensions
are in mm.

[Hint. ¢, = 10 x 30 = 300 mm?, x, = 5 mm, y, = 15.
@, = 40 x 10 = 400 mm?, 1, = 10 + 20 = 30 mm,

¥o=5mm
ag =10 x 20 = 200 mm?, x, = 5 mm,
¥;= - 10 mm
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a, = 10 x 10 = 100 mm?, x, = 45 mm,
¥4=10+5 =15 mm
T GgX] + Oyt + Gy%; + Oy
(ay +ag + a3+ ayg) -
_ 1500 + 12000 + 1000 + 4500

1000
=15+ 12+ 1 + 4.5 = 19 mm. Ans.

Q¥ tdaYe + da¥y + Ba¥4 ®
(ay + ap + ag +ay)
4500 + 2000 - 2000 + 1500
= 1000
=45+2—-2+ 1.5 =6 mm. Ans.]
8. A thin homogeneous wire is hent into a triangular shape ABC such that AB = 240 mm, BC =

260 mm and AC = 100 mm. Locate the C.G. of the wire with respect to co-ordinate axes. Angle at
A is right angle.

y=

(™
*

Fig. 5.43

{Hint. First determine angles o and p. Use sine rule Y
BC - AC  AB ' A

sin90° sina sinf

C

\]
_ ACxsin90° 100 % | %'a
Sma="""ge 260 R ; N
D ¢ X
240 j——— 260 mm ———»

’ AB
_ o H — —— H L R
a = 22.62° Also sin = BC x gin 90 = %60 _
- ﬁ = 67.38° Flg. 5.44
Using equation 5.2 {¢) and 5.2 (d)

Lyxy + Loxp + Loxg

x= Iy + Ly + L) , where L, = AB = 240,
x, = distance of C.GG. of AB from y-axis
240

== % cos « = 120 x cos 22.62° = 110.77 mm

L, = BC = 260 mm, x, = Distance of C.G. of BC from y-axis = 130
Ly = AC = 100 mm, x, = Distance of C.G. of AC from y-axis
100 :
= BD + " cos B = 240 cos a + 50 cos

= 240 x cos 22.62° + 50 cos 67.38° = 240.77
240 x 110.77 + 260 x 130 + 100 x 240.77

x= = 140, . Ans.
* 240 + 260 + 100 140.77 mm. Ans. -
240 :
= El&&ﬁ*‘_;ﬂﬁ » where y, = —35~ sin o = 120 x sin 22.62° = 46.154
LivLy+1g
100
¥o=0,y3= 5 gin § = 50 sin 67.38° = 48.154
_ 240 » 46.154 + 260 % 0 + 100 x 46,154
r 600

= 26.154 mm. Ans.]
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9. Determine the C.G. of the uniform plane lamina shown in Fig. 5.45. All dimensions are in cm.

[Hint. The Fig is symmetrical about y-y axis. .
7 = T ¥ To¥y + 83Ys *+ Gays ' Ay
a1 + Qo +ag + @y H

30
where o, =40 x 30 = 1200 4:1:11'-",;y1 = "'é-' =15 cm

30
a, =30 x 20 =600 em?, ¥, =30+ —- =45 em

2
7 x 107 ar 4x10 40
R L T
10 1
@y =— 20;10 ——100,y4=60—-§0='$ T
; 210
1200x15+600x45—50nx‘—§9-_100xl§9 ‘ ®‘0 -
i - ! m
Y 1200 + 600 — 50z — 100 e 20— pig 10y
_ 18000 + 27000 - 666.7 - 5666.7 Fig. 5.45
- 1700 - 50z
38666.6
= = 250 igi
154202 6 cm from Origin 0. Ans. ]

10. From a circular plate of diameter 100 mm a cireular part of diameter 50 mm is cut as shown in
Fig. 5.46. Find the centroid of the remainder. (U.P. Tech. University, 2002-2003)

_ Fig. 5.46

{Hint. Fig. 5.46 is symmetrical about x-axis. Hence centroid les on x-axis.
_ X + tig¥Xy

o~ ag
100

n
But @, = i 100? = 7853.98 mm?, x, = 5 = 50 mm,

¥ =0.6. The value of X is given by 5

A
a, =~ (Z x 502) =-1963.5 mm?, x, = 100 - 25 = 75 mm

& T853.98x 50 - 1963.5 x 75
785398 19685 - L1-67mm

Hence centroid is at (41.67 mm, 0). Ans.]

6

Shear Force and Bending Moment

INTRODUCTION

The algebraic sum of the vertmal forces at any section of a beam to the right or left of the
section is known as shear force. It is briefly written as 3.F. The algebraic sum of the moments
of all the forces acting to the right or left of the section is known as bending moment. It is

sritten as B.M. In this chapter, the shear force and bending moment diagrams for different

types of beams (i.e., cantilevers, simply supported, fixed, overhanging etc. ) for different types
of oads (i.e., point load uniformly distributed loads, varying loads ete.) acing on the heams,
will be consulered

6.2. SHEAR FORCE AND BENDING MOMENT DIAGRAMS

A shear force diagram is oneé which shows the variation of the shear force along the
length of the beam. And a bending moment diagram is one which shows the variation of the
bending moment along the length of the beam.

Before drawing the shear force and bending moment ‘diagrams, we must know the
different types of beams and different types of load acting-on the bea -

6.3. TYPES OF BEAMS

The following are the important types of beams :
1. Cantilever beam, 2. Simply supported beam,
3, Overhanging beam, 4. Fixed beams, and -
5. Continuous beam.
6.3.1. Cantilever Beam. A beam which is ﬁxed at one end and free at the other end, is
known as cantilever béam. Such beam is shown in Fig. 6.1,

“Z ' ] | ' |

B T

Fig. 6.1 _ : Fig. 6.2

6.3.2. Simply Supported Beam. A beam supported or resting freely on the supports at
its both ends, is known as simply supported beam, Such beam is shown in Fig. 6.2,

235
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For solving numerical problems the total load is equal to the area of the triangle and
this total load is assumed to be acting at the C.G. of the triangle ie., at a distance of %rd of
total length of beam from left end.

6.3.3. Overhanging Beam. If the end portion of a beam is extended beyond the support,
such beam is known as overhanging beam. Overhanging beam is shown in Fig. 8.3,

Simply supported Overhanging

portion } portion \ Z %

I ; 17

Fig. 6.3 , Fig. 6.4
6.3.4. Fixed Beams. A beam whose both ends are fixed or built-in walls, is known as fixed
beam. Such beam is shown in Fig. 6.4. A fixed beam is also knovwn as a buili-in or encastred beam.

6.3.5. Continmious Beam. A beam which is pro- i ]
vided more than two supports as shown in Fig. 6.5, is
known as continuous beam.

'6;5. SIGN CONVENTIONS FOR SHEAR FORCE AND BENDING MOMENT

(i} Shear force. Fig. 6.9 shows 2 simply supported beam AB, carrying a load of 1060 N
at its middle point. The reactions at the supports will be equal to 500 N. Hence K, = Ry
500 N.

Now imagine the beam to be divided into two portions by the section X-X. The resultant
of the Toad and reaction to the left of X-X is 500 N vertically upwards. (Note in this case, there
is no load to the left of X-X). And the resultant of the load and reaction to the right of X.X is
(1000 } - 500 t = 500 ) N) 500 N dewnwards. The resultant force acting on any one of the parts
normal to the axis of the beam is called the shear force at the section X-X. Here the shear force
at the section X-X is 500 N. )

The shear force at a section will be considered positive when the resultant of the forces
to the left to the section is upwards, or to the right of the section is downwards. Similarly the
shear force at a section will be considered negative if the resultant of the forces to the leftrof
the seetion is downwards, or to the right of the section is upwards. Here the resultant force to
the left of the section is upwards and hence the shear force will be positive.

Fig. 6.5
6.4. TYPES OF LOAD g 08

A beam is normally horizontal and the loads acting on the beams are generally vertical.
The following are the important types of load acting on a beam :

1. Concentrated or point load, X 1000 N
2. Uniformly distributed load, and ' i ,1, B
3. Uniformly varying load. B : .
6.4.1, Concentrated or Point Load. A concentrated load is one which is considered to E : T
act at a point, although in practice it must really be distributed over a small area. In Fig. 6.6, ‘
. Ra X Rg
W shows the point load. . c i
X N Concavity oryexty
lw _ w N/m i 1000
' ] | : I h 4
£y
G it
% % % % i 4 Convexity preavly
500N !
X 50G N () Positive B.M. (&) Negative B.M.
Fig. 6.6 B '
15 Fig. 6.7 Fig. 6.9 Fig. 6.10

6.4.2. Uniformly Distributed Load. A uniformly distributed load is one which is spread
over a beam in such a manner that rate of loading w is uniform along the length (i.e., each unit
length is loaded to the same rate) as shown in Fig. 6.7. The rate of loading is expressed as
w N/m run. Uniformly distributed load is, represented by u.d.l.

For solving the numerical problems, the total

(iiy Bending moment. The bending moment at a section is considered positive if the
bending moment at that section is such that it tends te bend the beam to a curvature having
toncavity at the top as shown in Fig. 6.10 (o). Similarly the bending moment (B.M.) at a section
is considered negative if the bending moment at that section is such that it tends to bend the
beam to a curvature having convexity at the top as shown in Fig. 6.10 (b). The positive B.M. is.

uniformly distributed load is converted into a point load, often called sagging moment and negative B.M. as X 1000N

acting at the centre of uniformly distributed load. hogging moment. A é lv c ' 8
643 Uniformly Varying Load. A uniforoly vary- ! corrying = Joud ¢ 7000 N 2t T middte poin. ‘ ]
ing load is one which is spread over a beam in such a man- B c),;l s R d B, are equal and are having ;#1 m—h: ]
ner that rate of loading varies from point to point along the % % ; me:‘ 1;:}1111613 5’:);“ N asBshovm Ciin Fig. 6.11. Tmagine % .

beam as shown in Fig. 6.8 in which load is zerc at one end theglgeam to be divided into two ﬁor.tiox;s by the 4——2m -v~—>1<——— 2m —»
and increases uniformly to the other end. Such load is known Fig. 6.8 o section X-X. Let the section X-X is at a distance of ~ Ra=500H "~ BRg=500N
as triangular load. ' 4 7 1mfrom A. Fig. 6.11
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The moments of all the forces (i.e., load and reaction} to the left of X-X at the section
XXis B, x1=>500x1=500 Nm (clockmse) Also the moments of all the forces (i.e., load and

reaction) to the right of XX at the section X-Xis R, x 3 (anti-clockwise)— 1000 x 1 {clockwise} -

=500 x 3 Nm — 1000 x 1 Nm = 1500 — 1000 = 500 Nm {anti-clockwise).
Hence the tendency of the bending moment at X-X is to bend the beam so as to produce
concavity at the top as shown in Fig. 6.12.
X
Clockwise [ Anticlockwise [
| 1
p—t—y

Anticlockwise X Clockwise

Fig. 6.12 Fig. 6.13

The bending moment at a section ig the algebraic sum of the moments of forces and
reactions acting on one side of the section. Hence bending moment at the section X-X is 500 Nm.

The bending moment wilt be considered positive when the moment of the forces and
reaction on the left portion is clockwise, and on the right portion anti-clockwise. In Fig. 6.12,
the bending moment at the section X-X is positive.

Similarly the bending moment will be considered negative when the moment of the
forces and reactions on the left portion is anti-clockwise, aid on the right portion clockwise as
shown in Fig. 6.13. In Fig. 6.13, the bending moment at the section X-X is negative.

6. IMPORTANT POINTS FOR DRAWING SHEAR FORCE AND BENDING MOMENT
DIAGRAMS

In Art. 6.2, it is mentioned that the shear force diagram is one which shows the varia-
tion of the shear force along the length of the beam. And a bending moment diagram is one
which show the variation of the bending moment along the length of beam. In these diagrams,
the shear force or bending moment are represented by ordinates whereas the length of the
beam represents abscissa.

The following are the important points for drawing shear force and bending moment
diagrams :

1. Consider the left or the right portion of the section.

2. Add the forces (including reaction) normal to the beam en one of the portion. If right
portion of the section. is chosen, a force on the right portion acting downwards is positive while
a force acting upwards is negative.

If the left portion of the section is chosen, a force on the left portlon acting upwards is
positive while a force acting downwards is negative.

3. The positive values of shear force and bending moments are plotted above the base
ling, and negative values below the base line.

4. The shear force diagram will increase or decrease suddenly i.e., by a vertical straight
line at a section where there is a vertical point load.

5. The shear force between any two vertical loads will be constant and hence the shear
force diagram betweeu two vertical loads will be horizontal.

HEAR FORGE AND BENDING MOMENT _ 239

: 6. The bending moment at the two supports of a simply supported beam and at the free
enii of a cantilever will be zero.

6.7. SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A CANTILEVER
‘WITH A POINT LOAD AT THE FREE END

Fig. 6.14 shows a cantileverAB of length L fixed at A and free at B and carrying a point

ioad W at the free end B.

. ' W
X o x ——,
@ A : B
-~ 1
Ze i
o L P
T TITT 77 777 77
o w + w
l L2LLLL pa F
A S.F. diagram '\ . B

Base ling Base line

(o] B.M., diagram
Fig. 6.14
Let ' F_ = Shear force at X, and

M = Bending moment at X.

Take a sectlon Xata d1stance x from the free end. Consider the right portion of' the
section.

The shear force at this section is equal to the resultant force acting on the right portion

“at the given section. But the resultant force acting on the right portion at the section X is W

and acting in the downward direction. But a force on the right portion acting downwards ig
considered positive. Hence shear force at X is positive.

Fo=xW
The shear force will be constant at all sections of the cantilever between A and B as
there is no other load between A and B. The shear force diagram is shown in Fig. 6.14 (b).
Bending Moment Diagram
The bendmg moment at the section X is glven by
. M =-Wxx W2

(Bending moment will he negative as for the right portion of the section, the moment of
W.at X is clockwise. Also the bending of cantilever will take place In such a manner that
convexity will be at the top of the beam). :
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From equation (i), it is clear that B.M. af any section is proportlonal to the distance of
the section from the free end.

Atx=0ie,atB, BM.=0

Atx=Lie,atA, BM.=WxL

Hence B.M. follows the stra:ght line law. The B.M. diagram is ‘shown in Fig. 6,14 (e). At
point A, take AC = W x L in the dewnward direction. Join point Bto C.

The shear force and bending moment diagrams for several concentrated loads acting on
a cantilever, will be drawn in the similar manner.

Problem 6.1. A cantilever beam of length 2 m carries the point loads as shown in ‘

Fig. 6.15. Draw the shear force and B.M. diagrams for the caniilever beam.
Sol. Given :
Refer to Fig. 6.15.

300N 500 N . BOO-N

TR M N

(@)
id—O.Sm—*——O.?m—bIﬂ-—‘D.a_m—r
1 |
7
300 N
H G
(& 1e00N _ £ _fsoo N £
i . + T *
! _ 800N
: : P ¥
i .
A e e \Base ling P
Base line
A [:] It o

T 2850 Nm

Fig. 6.15

Shear Force Diagram

The shear force at 17 is + 800 N. This shear force remains constant between D and C.
At C, due to point Ioad, the shear force becomes (800 + 500) = 1300 N. Between C and B, the
shear force remains 1300 N. At B again, the shear force becomes {1300 + 300) = 1600 N. The
shear force between B and A remains constant and equal to 1600 N. Hence the shear force at
different points will be as given below : ]
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. 8F.atD, F,=+800N
SF.atC F,=+800+500=+1300N
- 8F.atB, Fp =+800 + 500 + 300 = 1600 N
SF.at4, F,=+1600N.
The shear force, diagram is shown in Fig. 6.15 (b) which is drawn as :
Draw a horizontal line AD as base line. On the bage line mark the points B and C below

‘the point loads. Take the ordinate DE = 800 N in the upward direction. Draw a line EF parallel

to AD. The point F is vertically above C. Take vertical line FG = 500 N. Through G, draw a
horizental line GH in which point H is vertically above B. Draw vertical line HI = 300 N.

‘From I, draw a horizontal line IJ. The point «f is vertically above A, This completes the shear

force diagram.

Beﬂd_ing Moment Diagram

The bending moment at D is zero :
(i) The bending moment at any section between C and D at a distancex and I?is given hy,
7 M, = 800 x x which follows a straight line law.
At C, the value of x = 0.8 m.
B.M. at C, M =~ 800 x 0.8 = — 640 Nm.
(ii) The B.M. at any section between B and C at a distance x from DI is given by
(AtC x=08and at B, x = 0.8 + 0.7 = 1.5 m. Hence here x varies from 0.8 to 1.5).

M, =~ 800x— 500 (x—0.8) D)
Bending moment between B and C also varies by a straight line law.
B.M. at B is obtained by substituting x = 1.5 m in equation (i),
: My =-800x15-500(15~0.8)
=—1200 - 350 = - 1550 Nm.
(ii{) The B.M. at any section between A and B at a distance x from D is given by

“(At B, x = 1.5 and at A, x = 2.0 m. Hence here x varies from 1.5 m to 2.0 m)

M =—-800x-500(- 0.8} - 300 {x - 1.5) (i)
Bending moment between A and B varies by a straight line law. :
B.M. at A iz obtained by substituting x = 2.0 m in equation {if),

M, =~ 800 x 2 -500{2-0.8)-300(2- 1.5
=-800x2-500x1.2-300x0.5

=— 1600 — 600 — 150 = - 2350 Nm.
Hence the bending moments at different points will be as given below :

My=0

M, = - 640 Nm

M, = - 1550 Nm
and M, = - 2350 Nm.

The bending moment diagram is shown in Fig. 6.15 {c) which is drawn as.
Draw a horizontal line AD as a base line and mark the points B and C on this line. Take
vertical lines CC' = 640 Nm, BB’ = 1550 Nm and AA’ = 2350 Nm in the downward direction.

-Join peints D, ", B’ and A’ by straight lines. This completes the bending moment diagram.
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6.8. SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A CANTILEVER
WITH A UNIFORMLY DISTRIBUTED LOAD

Fig. 6.16 shows a cantilever of length L fixed at A and carrying a uniformly dlstnbuted
load of w per unit length over the entire length of the cantilever.

w Per unit length- . :x‘ %

H -
: 8
]
1

+
WX
£ L22

A S.F. diagram

Base line

. Baseling

FFTTIT

A’ B.M. diagram
Fig. 6.16
Take a section X at a distance of x from the free end B.
Let F, = Shear force at X, and

M = Bending moment at X.
. Here we have cons1dered the right portion of the section. The shear force at the section
X will be equal to the vesultant force acting on the right portion of the section. But the result-
ant force on the right portion = ¢ x Length of right portion = w.x.

This resultant force is acting downwards. But the resultant force on the right portion '

acting downwards is considered positive. Hence shear foree at X is positive.
: F o=+wx
The above equation shows that the shear force follows a straight line law.
AtB,x=0andhence F =0
At A, x = L and hence F =w.l
The shear force diagram is shown in Fig. 6.16 (b)

Bending Moment Diagram
1t is mentioned in Art. 6.4.3 that the uniformly distributed load over a section is con-
verted into point load acting at the C.G. of the section.
The bending moment at the section X is given by
M_ = - {Total load on right portion) :
x Distance of C.G. of right portion from X

x2

=-.(w.x)_.%=—w.x.£=—w.— ()3

2 2
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(The bendmg moiment will be negative as for the rlght portion of the section, the moment
of the load at x is clockwise. Also the bending of cantilever WlIl take place in such a manner
that convexity will be at the top of the cantilever). -

From equation (7), it is elear that B.M. at any section is proportional to the square of the

- distance of the section from the free end. This follows a parabolic law.

AtB,x=0hence M =0
L2
AtA, x=Lhence M =-w. -
The bending moment diagram is shown in Fig. 6.16 {c).

Problem 6.2, A cantilever of length 2. 0 m carries a uniformly distributed load of 1 kN/m
run over a length of 1.6 m from the free end. Draw the shear force and bending moment diagrams

_ for the cantilever.

Sol. Given :

U.nL., w =1 kN/m run

Refer to Fig. 6.17.
' 1 kN/m Run
éA G B

@ | _ |

7 i 1.5m :i
e 2.0m »

by 1.5 &N

Parabolic

A Straight line B.M. diagram

Fig. 6.17

Shé‘ar Force Diagram
" Consider any section between C and B a chstance of x from the free end B. The shear
force at the section is glven by
F. =wx {(+ve sign is due to downward force on right portion of the section)
=10xx _ (~ w=1.0kN/m run)
" At B, x =0hence F =0
AtC,x=15hence F =10x15=15kN.

' The shear foree follows a straight line law between C and B. As between A and C there
is no load, the shear force will remain constant. Hence shear force between A and C will be
represented by a horizontal line.
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The shear force diagram is shown in Fig. 6.17 (b) in which
Fp=0,Fs=15kN and F, = F, = 1.5 kN.

Bending Moment Diagram
(Z) The bending moment at any section between C and B at a d1stance x from the free
end B is given by

2 2

sz—(w.x.).%-—- -[1.%}—%— D)

(The bending moment will be negative as for the right portion of the section the moment
of load at x is clockwise).

2
At B, x = 0 hence MB——%——O

2
AtC,x=15hence M,=- 1—25— =-1.125 Nm
From equation (f) it is clear that the bending moment varies according to parabolic law
between C and B.
(if) The bending moment at any section between A and C at a distance x from the free
end B is obtained as : {here x varies from 1.5 m to 2.0 m)

Total load dueto UDL. 2w x 1.5 = 1.5 kN.

This load is acting at a distance of % = 0.75 m from the free end B or at a distance of

{x — 0.75) from any section between 4 and c.
-, Moment of this load at any section between A and € at a distance x from free end
= (Load due to U.D.1.) x (x - 0.75)

M, =15 x (x - 0.75) d).

(- vé sign is due to cloclwise moment for right portion)

From equation {ii) it is elear that the bending moment follows straight line law between
Aand C.

AtC,x=15mhence My=-15(15-0756)=-1.125Nm

AtA x=20mhence M,=-15(2~0.75)=-1.875 Nm.

Now the bending moment diagram is drawn as shown in Fig. 6.17 (¢). In this diagram
line CC' = 1.125 Nm and 44’ = 1.875 Nm. The points B and C" are on a parabohc curve whereas
the points A' and C' are joined by a straight line.

Problem 6.3. A cantilever of length 2.0 m carries a uniformly distributed load of
2 kNim length over the whole length and a point ioad of 3 kN at the free end. Drow the S.F. and
B.M. diagrams for the cantilever.

Sol. Given :
Length, L=20m
U.D.L., w = 2 kN/m length

Point load at freeend =3 kN
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Refer to Fig. 6.18.

j . 2 kN/m 3kN

N em— »

Py ryyi 2

A SE.diagam  Ngaes fne

Base line

77 TF77?T B

A ) B.M. diagram

Fig. 6.18

Shear Force Diogram
The shear force at B = 8 kN
Consider any section at a distance x from the free end B. The shear force at the section
is given by, i a

F =30+wx (+ve sign is due to downward force on
right portion of the section}
=3.0+2xx (+ w=2kNm)

The above equation shows that shear force follows a straight line law.

At B, x = 0 hence Fp=3.0kN

AtA,x=2mhence F,=3+2x2=TkN.

The shear force diagram is-shown in Fig. 6.18 (b) in which F = BC =3 kN and F,, = AD
= 7 kN. The points C and. D are joined by a straight line.

Bending Moment Diagram
The hending moment at any section at a distance x from the free end B is given by,

M, = «-(3x+wx.£)
2

(‘3;; + 2‘2—] (¢ w=2kNm)

=—{3x +x% D)
{The bending moment will be negative as for the right portmn of the section, the moment

~of loads at x ig clockwise).
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The equation (i) shows that the B.M. variég accordmg to the parabahc law. From
equation (), we have

At B, x = 0 hence Mp=-38x0+0%=0

At A, x = 2 m hence MA——(3x2+22)_—-10kN/m

Now the bending moment diagram is drawn as shown in Fig. 6.18 (c). In this diagram,
AA’ = 10 kNm and points A’ and B are joined by a parabolic curve.

Problem 6:4. A cantilever of length 2 m carries a uniformly distributed load of 1.5 EN/m
run over the whole length and a point load of 2 BN at a distance of 0.5 m from the free end. Draw
the 8.F. and B.M. diagrams for the cantilever.

Sol. Given :

Length, L=2m

U.D.L, w = 1.5 kN/m run
Point load, W=2LkN

Distance of point load from free end = 0.5 m
Refer to Fig. 6.19.

1.6 kil/m 2kN
C
A 8
@ | -
qe 1.5m k] 0.5m —»
“14 2m »
F
(® so0p
A 8.F. diagram c \ e
 Baseline
Base line
A e 9] B

A B.M. diagram

Fig. 6.19

" Shear Force Diggram )
(i} Consider any section between C and B at a distance x from the free end. The shear
force at the section is given by,
' F =+wx - : " {+ve sign is due to downward
force on right portion)
=15xx . (i)
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In equation (z) x varies from 0 to 0.5. The equation () shows that shear force varies by
a straight line law between B and C.

At B, x = 0 hence Fp=15x0=0

AtC x=05hence - Fg=15x05=075kN

(if) Now consider any section between A and C at a distance x from free end B. The
shear force at the section is given by

F =z+wx+2kN (+ve sign is due to downward force

on nght portion of the section)-
=1bx+2 - {i7)
In equation (ii), x varies from 0.5 to 2.0. The equation (i) also shows that shear foree
varies by. a straight line law between A and C.
At C, x = 0.5 hence Fr=15x05+2=275kN
At A x = 2.0 hence F,=15x2.0+2=50kN
Now draw the shear force diagram as shown in Fig. 6.19 (b} in which €D = 0.75 kN,

~ DE =20 kN or CF =-2.75 kN and AF = 5.0 kN. The point B is joined to point 2 by a straight

line whereas the point E is also joined to point F by a straight line.

. Bending Moment Diagram

{Z) The bending moment at any section between C and B at a distance x from the free
end B is given by

M, =—(wx). Z
2
=_ (1.5 x x). g (v w=15kN/m)
=~ 0.75x2 . {di)

(The bending moment will be negative as for the nght portion of the section the moment
at the section is clockwise).

In equation (iii}, x varies from 0 to 0.5. Equation (ii{) shows that B.M. varies between
C and B by a parabolic law. :

AtB,x=0hence My=-075x0=0

AtC,x=0.5hence M,=-0.75 x 0.5% = - 0.1875 kNm.

~ (if) The bending moment at any section between A and C at a distance x from the free
end B is given by

M, =-(wx). ——2(x 0.5)=-(1lExx). ——2(x 0.5)
(v w=1.5kN/m}
=—0.75x% - 2(x - 0.5) .. (iv)
In equation (iv), x varies from 0.5 to 2.0. Equation (fv) shows that B.M. varies 'by a
parabolic law between A and C.
At C,x =05 hence M,=-0.75x 0.52- 2(0.5 -0.5) = - 01875 kN/m.
At A, x=20hence M, =-0.75 x 2% - 2(2.0 - 0.5) kNm = - 3.0 - 3.0 =--6.0 kNm

Now the bending moment diagram is drawn as shown in Fig. 6.19 (¢). In this diagram
line CC' = 0.1875 and AA’ = 6.0. The points A’, €' and B are on parabolic curves,
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Problem 6.5. A cantilever 1.5 m long is loaded with a uniformly distributed load of

2 kN/m run over.a length of 1.25 m from the free end. It also carries a point load of 3 kN at a '

distance of 0.25 m from the free end. Draw the shear force and bending moment diagrams of the
cantilever,

Sol. Given:

Length, L=15m
UD.L, w =2 kN/m
Point load, W=3kN

Refer to Fig. 6.20.
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Fig. 6.20

Shear Force Diggram

The shear force at B is zero. 7

The shear force increases to 2 x 0.25 = 0.5 kN by a straight line at C. Due to point load
of 3 kN, the shear force suddenly increases to 0.5 + 3 =3.5 kN at C.

The shear force further increases to 3.5 + 2 x 1 = 5.5 kN by a straight line at D. The
shear force remains constant betwesn A and D-as there is no load between A and D.

Now the shear force diagram is drawn as shown in Fig. 6.20 (). In this diagram line

CE=05kN, CF = 3.5 kN, DG = 55 kN and AH = 5.5 kN. The point B is joined to E by a

straight line. The point F is also joined to G by a straight line. Line GH is horizontal.
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Bending Moment Diagram
BM.atB=0

BM. atD——ZxOZSx%ﬂ——0.0E%kNm

BM. atD=—2x 125x1—22§—(3 x 1) = — 4.563 KNm

BM.atA=~2x 1.25 (Lz?é s 025) 8 x (1 +0.25) = - 5.94 kNm.

The bending moment between B and C and between C and I varies by a parabolic law.
But B.M. between A and I varies by a straight line law.

Now. the bending moment diagram is drawn as shown in Fig. 6.20 (¢). In this diagram
line CC" = 0. 0625, DD' = 4.563 and AA’ = 5.9. The points B, C' and D' are on parabolic curve

whereas points A’ and D' are joined by a straight line.

Problem 6.6. A cantilever of length 5.0 m is Zoaded as shown in Fig. 6.21. Draw the
S.F. and B.M. diagrams for the cantilever.

Sol. The shear force at B is 2.5 kN and remains constant between Band C.

The shear force increases by a straight line law t02.5+2x1=45kNatD. The shear
force remains constant between D and E. At point E, the shear force suddenly increases to
4.5+ 3 =17.5 kN due to point load at E. Again the shear force remains constant between A and E.
Now the shear force diagram is drawn as shown in Fig. 6.21 (b).

3 kN 1 kN/m 2.5kN
%A lv '

(a) { B

hY \#\
:
&
3
[3,]
E
ro
2

K J
& 7S
.
A E D p
S.F. diageam Base line
| Base line i
A Dy ooeen ¢ B

PITFIVITT

Parabolic

[y
A \ Straight lines

B.M. diagram

Fig. 6.21
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Bending Moment Diagram
BM.atB=10
BM.atC=-25x0.5=-125kNm
BM.atD=-25x25-2x1x1=-825kNm
BM atE=-25x4-2x1x{(1.5+1.0)=-10-5==15kNm
BM.atA=-25x5-2x1x{1+15+10)-83x%1
=-125-70-3=-225kNm.

Now the bending moment diagram is drawn as shown in Fig. 6.21 (o). In this diagram,
the B.M. varies according to parabelic law between points € and D only. Between other points
B.M. varies according to straight line law.

6.9. SHEAR FORCE AND BENDING MOI\/IENT DIAGRAMS FOR A CANT]LEVER CAR-
RYING A GRADUAELY VARYING LOAD

Fig. 6.22 shows a cantilever of length L fixed at A and carrying a gradually varying load
from zero at the free end to.w per unit length at the fixed end.

Load diagram

Parabolic curve

wxbL
b 2
L s
A S.F. diagram BEES 8
! ) Base line
| Base line
LA ¥C B
&) Wt
6

Cublc curve B.M. diagram
Fig. 6.22
Take a section X at a distance x from the free end B.
Let F, = Shear force at the section X, and

M, = Bending moment at the section X
Let us first find the rate of loading at the section X. The rate of: loading is zero at B and
is w per metre run at A. This means that rate of loading for a length L is w per unit length.
Hencerate of loading for a length of x will be = 7 x x per unit length, This is shown in Fig, 6.22 (a}

by CX, which is also known as load diagram. Hence CX = _wL_w

SHEAR FORCE AND BENDING MOMENT 251

The shear force and the section X at a distance x from free end is given by,
F_ =Total load on the cantilever for a length x from the free end B
= Area of triangle BCX :

(3
_XB.XC _"{L
T2 2

2 .
- in )

The equation (¢} shows that the S.F, varies according to the parabolic law.
wx 02 -0

2L
w. I? _w.L
_ 2L 2
The bending moment at the section X at a distance x from the free end B is given by,

= - (Total load for a length x) x Distance of the load from X
=— (Area of triangle BCX) x Distance of C.G. of the triangle fromX

. 2 3
. (E’_’C_J N G

- XB- ,X0=ﬂ]
[ “ L

AtB,x=0hence Fy=

AtA x=Lhence F,=

2L
The equation {if) shows that the B.M. varies according to the cubic law.
wx0 '
AtB, x=0hence M,=-——=0
B 6L

w I? w. L?

6L ]
Problem 6.7. A cantilever of length 4 m carries o gradually varying load, zera ot the
free end to 2 EN/m at the fived end. Draw the S.F. and B.M. diograms for the cantilever.

Sol. Given :

Length, L=4m

Load at fixed end, w =2 kN/m
Shear Force Diagram

The shear force is zero at B. The shear force at C will be equal to the area of load
diagram ABC.

AtA x=Lhence M, =~

4x2

Shear force at C = =4 kN

The shear force between A and B varies according to parabolic law.,

_ Bénding Mament Diagram -
: 2
The B.M. at B is zero. The bending moment at A is equal to — wa .
2 2
M, = w'GL o245 33kNm.

The B.M. between A and B varies according to cubic law.
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c . '
¥ .
2 kN/m :
L3
(a} ] |
qA . 8
g4 4m g
b Load diagram
(b} akN :
l +
< B
A S.F. diagram

A B.M. diagrarmn

Fig. 6.23

6.10’.'SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A SIMPLY
SUPPORTED BEEAM WITH A POINT LOAD AT MID-POINT

Fig. 6.24 shows a beam AB of length L simply su}ip'orted at the ends A and B and carry-
ing a point load W at its middle point C.

The reactions at the support will be equal to % as the load is acting at the middle point
of the beam. Hence R, = Ry, = g .
Take a section X at a distance x from the end A between A and C.
Let F_ = Shear force at X,
and M, = Bending moment at X.
Here we have considered the left portion of the section. The shear foree at X will be
equal to the resultant force acting on the left portion of the section. But the resultant force on
Lo W . e
the left portion is — acting upwards. But according to the sign convention, the resultant force
on the left portion acting upwards is considered positive. Hence shear foree at X is positive and
. L W
its maghitude is 5
) W
Fo=+ 5
Hence the shear force between A and C is constant and equal to + EZL

o Bending Moment Diggram

“' is given by
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W
XMy 10 5
@ A \ -
3 S
a _Wu—-—— Lz ——n w
AT o ¢ - L » BB=§
FI777F rrrd 7 7 I
) %I + Base line
A £ c 777, 7 J 777 B
- w
2
{e)

B.M. diagram Base ling

Fig. 6.24

Now consider any section between O and B at distance x from end A. The resultant force
on the left portion will be

This force will also remain constant between C and B. Hence shear force between C and B

s equal to - %

At the seetion C the shear force changes from + ~v2£ to - l;r—

The shear force diagram is shown in Fig. 6.24 (b).
(i) The bending moment at any section betweend and C at a distance ofx from the end 4,

M, =R,x or M. =+ % X 8

. (B.M. will be positive as for the left portion of the section, the moment of all forces at X
14 clockwise. Moreover, the bending of beam takes place in such a manner that concavity is at
the top of the beam).

At A, x = 0 hencé M, = 0
: .

t~

L .
At C,x= Ky hence M=
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From equation (i), it is clear that B.M. varies according to straight line law between

A and C. B.M. is zero at A and it increases to WxL at C.

is given by .
7 .
Mx=RA.x—W><( '—E)z——_x—Wx+Wx£=__._
WL_W L_WxL
2 2 2 4

At B, x = L hence MB=WTL—%3<L=O.

AtC,x = % hence M=

Hence bending moment at C is WL and it decreases to zero at B. Now the B.M. diagram
can be completed as shown in Fig. 6.24 (c). ‘
Note. The bending moment is maximum at the middle point (2, where the shear force changes its
sign. I i
6.11. SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A SIMPLY
SUPPORTED BEAM WITH AN ECCENTRIC POINT LOAD

Fig. 6.25 shows a beam AB of length L, simply supported at the ends A and B and
carrying a point load W at € at a distance of ‘o’ from the end A. -

W
M X —> X c
A B
(@ > a b —
Al s g —<

(L4 777 777
e P » B
A C 77
T — IW xa
1 S.F. diagram . 10 L
Wxaxb
e
(e) 5
A B._M. diagram ¢ B
Fig. 625
Let R, = Reaction at the support 4, and

Ry, = Reaction at the support B. .

First calculate the reactions, by taking moments about A or about B:

Taking moments of the forces on the beam about A, we get
RyxL=Wxa :

W.a
fy="p

(ii) The bending moment at any section between C and B at a distance from the end A,
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and R,=W-R,=W- .WL_“
=W[1-%}=W[L£“J=W£‘b ¢+ L-a=b)

Consider a section X at a distance x from the end A between A and C.
The shear force F, at the section is given by,

F,=+R =+—2" )

(The shear foree will be positive as the resultant force on the left portion of the section is
acting upwards). )

The shear force between A and C is constant and equal to WWE‘?

Now consider any section between C and B at 2 distance x from the end A. The result-

_gnt force on the left portion will be B, — W

or —W;b-W=W.(u-]=—W[
L

L—b] W.a
L

= = ———— n L— =
2 2 { b=a)

The shear force between C and B is constant and equal to - %. At the section C, the

shear force changes from % to - —V%I—. The shear force diagram is shown in Fig. 6.25 (b).

Bending Moment Diogram

(i) The bending moment at any seetion between A and C at a distance x from the end A,
is given by

M =R, xx=+ ?x (Plus sign due-to sagging)
At A, x = 0 hence MA=¥XO=O
W.b W.a.b
AtC,x =ahence M = T'a=_L—

W.a.b

Hence the B.M. increases from zero at A to at C by a straight line law. The B.M.

.

is zero at B. Hence B.M. will decrease from at C to zero at B following a straight line

law. The B.M. diagram is drawn in Fig. 6.25 (c). -

From the shear force and bending moment diagrams, it is clear that the B.M. is maximum
at C where the 5.I. changes its sign.

Problem 6.8. A simply supported beam of length 6 m, carries point load of 3 LN and 6 kN
at distances of 2 m and 4 m from the left end. Draw the shear force and bending moment
diagrams for the beam. i : .

Sol. First calculate the reactions R, and Rp.

Taking moments of the force about A, we get

Rpx6=3x2+6x4=30
30

Ry= - =5KN

RA=Totalloadonbeam-—RB=(3+6)—5=4kN
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//IS kN i

77 £ oy A1 kN
A ® c ob¥” T

Base line [ -

o
=
=

S.F. diagram o, pivsicrescd]
[ 5kn

@ gkNm  +

10 kNm
y:
CELY B
Base line

B.M. diagram

Fig. 6.26

Shear Force Diagram

Shear force at A, F,=+R,=+4kN

Shear force between A and C is constant and equal to + 4 kN
Shear force at C, Fo=+4-30=+1kN

Shear force between C and D is constant and equal to + 1 kN.
Shear force at D, Fp=+1-6=-5kN

The shear force between I and B is constant and equal to — 5 kN.
Shear force at B, Fp=-5kN

The shear force diagram is drawn as shown in Fig. 6.26 (b).

Bending Moment Diagram

B.M. at A,
B.M. at C,
B.M. at D, M.
BM. at B,
The bending moment diagram is drawn as shown in Fig. 6.26 (¢).

i

4]
R, x2=4x2=+8kNm
RAx4—3x2=4x4-—3x2=+10kNm

=X
1]

=]

.mg

6.12. SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A SIMPLY

SUPPORTED BEAM CARRYING A UNIFORMLY DISTRIBUTED LOAD
Fig. 6.27 shows a beam AB of length L simply supported at the ends A and B and

carrying a uniformly distributed load of w per unit length over the entire length. The reac-
tions at the supports will be equal and their magnitude will be half the total load on the
entire length.
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—x— wilnit length
1
A ] i B8
(@) + i iC r s
Ba 14 ' L > B
w.[r ; E Base fine |
wEop :

® 4 e io . r

A SFdagam % TW_‘L

' k3
I< - L2 :I: Lo —
w.l.

@ T &

A C \ 8

8.M. diagram Base line
Fig. 6.27
Let R, = Reaction at A, and
Ry = Reaction at B
w.L
By=Ry=5"

Fx"—"+RA-w.x=+£v'2—L—w.x

AtA,x=0Ohence F,=+—_—-———=+
At B, x = L hence FB=+-—é -w.L=-

At C, xm%hence FC=+~—2—-—w.— =

The shear force diagram is drawn as shown in Fig. 6.27 (5).
The bending moment at the section X at 2 distance x from left end A is given by,

x
M=+R,. x-w.x.

_w.L w.x? ( R, - w.L

- TR T
From equation {{i), it is clear that B.M. varies according to parabolic law.

2

Cousider any section X at a distance x from the left end A. The shear force at the section
.(i.e., F)is given by,

-{8)

From equation (i}, it is clear that the shear force varies according to straight line law.
‘ The values of shear foree at different points are :

] (i)
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The values of B.M. at different points are :
w.L

At A, x = 0 hence M, = 5" 0——5——:0
At B, x = L hence MB=%£.L-% L2=0
L wl I w (LY wI?® wIl® wl?
= — = | = - = +
At C, x 5 hence MC 7 5 2 [2] 1 3 3

2

Thus the B.M. increases according to parabolic law from zerc at A to + d at the
middle point of the beam and from this value the B.M. decreases to zero at B according to the
parabolic law.

Now the B.M. diagram is drawn as shown in Fig. 6.27 (¢).

Problem 6.9. Draw the shear force and bending moment diagram for a simply supported
beam of length 9 m and carrying a uniformly distributed load of 10 kN/m for a distance of 6m
from the left end. Also calculate the maximum B.M. on the section.

Sol. First caleulate reactions B, and Rj.

10 kN/m

c
A B
N F 3
——— e —————»
)
@ Ra 14 - gm 1 Rg
46 kN 20 kN
T Base line E
o 2 A
& D C B
A S.F. diagram | » Jj}}o '
H Parabotic

Parabolic Straight

line

G}

A D ¢ b B
B.M. diagram Base line
Fig. 628

Taking moments of the forces about A, we get
Ryx9=10x6x > =180

RB=}~?)—Om20kN

R, =Total load on beam - By = 10 x 6 - 20 = 40 kN.
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Shear Force Diagram
Consider any section at a distance x from A between A and C. The shear force at the
section is given by,

F,=+R,-10x=+40-10x B
Equation (i) shows that shear force varies by a straight line law between A and C.

At A, x =0 hence F,=+40-0=40kN : '

At C, x = 6 m hence Fo=+40~ 10 x 6 =—20kN

The shear force at A is + 40 kN and at C is — 20 kN. Also shear force between A and C
varies by a straight line. This means that somewhere between 4 and C, the shear force is zero.
Let the S.F. is zero at x metre from A. Then substituting the value of S.F. (i.e., F,} equal to zero
in equation (i), we get

0=40-10x
40

x=—=
10

Hence shear force is zero at a distance 4 m from A.
The shear force is constant between C and B. This equal to — 20 kN,

Now the shear force diagram is drawn as shown in Fig. 6.28 (). In the shear force
diagram, distance AD = 4 m. The point D is at a distance 4 m from A.

B.M. Diggram
The B.M. at any section between A and C at a distance x from A is given by,

szRAxxwlo.x.§=40x—5x2 G

Equation (ii) shows that B.M. varies according to parabolic law between A and C.
At A, x = 0 hence M,=40x0-5x0=0

At C, x = 6 m hence M,=40x6-5 x 6% = 240 - 180 = + 60 kNm -

At D, x = 4 m hence Mp=40x4-5%4%=160-80 =+ 80kNm

The bending moment between C and B varies according to linear law,

B.M. at B is zero whereas at C is 60 klNm.

The bending moment diagram is drawn as shown in Fig. 6.28 {c).

Maximum Bending Moment

The B.M. is maximum at a point where shear force changes sign. This means that the

point where shear force becomes zero from positive value to the negative or vice-verse, the

‘B.M. at that point will be maximum. From the shear force diagram we know that at point D,

- the shear force is zero after changing its sign. Hence B. M is maximum at point D, But the

BM at D is + 80 kNm.
ks Max. B.M. = + 80 kN. Ans.

Problem 6.10. Draw the shear force and B.M. diagrams for a simply supported beam of

length 8 m and carrying a uniformly dtstnbuted load of 10 EN/m for a distance of 4 m as shown

in Fig. 6.29.

Sol. First calculate the reactions R, and Ry,

Taking moments of the forces about A, we get

R8x8=10x4x(1+%]=120
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10 kN/m
A c D B
(@) _".‘ﬁl.."."_pgd 4m e 3m—
Aa Lo 8m NEN
25 kN 15 kN

B o5 + Base line

Parabolic

Straight
line

Parabolic
Straight
() line

25
N
C

: E D B
B.M. diagram

Fig. 6.29

Rﬂx% =15kN
R, = Total load on beam - Ry
=10x4-15=25kN

Shear Force Diagram

The shear force at 4 is + 25 kN. The shear force remains constant between A and C and
equal to + 25 kN. The shear force at B is — 15 kN. The shear force remains constant between
B and D and equal to — 15 kN. The shear force at any section hetween C and D at a distance
x from A is given by, )

F o=+25-10x-1) A7)

At C, x = 1 hence FC=+25—-10(1—1)=+251(N

At D, x = 5 hence Fp=+25-106-1)=-15kN

The shear force at C is + 25 kN and at D is — 15 kN. Also shear force between Cand D
varies by a straight line law. This means that somewhere between C and D, the shear force is
zero. Let the S.F. be zero at x metre from A. Then substituting the value of 8.F. (.., F_) equal
to zero in equation (i), we get

0=25-10(x — 1}

or 0=25-10x+ 10 or 10x = 35
35
E =3.
x 10 5m

Hence the shear force is zero at a distance 3.5 m from A.
Hence the distance AE = 3.5 m in the shear force diagram shown in Fig. 6.29 (b).
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. B.M. Diagram

B.M. at A is zero

B.M. at B is also zero

BM.atC=R, x1=25x1=25kNm

The B.M. at any section between C and D at a distance x from A is given by,
szRA.xﬁIO(x—l).(—x;—1)=25xx—5(x—1_)2 D)
M, =25x1-5(1-1)%=25KNm

AtD,x=5 hence M =25x5-5(5--1)%=125-80 =45 kNm

At E, x = 3.5 hence Mp=25x%35-535- 1) =87.5-31.25 =56.25 kNm
B.M. will increase {roni 0 at A to 25 kNm at C by a straight line law. Between C and D

AtC,x=1 hence

_the B.M. varies according to parabolic law as is clear from equation (if). Between C and D, the

B.M. will be maximum at E. From D to B the B.M. will decrease from 45 kNm at D to zero at B
according to straight line law.

Problem 6.11. Draw the S.F. and B.M. diagrams of « simply supported beam of length
7 m carrying uniformly distributed loads as shown in Fig. 6.30. )

10 kN/m 5 kN/m
A e C B
Fy 3
(a} ——————3m ————H——2m —P——am —>
R,=25 Rp=15
@&
25 + _
E C 3 D B8
A | - 15
S.F diagram
31.25
@
‘19 20
A B.M. diagram E C D

Fig. 6.30

Sol. First caleulate the reactions B, and Ry,
Taking moments of all forces about A, we get

RBx7=1Ox3x%+5x2x[3+2+%)=45+60=105

RB=1_(7’§=151;N
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and R, = Total load on beam - Eg
={10x3+5x2)-15=40-15=25kN

S.F. Diagram.

The shear force at A is + 25 kN
The shear forceat C=R, - 3% 10=+25-30=~5kN
The shear force varies between A and C by a straight line law.

The shear force between C and D is constant and equal to - 5 kN .

The shear force at B is ~ 15 kN

The shear force between P and B varies by a straight line law.

The shear force diagram is drawn as shown in Fig. 6.30 (b).

The shear force is zero at point E between A and C. Let us find the location of E from A.
Let the point E be at a distance x from A.

The shear force at E =R, - 10 x x = 25 - 10x

But shear force at E=0

25 -10x=0 : or 10x =25
25
=—=2.
or x 0 5m

B.M. Diagram
B.M. at A is zero
B.M. at B is zero

B.M. at C, MC=RAx3—10x3xg:25x3—45=75—45:30kNm
At E, x = 2.5 and hence
B.M. at E, ME=RA><2.5-10><2.5><E§5~:25x2.5—5x6.25

= 62.5 - 31.25 = 31.25 kNm
B.M. at D, MD=25(3+2)—10><3>((-§~+2]=125—105=20kNm

The B.M. between AC and between BI varies ‘according to parabolic law. But B.M.
between C and D varies according to straight line law. Now the bending moment diagram is
drawn as shown in Fig. 6.30 (¢).

Problem 6.12. A simply supported beam of length 10 m, carries the uniformly distrib-
uted load and two point loads as shown in Fig, 6.31, Draw the S.F. and B.M. diagram for the

. beam. Also calculate the maximum bending moment.

Sol. First calculate the reactions B, and Rj.

Taking moments of all forces about 4, we get

RBx10:50x2+10x4x(2+%)+40(2+4)
=100 + 160 + 240 = 500

500
R =50 kN
5570
and E, = Total load on beam - Ry

=(50 + 10 x 4 + 40) - 50 = 130 — 50 = 80 kN
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50N {0 knim 40kN
A c e ,-lD

(e} 4_“2m —*—-—*4m——>§<——4m—p

“ 10 m

. R, =80

(b)

Rg =50

(e)

B.M. diagram
Fig. 6.31
S.F. Diagram
The S.F. at 4, F,=R,=+80kN

The S.F. will remain constant between A and € and equal to + 80 kN

The S.F. just on RH.8. of C = R, - 50 =80-50= 30 kN

The S.F. just on LH.S. of D =R, ~ 50~ 10 x 4 = 80 — 50 — 40 = - 10 kN

The S.F. between € and D varies according to straight line law.

The S.F. just on RH.8. of D =K, - 50~ 10 x4 - 40 = 80 - 50 - 40 - 40—_—50kN

The S.F. at B =- 50 kN

The S.F. remains constant between D and B and equal to — 50 kN

The shear force diagram is drawn as shown in Fig. 6.31 (b).
The shear force is zero at point F between C and D.
Let the distance of E from point A is x.
Now shear forceat E=R,-50-10x (x-2)
=80-50-10x +20=50- 10x
But shear force at E=0
50-10x=0 or x=5—0=5m
10 '
B.M. Diagram
B.M. at A is zero
B.M. at B is zero
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BM. at C, My=RE,x2=80x2=160kNm 0
B.M. at D, MD=RA><6—5D><4—10><4><54— o] wim
) =80 x 6 - 200 — 80 = 480 - 200 — 80 = 200 kNm A i '
At E,x =5 m and hence B.M. at E, B
ry x C . h
My =Fy x5-50(5-2) - 10 x (5-2) x (5 pi ) @ pe—x—, Loarl dagrem
- " L »
=80x5-50x3~10x3x £ =400~ 150 - 45 = 205 kNm
The B.M. between € and D varies according to parabolic law reaching a maximum value )
at E. The B.M. between A and C and also between B and D varies according to linear law. The k)
B.M. diagram is shown in Fig. 6.31 {c). ) l"’"‘—" + F
Maximum B.M. J'.'; /& S B$
The maximum B.M. is at E, where S.F. becomes zero after changing its sign. S.F. diagram | wl
Max. BM. = M = 205 kNm. Ans. -
6.13. SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A SIMPLY SUP-
PORTED BEAM CARRYING A UNIFORMLY VARYING LOAD FROM ZERO AT
EACH END TO w PER UNIF LENGTH AT THE CENTRE (©

Fig. 6.32 shows a beam of length L simply supported at the ends A and B and carrying a

uniformly varying load from zero at each end to w per unit length at the centre. The reactions A ‘ B.M.diagram  © B
at the supports will be equal and their magnitude will be half the total load on the entire
length, as the load is symmetrical on the beam. Fig. 6.32
But total load on the beam = Area of load diagram ABO 8 5
= ;A-J-Biw;—qq- WL ; 2 oor E)E—Ii This load is acting at a distance of % from X
" R, = Ry = Half the total load Now S.F. at X is given by,
1 (ELI:J Lw.L F,=R, - load on the length AX
. ) 2\ 2 4 . w. L w g .. w.L @)
Consider any section X between A and C at a distance x from end A. = 4L x s Ry = 3 )7 z
The rate of loading at X ] .
= Vertical distance XD in load diagram Equaticn ) shows that shear force varies according to parabolic law hetween A and C
L
AtAx=Ohenoe F =B ¥ g 8ol
x CO XD £xCO0 2x.w 4 L 4
=l ey e Ty L .
[*} (_) . (*J ALC,x= L hence F —ﬂﬁ-fﬁ[é) _wl ®L_,
2 2 2 T T e Fem T 1 a
=2
L w.L
Th fi tB=-Rp=—-——
Now load on the length AX of the beam = Area of load diagram AXD e shear force B 4
2w ) The shear force is shown in Fig. 6.32 (b). The shear force between A and C and also
_x.xp *pf [ xp o2 x) between C and B is parabolic.
T2 2 L

&2

(Sl B
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B.M. Diagram
The bending moment is zero at A and B.
The B.M. at X is given by,

M,=R, .z~ Load of length AX . 3

wl woex wl w o (i)

= 4 X L . 3 1 - X wL X . .
Equation (i) shows that B.M. between A and C varies according to cubic law.
AtA,a=0hence M _=0

L wl L w (LY

AtC,x=Ehence C=T.2__£(_2w)

_w? wl? 3w L-wl® wl’

S8 24 12

The maximum B.M. occurs at the centre of the beam, where S.F. becomes zero after
changing its sign.

2
Max. B M. is at C, M= 2L
12
But total load on the beam, = -%—
. L L
Max. BM.= — .= =—"—.
= 2°6 6

6.14. SHEAR FORCE AND B.M. DIAGRAMS FOR A SIMPLY SUPPORTED BEAM
CARRYING A UNIFORMLY VARYING LOAD FROM ZERO AT ONE END TO w
PER UNIT LENGTH AT THE OTHER END

Fig. 6.33 shows a beam AB of length L simply supported at the ends A and B and carry-
ing 2 uniformly varying load from zero at end A to w per unit length at B. First calculate the
reactions B, and R,

Taking moments about A, we get

RyxL= (50"2}1) % L |:Tota1 load [m ﬁ) is acting %L from A}
w.L
R,=—
573
and R, = Total load on beam - R, = E%E_L{;;L=Eﬁi

Consider any section X at a distance x from end A. The shear force at X is given by,
F_ =R, -load on length AX = %—%g

(Load on AX =

AX. CX. x.w.x
2 2L
_wk wx® ’

= S (i)

Equation. (£ shows that S.F. varies according to parabolic law.
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c l w

A h i

(@) —— X —.-|x Load diageam
Ry e L NEN

. I
R I :

A . C <

1 " -
N - L3 »

" S.F. diagram |

H—m]ig_—ﬂ

A B.M. diagram C B
Fig. 6.33
At A,x =0 hence, FAzw;L___u)_x():w;L
6 2L 6
wl wi? wIL wlL wL-3w.L 2wl w. L

At B,x =L, hence, Fy=

6 2L 6 2 6 6
. .L
The shear force is + wT at A and it decreases to - %wLu at B according to parabolic law.

Somewhere between A and B, the 3.F. must be zero. Let the S.F. be zero to a distance x from A.
Equating the S.F. to zero in equation (i), we get

2
or =Wl 2L L7
fi w 3

I=E=0.577L

BM. Diagram
The B.M. is zero at A and B.
The B.M. at the section X st a distance x from the end A is given by,

M, =R, - Load on length AX . m;_ ( Load on AX is acting at —jsif'rom X)
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Equation (ii} shows the B.M. varies between A and B according to cubic law.
Max. B.M. occurs at a point where 8.F. becomes zero after changing its sign.

L L, .
That point is at a distance of T?: from A. Hence substitutingx = ﬁ in equation (if}, we

get maximum B.M.

Max. BM, = %220 = 2 [ =L
. 6 /3 6L \J3
_wl wl?  3w.IP-wl wl®
643 183 1843 9.3

Problem 6.13. A simply supported beam of length 5 m carries a uniformly increasing
load of 800 Nim run at one end to 1600 Nim run at the other end. Draw the S.F. and B.M.
diagrams for the beam. Also caleulate the position and magnitude of maximum bending moment.

Sol. The loading on the beam is shown in Fig. 6.34. The load may be assumed to be
consisting of a uniformly distributed load of 800 N/m over the entire span and a gradually
varying load of zero at A to 800 N/m at B.

“Then load on beam due to uniformly distributed load of 800 N/m = 800 x 5 = 4000 N

wl L w [LJS

Load on beam due to triangular loading = % % 800 x § = 2000 N

DE = 160 x G
x1|E : .
Fo—=) b oo
aaoNf 1. ol !
(@
AL c 4B
le——— x X
HA 5m - Hg
Load diagram

)

2666.67 +

(b} i

|<———— 2.637 ———D| - ] T

S.F. diagram

3333.33

|

(©) 3761.5Nm
. + L
B.M. diagram
Fig. 6.34
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Now caleulate the reactions B, and K.
Taking the moments about A, we get
Ry x 5= 4000 x > +2000x[ 2 of 5
2 5
Ry =2000+1333.33 = 3333.33 N
and R, = Total load oni beam - R,
= (4000 + 2000) — 3333.33 = 2666.67 N
Consider any section X-X at a distance x from A.
Rate of loading at the section X-X
= Length CF = CD + DE
= 800 + -’55 x 800 = 800 + 160x
Total load on length AX
= Area of load diagram ACDEF _
= Area of rectangle + Area of ADEF ~
=800 x x+ SOUEXE _ 0005 4 80x2
Now the S.F. at the section X-X is given by, .
' F =R, -load on length AX
= 2666.67 - (800x + 80x2) = 2666.67 — 800x — 80x? .2

Equation (i) shows that ghear force varies between A and B according to parabolic'law.

At A, x = 0 hence
AtB,x=5hencs  F, =2666.67 - 800 x 5 - 80 x 52

= 2666.67 — 4000 ~ 2000 = - 3333.33 N

F_=2666.67 - 800 x 0— 80 x 0 = + 2666.67 N

Let us find the position of zero shear. Equating the 8.F. equal to zero in equation (i), we get

0 = 2666.67 - B00x — 80x?

33.33=0

The B.M. at the section X-X is given by
M, =R, xx—-800xxx %+ .x.1600.%
x 2 2 3

= 2666.67x — 40022 — 80 s

(Neglecting — ve root)

or 2%+ 10x - 26?}3'67 =0 or x2 4 10x -
The above equation is a quadratic equation. Its solution is given by,
po - L0 J10% +4x3333 - 10+ /23333
2 B 2
_ ~10+15.274

2
_ =2.637 m
- B.M. Diagram

.(if)
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Bquation (if} shows that B.M. between A and B varies aceording to cubic law.

AtA x=0, M, =0

At B x =5, My=0

Mazimum B.M. occurs where S.F. is zero. But S.F. is zero at a distance of 2.637 m
from A. Hence maximum B.M. is obtained by substituting x = 2.637 m in equation (ii).

Max. B.M. = 2666.67 x 2.637 ~ 400 x 2.637% - %g x 2.637% = 3761.5 Nm. Ans.

6.15. SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR OVER-HANGING
BEAMS

If the end portion of a beam is extended beyond the support, such beam is known as
overhanging beam. In case of overhanging beams, the B.M. is positive between the two sup-
ports, whereas the B.M. is negative for the over-hanging portion. Hence at some point, the
B.M. is zero after changing its sign from posiiive to negative or vice-verse. That point is known
as the point of contraflexure or poini of inflexion.

6.15.1. Point of Contraflexure. It is the point where the B.M. is zero after changing
its sign from positive to negative or vice-versa.

Problem 6.14. Draw the shear force and bending moment diagrams for the over-hanging
beam carrying uniformly distributed load of 2 kNIm over the entire length as shown in Fig. 6.36.
Also locate the point of contraflexure.

Sol. First calculate the reactions B, and Ry

Taking moments of all forces about A, we get

Ryx4=2x6x g =36 (- -Totalloadonbeam=2x6= 12 kN. This
- load is acting at a distance 3 m from A)

2 kN/m

A e

- ]
Py
T
L L

TFTTTTITTisT

. . .
k—1.5—>| -

_ 1
S.F. diagram j—

B.M. diagram

Fig. 6.35
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; R = -3;?- = 9 kN
and R,=Totalload - B3 =2x6-9=3kN
Shear!‘Force Diagram
Shear force at A =4 R, =+ 3 kN

(i) The shear force at any section between A and B at a distance x from A is given by,
F,=R,— 2 (v B;=3
=3-2 D)
AtA x=0hence F,=3kN
AtB,x=4hence Fp=3-2x4=-5kN
The shear force varies according to straight line law between A and B. At A, the shear
foree is positive whereas at B, the shear force is negative. Between A and B somewhere S.F, is
zero. The point, where S.F. is zero, is obtained by substituting F, = 0 in equation (Z).

0=3-2x or x=g=l.5m

Hence S.F. is zero at a distance of 1.5 m from A (or S.F. is zero-at point D).
(i) The S.F. at any section between B and C at a distance x from A is given by,
F,o=+R, - 4x2+R;-x-DHx2=3-8+9-20x-4)
=4-20x—-4) ..(E2)
AtB,x=4mhence Fp=4-24-4)=+4LkN '
At C, x = 6 m hence FC=4~2(6-4)=0

- Between B and C also S.F. varies by a straight line law. At B, S.F. is + 4 kN and at C,
S.F.is zero.

The S.F. diagram is shown in Fig. 6.35 (b).

B.M. Diagram
- TheB.M. at A is zero.

(i) The B.M. at any section between A and B at a distance x is given by,
x
2

= Jx ~ x2 -.(iED)

At A, x = ( hence MA =0
AtB,x=4hence My=3x4-4>=—4kNm
Max. B.M. occurs at I, where S.F. is zero after changing its sign.
AtD,x=1.b5hence M;=3x1.5-1.5=4.5-2.25=225kNm
The B.M. between A and B varies according to parabolic law,
{Zi) The B.M. at any section between B and C at a distance x is given by,

M =R, xx-2xxx

MI=RAxx—2xxx§+RBx(x—4)

=32+ 9(x—4) : (v}
AtB,x=4hence My=3x4-4%49(4—4)=4kNm '
AtC,x=6hence M, =3x6-62+9(6-4)=18-36+18=0
The B.M. diagram is shown in Fig. 6.25 (¢).
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Point of Contraflexure

This point will be between A and B where B.M. is zero after changing its sign. But B.M.
at any section at a distance x from A between A and B is given by equation (iii) as

M= 3x - x?
Equation M, to zero for point of contraflexure, we gel
0=38x-x%=x(3 - 1)
or 3-2=0 ( x cannot be zero as B.M. is not
changing sign at this point)

R x=3

Hence point of contraflexure will be at a distance of 3 m from A.

Problem 6.15. Draw the S.F. and B.M. diagrams for the overhanging beam carrying
. uniformly distributed load of 2 kN/m over the entire length and a point load of 2 kN as shown
in Fig. 6.36. Locate the point of contruflexure.

Sol. First calculate the reactions R, and Rp.

Taking moments of all forces about A, we get

RBx4=2x6x3+2x6=36+12=48
48

Ry= = 121N
and RA:Totalload~RB=(2x6+2)—12=2kN
2 kN/m 2kN
A
1 et c
(@ 4m Lo ] 2m ———w
A, Rg

(b}

it e

1C

)

B.M. diagram

Fig. 6.36
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8.F. Diggram
SF atA=+R,=+2kN
(i) The S.F. at any section between A and B at a distance x from A is given by,
F =+R,-2xx

=2 2x -{2)
At A, x = 0 hence FA=2—2x0=2kN
At B, x = 4 hence FA=2-2x4=—6kN
The S.F. between A and B varies according to straight line law. At A, 8.F. is positive

‘and at B, S.F. is negative. Hence between A and B, 5.F. is zero. The point of zero S.F. is
obtained by substituting F, = 0 in equation (i).

0=2-2x or x=§-=lm

The 5.F. is zero at point D. Hence distance of D from A is 1 m.
(ii) The S.F. at any section between B and C at a distance x from A is given by,
Fx=+RA—2x4+RB—2(x—4)
=2-8+12-2(x~4)=6—-2(x—4) AL
At B, x = 4 hence FB=6—2{4—4)=+6kN
At C, x = 6 hence FC=6——2(6—4)=6—4=2kN
The S.F. diagram is drawn as shown in Fig. 6.36 (b).

B.M. Diagram
B.M. at A is zero
(i) B.M. at any section between A and B at a distance x from A is given by,

MI=RAxx~2xxxg=2x—x2 GH
The ahove equation shows that the B.M. between A and B varies according to parabolic
law.
AtA, x=0hence M,=0
AtB x=4hence My=2x4-42=-8kNm
Max. B.M. is at D where S.F. is zero after changing sign
At D, x = 1 hence MD=2X1—12=lkNm

The B.M. at C is zero. The B.M. also varies between B and C according to parabolic law.
Now the B.M. diagram is drawn as shown in Fig. 6.36 (c).

Point of Contraflexure
\ This point is at E hetween A and B, where B.M. is zero after changing its sign. The
 distance of £ from A is obtained by putting M, = 0 in equation {iii).
' - 0=2x—x%=x(2 - x)
2-x=0
and x=2m. Ans.

Problem 6.16. A beam of length 12 m is simply supported at two supports which are 8 m
apart, with an overkang of 2 m on each side as shown in Fig. 6.37. The beam carries a concen-
trated load of 1000 N at each end. Liaw S.F. and B.M. diggrams.
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. Sol. As the loading on the beam is symmetrical. Hence reactions R, and R p-will be equal
and their magnitude will be half of the total load.

RA=RB=M=1000N
1000 N 1000 N
+ A B h 4
(a) c ry F Y o
— 2m —Mee————— Bm —————————P—2m
R, =1000 N HB=1000N’ ’ n
l + 1000 N
* trsiezes
rrrrrrrrTY B LS
n )
® 1000 N _ S.F. diagram ‘
¥ .
I l I I
o] A B 2]
T ¥ - TSI T
& 2000 Nm - 2060 Nm
B.M. diagram
Fig. 6.37
" BF.atC =- 1000 N
S.F. remains constant (i.e., = — 1000 N} between C and A
SF atA =-1000 + B, =- 1000 + 1000 = 0
S.F. remains constant (i.e., = 0) between A and B
S.F.atB =0+ 1000 = + 1000 N

S.F. remains constant (i.e., = 1000 N) between B and D
S.F. diagrams is drawn as shown in Fig. 6.37 ().

B M. Diagram
BM.atC=0
BM.at A =- 1000 x 2 = - 2000 Nm (- ve sign is due to hogging moment)
B.M. between C and A varies according to straight line law.
The B.M. at any section in AB at a distance of x from C is given by,
M, =-1000 xx + K (x ~ 2)
=~ 1000 x x + 10000x — 2} = — 2000 Nm
Hence B.M. between A and B is constant and equal to — 2000 Nm.
B.M. atD=0.
B.M. diagram is shown in Fig. 6.37 (c).

Note. In this particular case, the S.F. is zero between AB and B.M. is constant. Hence length AB
is subjected to only constant B.M. The length between A and B is absolutely free from shear force.
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Problem 6.17. Draw the S.F. and B.M. diagrams for the beam which is loaded as shown
in Fig. 6.38. Determine the points of contraflexure within the span AB.
Sol. First calculate the reactions B, and Ry,
Taking moments about A, we have
RBx8+800x3=2000><5+1000(8+2)

or 8Rp + 2400 = 10000 + 10000
. R, = 200008— 2400 - 17600 = 9900 N
and R, = Total load ~ Ry = 3800 - 2200 = 1600
800 N ' 12000 N 1000 N
+C A D B YE
(@) . .
—— 5m _4
M— 3m o 8m »4—2 m
R, = 1600 Rg = 2200
| | | |
n g ®
i c C + 800 Bf + J1000
b
¢ )sonE =R CI - Tio0 ET
T S.F. diagram
| | o L
S etk e
{c} D ” T y

2400 2000
B.M. diagram
Fig. 6.38
S.F. Diagram

SFatC =-B0ON
S5.F. between € and A remains — 800 N
SF.atA =—800+ K, =~ 800+ 1600=+800N
S.F. between A and D remains + 800 N
SF.atD =+ 800 - 2000 = - 1200 N
S.F. between D and B remaing — 1200 N
SF.atB =— 1200+ B, =- 1200 + 2200 = + LOOO N

S.F. between B and E remains + 1000 N
S.F. diagram is shown in Fig. 6.38.
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B.M. Diagram
BM.atC =0
BM.atA =800 x 3 = 2400 Nm
B.M. at D =-800x{3+5)+R, x5

=-800x8+1600x5

= - 6400 + 8000 = + 1600 Nm
BM. atB =—1000 x 2 =— 2000 Nm
BM. at E . =0
The B.M. diagram is drawn as shown in Fig. 6.38 (¢).

Points of Contraflexure

There will be two points of contraflexure O, and O,, where B.M. becomes zero after
changing its sign. Point O, lies between A and D, whereas the point O, lies between I} and B,

{#) Let the point O, is x metre from A.

Then B.M. at O, =—800(3 +x) + R, x x =— 800(3 + x) + 1600x
=— 2400 - 800x + 1600x = -~ 2400 + 800x

But B.M. at O, is zero

O = - 2400 + 800x or x = 2400 =3m. Ans.
800
{ii) Let the point O be x metre from B,
Then B.M. at O, = 1000(x + 2) - Bp x x = 1000x + 2000 — 2200 x x = 2000 - 1200x
But B.M. at O, =0
: "0 = 2000 - 1200x
=200 5 67 mfromB. Ans.
1200 3

Problem 6.18. A horizontal beam 10 m long is carrying a uniformly distributed load of
1 kN/m. The beam is supported on two supports 6 m apart. Find the position of the supports, so
that B.M. on the beam is as small as possible. Also draw the S.F. and B.M. diograms.

Sol. The beam CD is 10 m long. Let the two supports 6 m apart are at A and B.
" Let & = Distance of support A {rom C in metre
Then distance of support B from end D
=10-B+x)=4d-x}m
Tirst calculate the reactions B, and Rp.
Taking moments about 4, we get

1xxx£+RBx6:(10wx)x1x(lo—x)
2
% a2
or %+6RB=Q92—JC)- or x4+ 12R, ={10 x x)? = 100 + x? — 20x
or "12R5 =100 + x% - 20x — x% = 100 - 20x
100-20x 425-5x) 1 5
R, = - X (25— Bxy = 2(5—
B 12 12 3 -0=36-2)

SHEAR FORCE AND BENDING MOMENT ‘ _ 277

and R, = Total load ~ &,
=10x1-2 (55 - BT
_ 5+5x=§(1+x)
3 3

In the preserit case of overhanging beam, the maximum negative B.M. will be at either
of the two supports and the maximum positive B.M. will be in the span AB. If the B.M. on the
beam is as small ag possible, then the length of the overhanging portion should be so adjusted
that the maximum negative B.M. at the support is equal to the maximum positive B.M. in the
span AB.

. The B.M. will be maximum in thé span AB at a point where 3.F. is zero.
" Let B.M. is maximum {or S.F. is zero) at a section in AR at a distance of ¥y m from C.

1 kN/m

D
|

(P ML sm-———+<—(4 %)
R, .
i

iom

A

Fig. 6.39

But S.F. at thissection =y x 1 - &,
yxl R,=0

or yx1—§(1+x)=0
y=3a+x) D)
Now B.M. at the support A

o

X
2

=~ Ixxx ==- -(0)

x

5

and B.M. at a distance y from C
=—Fxyx -Z+RAx(y—

2 5
= Y L B aen [ RA=—(1+x)]
5 3( +x)(y - 3
2 5 ‘
= %[§(1+x):! +.-g—(1+x)|:%(1+x)-x] ' [ y=§(1+x}}
( 5 v
=§(1+x)[-5élx+2x)+§(1+x)_x]
-5- 10x -6
=§(1+x)[ 5-5x+ 10+ 10x x]
6
= -g—(1+x) [5—55}% Cx+dc+B) i)



278 STRENGTH OF MATERIALS

For the condition that the B.M. shall be as small as possible, the hogging moment at the
support A and the maximum sagging moment in the span AB should be numerically equal.

.. Equating equations (if) and ({i{) and ignoring the — ve sign of B.M. at A, we get

5 2
— (= x? =X
18(x+4x+5) 3

or ~ 822 + 20x + 26 = 9x2 or 14x? - 20x - 25 = 0
The above equation is a quadratic equation. Hence its solution is given by
oo 202 y20% +4x14%25 _ 20=./400 + 1400 _ 20  42.42
2x 14 28 - 28
+ 424

= %—E (Neglecting ~ ve value)

=223m
Substituting this value of x in equation (), we get -

5x3.23 —538m

y= §(1+2.23)=
Now the values of reactions R 4 and By are obtained as :
R,= g(l-:-x):g (1+2.23) = 5.38 kN

5

and ~ RB=g(s-x)=§(5-2.23;=4.62kN

Now the S.F. and B.M. diagrams can be drawn as shown in Fig. 6.40.
S.F. Diagram

S.F. atC =0

S.F juston LH.S. of A =~ 1x223=-223kN

Shear force varies between C and A by a straight line law.

S.F. just on L.H.S. of 4 =- 2.23 + B,
=-223+538=+3.15kN

S.F.just on LH.S. of B =+ 8.15- 1 x 6 =— 2.85 kN

Shear force between A and B varies by a straight line law.

S.F.just on RH.S. of B =-2.85 + R,
=—2.85+4.62=+117kN

SF. atDh =117-1x177=0

S.F. between B and D varies by a straight line law.

8.F. diagram is drawn as shown in Fig. 6.40 (¢).

B.M. Dicgram
BM. at =0

223

BM. atA _—1x223x——2-=—249kNm

e e R
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1 kiN/m
C : D
{ |
3 A lls
@ «—2.23 —ple 8 M e—P— 1,77 —#
a,
R,=5.38N Rg=4.62 N
10m —
1.77 +
, y MD
(b)C ,,,, FIIYTTITITY BT
223 kN - - 2.85
M——y=538m —L
S.F. diagram
(c)
B.M. diagram
Fig. 6.40
B.M. at E (i.e., at a distance y = 5.38 m from point C)
_—1x538x%+R x (5.38 - 2.23)
. .
=~ 5':;8 +5.38 x 3.15'= 2.49 kNm
7
BM. at B =—:Lx1.'7'7><1:;7 =—1.06 kNm

The B.M. between C and A ; between 4 and B ; and between B and D varies according to
paraholic law. B.M. diagram is shown in Fig. 6.40 (c).

6.16. S.F. AND B.M. DIAGRAMS FOR BEAMS CARRYING INCLINED LOAD

The shear force is defined as the algebraic sum of the vertical forces at any section of a
beam to the right or left of the section. But when a beam carries inclined loads, then these
inclined loads are resolved into their vertical and horizontal components. The vertical compo-
nents only will cause shear foree and bending moments.
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_The horizontal components of the inclined loads will introduce axial force or thrust in
the beam. The variation of axial force for all sections of the beam can be shown by a diagram
known as thrust diagram or axial force diagram.

In most of the cases, one end of the beam is hinged and the other end is supported on
rollers. The roller support cannot provide any horizontal reaction. Hence only the hinged end
will provide the horizontal reaction.

Problem 6.19. A horizontal beam AB of length 4 m is hinged at A and supported on
rollers at B. The beam carries inclined loads of 100 N, 200 N and 300 N inclined af 60°, 46° and
30° to the horizontal as shown in Fig. 6.41. Draw the S.F., B.M. and thrust diagrams for the
beamn.

Sol. First of all, resolve the inclined loads into their vertical and horizontal componenis.

The inclined load at C is having horizontal component

= 100 x cos 60° = 100 x 0.5 = 50 N,
whereas the vertical component = 100 x sin 60° = 100 x 0.866 = 86.6 N

K/‘IOON 200 N 300N
Al 50 {é A/é |B

AN c D E 55;

|<——1m—->4—w1m—4»<_1m—>4—1m—>|

(a)

B86.6 N 1414 N 150 N
My = 4—1— «% 4%
ss1en| A 50N 1414 N 2569.8 N
()]
c |D |E B
R, =173.16N i Load diagram Rg =204.85
¥ 866
() _173.15 % -{
¥ 8855 14 ] E B
|A Ec: L 54.65
T T > - 204.85
S.F. diagram | 15‘,0 _,L
(d)

(e)

T D T E B
Thriist diagram

Fig. 6.41
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Similarly the inclined load at D is having horizontal component
=200 x cos 45° = 141.4 N,
whereas the vertical component = 200 x sin 45° = 1414 N
The inclined load at E is having horizontal component
= 300 x cos 30° = 300 x 0.866 = 259.8 N,
whereas the vertical component = 300 x sin 30° = 160 N
The horizontal and vertical components of all inclined loads are shown in Fig, 6.41 ().

As beam is supported on rollers at B, hence roller support at B will not provide any
horizental reaction. The horizontal reaction will be only provided by hinged end A.

Let H, = Horizontal reaction at A
= Sum of all horizéntal components of inclined loads
=50 + 141.4 + 259.8 _
{All horizontal components are acting in the same direction)
. =451.20N
To find the reactions R, and R, take the moments of all forces about A4,
Bpx4=866x1+ 1414 x 2+ 150 x 3 =819.4
or - Ry= §% = 204.85 N
R, = Total vertical load - Ry
=(86.6 + 141.4 + 150) - 204.85 = 173.16 N

§.F. Diagram ) ,
The 8.F. is due to vertical loads (including vertical reactions) only
SF.atA =+R,=+17315N . '

S.F. remains constant between A and C and equal to 173.15 N

S.F. suddenly changes at C due to point load and S.F. at C
=173.15-86.6 =86.66 N

S.F. remains constant between C and I and is equal to 86.556 N

SF. atD =86.55 - 14140 = 54.85 N
The S.F. remains constant between E and D and is equal to - 54.86 N
The S.F. at B =—54.85 - 150.00 =- 20485 N
The S.F. diagram is shown in Fig. 6.41 (¢).
B.M. Diagram
The B.M. is only due to vertical loads (including vertical reactions) only
The B.M. at A =0 ‘
BM. at € =R, x1=173.15x1=173.15 Nm
B.M. at D =R, x2-866x1
=173.156 x 2 - 86.6 = 259.7 Nm
BM. at E =R, x3-866x2-1414x1
=173.15x 8- 86.6 x 2 141.4 = + 204.85 Nm
B.M.atB =0

The B.M. diagram is shown in Fig. 6.41 {(d).
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Thrust Diagram or Axial Force Diagram

The thrust diagram is due to horizontal components including horizontal reaction.
Axial force at A =+H, =451.20 N

The axial force remains constant between A and C and is equal to 451.20 N

Axial force at C =H,-50=45120-50=4012N

Axial force remains constant between C and D and is equal to 401. 2N

Axial force at D =401.2 - 14140 = 2598 N

Axial force remains constant between I and E and is equal to 259.8 N

Axial force at E = 259.8 - 2508 =0 '

Axial force between E and B is zero.

Thrust diagram'or axial force diagram is shown in Fig. 6.41 (e).

Problem 6.20. A horizontal beam AB of length 8 m is hinged at A and placed on rollers

at B. The beam carries three inclined point loads as shown in Fig. 6.42. Draw the S.F., B.M.
and axtal force diagrams of the beam.

Sol. First resolve the inclined loads into then‘ vertical and horizontal components.
Vertical component of force at C

=45in30°=4x%x05=2kN
Horizontal component of force at C

=4 x¢cos 30° = 4 x (.866 = 3.464 KN —
Vertical component of force at D

S =8 x sin 80° = 8 x (.866 = 6,928 kN

‘Horizontal component of force at D

=8xc0sB0°=8x05=4EkN «
Vertical compenent of force at E

=6 x sin 45° =6 x 0.707 = 4.242 kKN
Horizontal component of force at E

=6 xcos45° =6 x 0.707 = 4.242 kN «
The horizontal and vertical corponents of all inclined loads are shown in Fig. 6.42 (b).
The horizontal reaction will be provided by the hinged end A.
. Horizontal reaction at A,

H,=-3464+4+4242=4778 kN
To find vertical reactions B, and Rp, take the moments of all forces about A.
RBpx8=2x%x2+6928x4+4242 x6=57.164
57.164

Ry= =7.1456 kN

Now R, = Total vertical loads — Ry
=(2 +6.928 + 4.242) — 7.1455 = 6.0245 kN

S.F. Dingram

S.F. is due to vertical loads
SF.atA =+R,=+6.0245 kN

8.F.
S8.F.
S.F.
S.F.
S.F.
S.F.
S.F.
S.F.

o / /“‘”B

|
45 G 2
— 2m —sfe— e 3 —»|<— m—>]

6.928
® 3. 464 ) Q—IV— 4 kN “l— 4,242
T

A
@ |

N
x‘
Z

A (b} E B
I:‘B

RA
FE £ | |

6.0245
(c}

X

AAANSAN

7.1455

4,242

12,049+ l
¥

A C BM. diagram ° E - B

)

I - 3.464 !

£.248
4.778 4.242

PR
4
¥

A C D E B
Axial force diagram

Fig. 6.42
remains 6.0245 kN between A and €
at ¢ =+6.0245 -2 =+ 4.0245 kN
remains 4.0245 kN between C and D
at D =+ 4.0245 — 6.928 = - 2.9035 kNN
remains —~ 2.9035 kN between D and E
atE =— 29035 - 4.242 = - 7.1455 kN
remains constant between E and B and equal to — 7.1455
diagram is shown in F.ig‘ 6.42 (o).
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BM. Diagram

B.M. iz only due to vertical loads

BM. atA =0

BM. at C =R, x2=60245 x 2 = 12.049 kNm

BM. atD =6.0240 x4 - 2 x 2 =20.098 kNm

BM.at E =6.0245 x 6 -2 x4-6928 x 2 =14.291 kNm

B.Mat B =0

B.M. diagram is shown in Fig. 6.42 (d).

Axinl Force Diagram
Axial force is due to horizontal components ineluding horizontal reaction.
Axial force at A =+H,=+4778 kN
Axial force remains 4.778 kN between A and €
Axial force at C =+ 4.778 + 3.464 = + 8.242
Axigl force remains 8.242 kN between C and D
Axial force at D =8.242 - 4.0 = + 4.242
Axial force remains 4.242 kN between D and B

*7 Axial force at K =+4.242 - 4242 =0
Axial foree remains zero between E and B
Axial force diagram is shown in Fig. 6.42 (e).

6.17. SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR BEAMS SUB-
JECTED TO COUPLES '

When a beam is subjected to a couple at a section, only the bending moment at the
section of the couple changes suddenly in magnitude equal to that of the couple. But the S.F.
does not change at the section of the couple as there is no change in load due to couple at the
section. But while calculating the reactions, the magnitude of the couple is taken inte account.
) The sudden change in B.M. at the section of the couple can also be obtained by caleulat-

ing B.M. separately with the help of both the reactions.

Problem 6.21. A simply supported beam AB of length 6 m is hinged at A and B Itis
subjected to a clockwise couple of 24 kNm at « distance of 2 m from the left end A. Draw the S.F.
and B.M. diagrams.

Sol. Fig. 6.43 (¢ shows the simply supported beam AB, hinged at A and B. The cleckwise
couple at C will try to lift the beam up at the support A, and to depress the beam down at the
support B. Hence the reaction at A will be downwards and at B the reaction will be upwards as
shown in Fig. 6.43 {b).

To find reactions of R, and Ry, take the moments about A.

Rpx6-24=0 (- Moment due to Ry is anti-clockwise and moment
at C is clockwise)
Ry = %‘5 =4LkN {
) Since there is no external vertical load on the beam, therefore the reactlon at A will be
the same, as that of B, but in opposite direction.
: R, = Load on beam - R
=~ R,=~4kN.

{~* Load on beam = 0)
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S.F. Diagram
B.F.atA =R, =-4kN
The 8.F. remains constant (i.e., equal to — 4 kIN) between A and B.
The 8.F. diagram is shown in Fig. 6.43 (e).

[/!::\}24 KNm .

Ry 24 kNm
Y. % B
A (] |
®) 4 iy
- 2Zm it 4m :lH
&
-l_ A ic . . Base line B_L
@ 4 - 4 kN
_f S.F. diagram ] T
| 16 m
NG o IR
'? I_g kNm B.M. diagram ?
Fig. 6.43
B.M. Diagram
B.M.atA =0

BM.justonthe LHS of C =R, x2=-4x2=-8kNm

B.M. just on the RH.8. of C =Ryx4=4x4=+16kNm

(B.M. just on the R.I1.8. of ¢ can also be caleulated as the sum of moments due to K,
and moment due to couple. But monment due to R, is anti-clockwise whereas due to couple is
clockwise. Hence net BM. on R.H.S. of C = — 8 + 24 = + 16 kNm).

There is a sudden change in B.M. at C due to couple.

BM. atB =0

B.M. diagram is shown in Fig. 6.43 (d).

Problem 6.22. A beam: 10 m long and simply supported at each end, has a uniformly

distributed load of 1000 Nim extending from the left end upto the centre of the beam. There is
also an-anti-clockwise couple of 15 kENm at a distance of 2.5 m from the right end. Draw the S.F.

and B.M, diagrams.
Sol. The reaction at A will be upwards. To find whether the reaction at B is upwards or

downwards, take the moments about A.
The following are the moments at A :

-

(i) Moment due to UD.L. = 1000 x & x

bo | o

= 12500 Nm (clockwise)
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(i) Moment of couple = 15000 Nm (Anti-clockwise)
= 15000 - 12500
= 2500 Nm {(Anti-clockwise)

This moment must be balanced by the moments due to reaction at B. Hence the moment
about A due to reaction at B should be equal to 2500 Nm (clockwise), This is only possible when
Ry is acting downwards. This is shown in Fig. 6.44 ().

. Net moment

15000 Nim
1000 N/m c
A B
4 w
@ e sm —— b 25 m—s—25m—
Ry
. o |
)] ’ |
F
R,
I
()
5250 N : +
4 ) Ly A S ESL
A tc i
| S.F. diagram E |
Straight line
Parabolic
()
. 3}
A ! -
8.M. diagram ¢ 6_:_5 MVB
Fig. 6.44
Ry x10=2500
2500
Rp=———— =250N
BT 10
and R, = Total load on beam + R,

(Here Ry is +ve as acting downwards)
=1000 x 5 + 250 = 5250 N.
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S.F. Diggram
SF.atA =+R, =5250N
SF.atC = 5250 — 5 x 1000 = + 250 N

S.F. between A and C varies according to straight line law.
S.F between. C and B remains constant and equal to + 250 N
S.F. diagram is shown in Fig. 6.44 {c).

B.M. Diagram .
BMat4 =0
B.M. at C =RAx5~1000x5xg

= 5250 x 5 - 12500 = 13750 Nm
B.M. just on the left hand side of D

5
=5250x 7.6 - 1000 x 5 x (—2— + 2.5)

= 39375 — 25000 = 14375 Nm
B.M. just on the right hand side of D
=-Rpx2.5=-250 x 2.5 =- 625 Nm

B.M. at B =0
The B.M. diagram is shown in Fig, 6.44 (d).

6.18. RELATIONS BETWEEN LOAD, SHEAR FORCE AND BENDING MOMENT

Fig. 6.45 shows a beam carrying a uniformly distributed Joad of w per unit length.
Consider the equilibrium of the portion of the beam between sections 1-1 and 2-2, This portion
is at a distance of x from left support and is of length dx.

@

wim run

@
— x —|

Al

&~

|
i B

@ @
F—dx_'l M +dM

M{:A.;_i_g._

Fig. 6.45

Let F = Sheéar force at the section 1-1,
F + dF = Shear force at the section 2-2,
M = Bending moment at the section 1-1,
M + dM = Bending moment at the section 2-2.
The forces and moments acting on the length ‘dx’ of the beam are :
(i) The force F acting vertically up at the section 1-1.
(if) The force F + dF acting vertically downwards at the section 2-2.
(iit) The load w x dx acting downwards.
{iv} The moments M and (M + M) acting at section 1-1 and section 2-2 respectively.




288 STRENGTH OF MATERIALS

The portion of the beam of length dx is in equilibrium. Hence resolving the forces acting
on this part vertically, we get

Fowde-(F+dF)=0
dF

or — dF = w.ds — =
W.ax or . w.

| The above equation shows that the rate of change of shear force is equal to the rate of
oading.

Taking the moments of the forces and couples about the section 2-2, we get

M—w.dx.%+F.dr=M+dM

2
or _L(‘;x) + Fde =dM
Neglecting the higher powers of small quantities, we get
Fdx=dM
or F= aM or a =F.
dx dx

The above equation shows that the rate of change of bending moment isrequal to the
shear force at the section.

HIGHLIGHTS
1. Shear foree at a section is the resultant vertical foree to the right or left of the section.
2. The diagram which shows the variation of the shear force along the length of a beam, is known

as shear force diagram.

3. Bending moment at a section is algebraic sutm of the moments of all the forces acting to the left
or right of the section. .

4, The diagram which shows the variation of the bending moment along the length of a beam, is
known as bending moment diagram.

5. A beam which is fixed at one end and free at the other is known as cantilever beam. But a beam
supported or resting freely on the supports at its both ends, is known as simply supported beam.

6. Ifthe end portion of a beam is extended beyond the support, such beam is known as everhanging
beam.

7. Aload acting at a point, is known as concentrated load or a peint load.

8. If aleft portion of a section is considered, then 8.F will be positive at the section if the resultant
of the vertical forces (including reactions) o the left of the section is upwards. But if the result-
ant is acting downwards then S.F. at the section will be negative.

9. If a right portion of a section is considered, the 5.F. will be positive at the section if the resultant

of the vertical forces to the right of the section is downwards. But if the resultant is acting
upwards then S.F. at the section will be negative. .

10. If a left portion of a section is considered, the B.M. will be positive at the section if the moment
of all vertical forces and of reaction, at the section is clockwise. But if the resultant moment at
the section is anti-clockwise, then B.M. will be negative.

11. Ifa right portion of a section is considered, the B.M. wiil be positive at the section if the resultant
moment at the section is anti-clockwise. But if the resultant moment at the section is clockwise,
then B.M. will be positive.

12. The shear force changes suddenly at a section where there is a vertical point load.

1
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13. The shear force between any two vertical loads remains constant.

14. Shear force for a uniformly distributed load varies according to a straight line law whereas B.M.
varies according to a parabolic curve.

15. B.M. is maximum at a section where S.F. is zero after changing its sign.

16. The point where B.M. is zero after changing its sign, is known as point of contraflexure or point
of inflexion.

17. When an inclined load is acting on a beam, then inclined load is resoived inte two components.
Vertical component will cause S.F. and B.M. whereas horizontal component will cause axial
thrust in the beam.

18. When a beam is subjected to a couple at a section, then B.M. changes suddenly at the seetion but
S.F. remains unaltered at the section.

EXERCISE 6

(A) Theoretical Questions

1. Define and explain the following terms :
Shear force, bending moment, shear force diagram and bending moment diagram.
2. What are the different types of beams ? Differentiate between a cantilever and a simply sup-
ported beam. )
2. What are the different types of loads acting on a beam ? Differentiate between a point load and
a uniformly distributed load.
4. What are the sign conventions for shear force and bending moment in general ?
5. Draw the S.F. and B.M. diagrams for a cantilever of length L carrying a point load W at the free
end.
6. Draw the S.F. and B.M. diagrams for a cantilever of length L carrving a uniformly distributed
load of w per m length over its entire length. )
%. Draw the S.F. and BM. diagrams for a cantilever of length L carrying a gradually varying load
from zero at the free end to w per unit length at the fixed end.
8. Draw the 8.F. and B.M. diagrams for a simply supported beam of length L carrying a point load
W at its middle point.
9, Draw the S.F. and BM. diagrams for a simply supported beam carrying a uniformly distributed
load of w per unit length over the eatire span. Also calculate the maximum B.M.
10. Draw the S.F. and B.M. diagrams for a simply supported beam carrying a uniformiy varying load
from zero at each end to w per unit length at the centre.
11. What do you mean by point of contraflexure ? Is the point of contrafiexure and point of inflexion
different ?
12. How many poinés of contraflexure you will have for simply supported beam overhanging at one
end only ?
13. How will you draw the S.F. and B.M. diagrams for a beam which is subjected to inclined loads ?
14. What do you mean by thrust diagram ?
15. Draw the S.F. and B.M. diagrams for a simply supported beam of length L which is subjected to
a clockwise couple w at the centre of the beam.

(B) Numerical Problems

1. A cantilever beam of length 2 m carries a point load of L kN at its free end, and another load of
2 kN &t a distance of 1 m from the free end. Draw the S.F. and B.M. diagrams for the cantilever.
{Ans. I =+3kN;MmM:#4kNm]

HLZX
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b

10.

11.

12.

13.

14,

15.

16.

A cantilever beam of length 4 m carries point loads of 1 kN, 2 kN and 3 kN at 1, 2 and 4 m from
the fixed end. Draw the shear force and B.M. diagrams {or the cantilever.
[Ans. F,, =+6kN; M, =-17kNm]

A cantilever of length 2 . carries a uniformly distributed load of 3 kN/m run over a length of 1m
from the fixed end. Draw the S.F. and B.M. diagrams. {Ans. F, =+3kN; M =-1.5kNm]

A cantilever of length 5 m carries a uniformly distributed load of 2 kN/m length over the whole
length and a point load of 4 kN at the free end. Draw the 8.F. and B.M diagrams for the cantilever.
[Ans. F, =+ 14kN; M, _=-45 kNm}

max

A cantilever of length 4 m carries a uniformly distributed load of 1 kN/m run over the whole
length and a point load of 2 kN at a distance of 1 m from the free end. Draw the S.F. and B.M.
diagrams for the cantilever. [Ans. F, =+ 14kN; M, =- 14 kNm]
A cantilever 2 m long is loaded with a uniformly distributed load of 2 kIN/m run over a length of
1 m from the free end. It also carries a point load of 4 kN at a distance of 9.5 m. from the free end.
Draw the shear force and B.M. diagrams. [Ans. F, =+6kN; M, =-9kNm]
A cantilever of length 6 m carries two point loads of 2 kN and 3 kN at a distance of I m and 6 m
from the fixed end respectively. In addition to this the beam also carries a uniformly distributed
load of 1 kN/m over a length of 2 m at a distance of 3 m from the fixed end. Draw the S.F. and
B.M. diagrams, [Ans.F, =+T7kN; M, =-28kNm]
A cantilever of length 6 m carries a gradually varying load, zero at the free end to 2 kN/m at the
fixed end. Draw the S.F. and B.M. diagrams for the cantilever.
[Ans. F_ =+6KkN; M =-12kNm}
A simply supported beam of length 8 m carries point loads of 4 kN and 6 kN at a distance of
2 m and 4 m from the left end. Draw the S.F. and B.M, diagrams for the beam.
[Ans. M, =+ 20 kNm]

A simply supported beam of length 10 m carries point loads of 30 kN and 50 kN at 2 distance of
3 m and 7 m from the left end. Draw the 8.F. and B.M diagrams for the beam.
[Ans. M___= + 132 kNm]

A simply supported beam of length 8 m carries point loads of 4 kN, 10 kN and 7 kN at a distance
of L5 m, 2.5 m and 2 m respectively from left end A. Draw the S.F. and B.M. diagrams for the
simply supported beam. [Ans. M . =+ 90 kNm]
A simply supported beam is ca.rying a uniformly distributed load of 2 kN/m over a length of 3 m.
from the right end. The length of the beam is 6 m. Draw the S.F. and B.M. diagrams for the beam
and also caleulate the maximum B.M. on the section. [Ams. M, =+ 5.06 kNm]
Abeam of length 6 m is simply supported at the ends and carties a uniformly distributed load of
1.5 kN/m run and three concentrated loads of T kN, 2 kN and 3 kN acting at a distance of
1.5 m, 3 m and 4.5 m respectively from left end. Draw the S.F. and B.M. diagrams and deter-
mine the maximum bending moment. [Ans, 12,756 kNm]
A beam of length 10 m is simply supported and carries point loads of 5 kN each at a distance of
3 m and 7 m from left support and also a uniformly distributed load of 1 kN/m between the point
loads. Draw 8.F. and B.M. diagrams for the beam. [Ans. M =+ 23 kNm]
A beam of length 6 m is simply supported at its ends. It is loaded with a gradually varying lead
of 750 Nfin from left hand support to 1500 N/m to the right hand support. Construct the S.F. and
B.M. diagrams and find the amount and position of the maximum B.M. over the beam.

[Ans. M = 5077.5 Nm at 3.165 m from left hand support]
A simply supported beam of length 8 m rests on supports 6.n apart, the right hand end is
overhanging by 2 m. The beam carries a uniformly distributed load of 1500 N/m over the entire
length. Draw S.F. and B.M. diagrams and find the point of contraflexure, if any.

[Ans. M, . = 5.33 kNm ; 5.33 from left hand support]

feilian
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17. A simply supported beam of length 8 m rests on supports 5 m apart, the right hand end is
overhanging by 2 m and the lefl hand end is overhanging by 1 m. The beam carries a uniformly
distributed load of 5 kN/m over the entire-length. It also carries two point loads of 4 kN and 6 kN
at each end of the beam. The load of 4 kN is at the extreme left of the beams, whereas the load of
6 kN is atl the extreme right of the beam. Draw S.F. and B.M. diagrams for the beam and find the

points of contraflexure. [Ans. 1.405 m and 4.955 from the extreme left of the beam]
18. A beam is loaded as shown in Fig. 6.46. Draw the S.F. and B.M. diagrams and find :
(i) maximum S.F. (ii} maximum B.M.
(éii) point of inflexion.
50 kN - 50 kN 40 kiN 40 &N
F ! J’ Y | h

- 2 —— 2m —M— 233 m—B— 2 m B 2m

Fig. 6.46

[Ans. 50 kIN ; 100 kN ; none]
19. A beam is loaded as shown in Fig. 6.47. Find the reactions at A and B. Also draw the S.F., B.M.
and thrust diagrams.

2kN

1 kN 3%N
\\ / /
T\ 457 C D A 45° E <30 ?
A A
|
|<-1m‘—>|<—1.5m-4>i<f1.5m—"'4um Em‘bi

Fig. 6.47
[Ans. R,= 209 kN ; R, = 153 kN ; H, = — 1.803 kN|
20, A simply supported beam of length 5 m, carries a uniformly distributed load of 100 N/m extending
from the left end to a point 2 m away. There is also 2 clockwise couple of 1500 Nm applied at the

centre of the beam. Draw the S.F. and B.M. diagrams for the beam and find the maximum
bending moment. [Ans. 845 Nm at a distance of 1.3 m from left end]
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Bending Stresses in Beams

7.1. INTRODUCTION |

When some external load acts on a beam, the shear force and bending moments are set
up at all sections of the beam. Due to the shear force and bending moment, the bearn under-
goes certain deformation. The material of the beam will offer resistance or stresses against
these deformations. These stresses with certain assumptions can be caleulated. The stresses
introduced by bending moment are known as dending stresses. In this chapter, the theory of

™. pure bending, expression for bending stresses, bending stress in symmetrical and unsymmetrical

sections, strength of a beam and composite beams will be discussed.

7.2. PURE BENDING OR SIMPLE BENDING

If a length of a beam is subjected to a constant bending moment and no shear force
{i.e., zero shear force), then the stresses will be set up in that length of the beam due to B.M.
only and that length of the heam is said to be in pure bending or simple hending. The stresses
set up in that length of beam are known as bending stresses.

c 3 3]
|<—a o) L Pt a—rl
Ry= W Ry= W

gy £
£ + "\i!
c A B B
@ FF B S.F. diagram D
W -
i‘ FRTRTTTTTRRT
i
C A B D
B s x
© \&“«% .
P
wxa

B.M. diagram wxa

Fig. 7.1

A beam simply supported at A and B and overhanging by same iength at each support
ig shown in Fig. 7.1. A point load W is applied at each end of the overhanging portion. The
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S.F. and B.M. for the beam are drawn as shown in Fig. 7.1 (6) and Fig. 7.1 {(c) respectively.
From these diagrams, it is clear that there is no shear force between A and B but the B.M.
between A and' B is constant.

This means that hetween A and B, the beam is subjected to a constant bending moment
only. This condition of the beam between A and B is known as pure bending or simple bending.

7.3. THEORY OF SIMPLE BENDING WITH ASSUMPTIONS MADE

Before discussing the theory of simple bending, let us see the assumptions made in the
theory of simple bending. The following are the important assumptions :

1. The material of the beam is homogeneous® and isetropic*®.

2. The value of Young's modulus of elasticity is the same in tension and compression.

3. The transverse sections which were plane before bending, remain plane after bending
also.

4, The heam is initially straight and all longitudinal filaments bend into eircular arcs
with a common centre of curvature.

5. The radius of curvature is large compared with the dimensions of the cross-section.

6. Each layer of the beam is free to expand or contract, independently of the layer, above
or below it.

Theory of Simple Bending

Fig. 7.2 (a) shows a part of 2 beam subjected to simple bending. Consider a small length
&x of this part of beam. Consider two sections AB and CD which are normal to the axis of the
heam N — N. Dnie to the action of the bending moment, the part of length dx will be deformed as
shown in Fig. 7.2 (b). From this figure, it is clear that all the layers of the beam, which were
originally of the same length, do not remain of the same length any more.

The top layer such as AC has deformed to the shape A'C’. This layer has been shortened
in its length. The bottom layer BD has deformed to the shape B'D". This layer has been elon-
gated. From the Fig. 7.2 (b}, it is clear that some of the layers have been shortened while some
of them are elongated. At a level between the top and bottom of the beam, there will be a layer
which is neither shortened nor elongated. This layer is known as neutral luyer or neutral

iU ™M

1
!
y
i
]
H
i
.

| Axis of heamn
:
13

\ b
\ Sk—axﬂm .

(b) After bending

(@) Before bending
Fig. 7.2

“Homogeneous means the material is of the same kind throughout.
=% Igotropic means that the elastic properties in all directions are equal.
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surface. This layer in Fig. 7.2 (b) is shown by N' — N' and in Fig. 7.2 (@) by N — N. The line of
intersection of the neutral layer on a cross-section of a beam is known as neutral axis (written
as NLAL).

The layers above N — N (or N' - N') have been shortened and those below, have been
elongated. Due to the decrease in lengths of the layers above N — N, these layers will be sub-
jected to compressive stresses. Due to the increase in the lengths of layers below N - IV, these
layers will be subjected to tensile stresses.

We also see that the top layer has been shortened maximum. As we proceed towards the
layer N — N, the decrease in length of the layers decreases. At the layer N — N, there is no
change in length. This means the compressive stress will be maximum at the top layer. Simi-
larly the increase in length will be maximum at the bottom layer. As we proceed from bottom
layer towards the layer N — N, the increase in length of layers decreases. Hence the amount by
which a layer increases or decreases in length, depends upon the position of the layer with
respect to N — N. This theory of bending is known as theory of simple bending.

7.4. EXPRESSION FOR BENDING STRESS

Fig. 7.3 (#) shows a small length & of 2 beam subjected to a simple bending. Due to the
action of bending, the part of length 8¢ will be deformed as shown in Fig. 7.3 (b). Let A'B' and
C'D" mest at O.

Let R =Radius of neutral layer N'N'

6 = Angle subtended at O by A’'B’ and C'I} produced.

A C
M N_ ).
o s i

{e)
Stress Diagram

Fig. 7.3

7.4.1. Strain Variation Along the Depth of Beam. Consider a layer EF at a distance
y below the neutral layer NN. After bending this layer will be elongated to E'F".

Original Iength of layer EF = &x.
Alsoe length of neutral layer NN = 6x.

After bending, the length of neutral layer N'N' will remain unchanged. But léength of
layer E'F' will increase. Hence

N'N'= NN = &,
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Now from Fig. 7.3 (b),

NN =Rx#9
and EF=(R+y}x0 (- Radius of E'F' =R + y}
But N'N'= NN = &x.
Hence de=Rx0

Increase in the length of the layer EF
=EF -EF=(R+y})8-Rx9
=yx0

Strain in the layer EF
_ Increase in length

(' EF=btxr=Rx8)

Original length
¥x8 yx8
="E=E;a (~ EF=8x=R x @)
=¥
"R

As R is constant, hence the strain in a layer is proportional to its distance from the
neutrel axis. The above equation shows the variation of sirain along the depth of the beam.
The variation of strain is linear.

7.4.2. Stress Variation

Let o = Stress in the layer EF
E = Young’s modulus of the beam

Stress in the layer EF
~ Strain in the layer EF

Then

a

) (%} [ Strain in EF = % )

o:Ex%=§_xy 71D

Since F and B are constant, therefore stress in any loyer is directly proportional o the
distance of the layer from the neutral layer. The equation (7.1) shows the variation of stress
aleng the depth of the beam. The variation of stress is linear.

In the above case, all layers below the neutral layer are subjected to tensile stresses
whereas the layers above neutral layer are subjected to compressive stresses. The Fig. 7.3 (¢)
shows the stress distribution.

The equation (7.1) can also be written as

o _E 7.2
y R

7.5. NEUTRAL AXIS AND MOMENT OF RESISTANCE

The neutral axis of any transverse section of a beam is defined as the line of intersection
of the neutral layer with the transverse section. It is written as N.A. :

In Art. 7.4, we have seen that if a section of a beam is subjected to pure sagging moment,
then the stresses will be compressive at any point above the neutral axis and tensile below the
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. meutral axis, There is no stress at the neutral axis. The stress at
- a distance y from the neutral axis is given by equation (7.1) as - - i dy
E 1
g = -}“E“ Xy ‘}Y—
T A

Fig. 7.4 shows the cross-section of a beam. Let N.A. be the
neutral axis of the section. Consider a small layer at a distance y
from the neutral axis. Let d4 = Area of the layer.

Now the force on the layver

z|

= Stress on layer x Area of layer

—axdA Fig. 7.4

D ( o= % ® y)

Total force on the beam seetion is obtained by integrating the above equation.
- Total force on the beam section

B dA
=— X
R

E
= -{E xyxdd
E
= EIJ’ % dA {-» E and R is constan$)
But for pure bending, there is no force on the section of the beam (or force is zero).
E J‘ dA
F?) ¥y x =0
" or jy x dA =0 (as % cannot be zero]

Now y x dA represents the moment of area d4 about neutral axis. Hence [y x dA repre-
sents the moment of entire ares of the section about neutral axis. But we know that moment of
any area about an axis passing through its centroid, is also equal to zero. Hence neutral axis
. coincides with the centroidal axis. Thus the centroidal axis of a section gives the position of
neutral axis.

7.5.1. Moment of Resistance. Due to pure bending, the layers above the N.A. are
subjected to compressive stresses whereas the layers below the N.A. are subjected to tensile
stresses, Due to these streases, the forces will be acting on the layers. These forces will have
moment about the N.A. The total moment of these forces about the N.A. for a section is known
as moment of resistance of that section.

The force on the layer at a distancey from neutral axisin Fig. 7.4 is given by equation (i), as

Iy
Force on layer =g Xy dA

‘Moment of this force about N.A.
= Force on layer x y

E A
== %y
7 Xy xdAxy

E %% dA
= Xy*x
R *Y
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Total moment of the forces on the section of the beam {(or moment of resistance)
- _E 2 — ;E )2
= I xy:xdA = I I ¥y xdA

Let M = External moment applied on the beam section. For equilibrium the moment of
resistance offered by the section should be equal to the external bending moment.

M= g—jy?di.

But the expression | y* x dA represents the moment of inertia of the area of the section
about the neutral axis. Let this moment of inertia be I.

M= % %I or 1‘11 =§- L(7.3)
But from equation {7.2), we have

c E

y R

M v E

- —37 =% ..(7.4)

The equation (7.4) is known as bending equation.

In equation (7.4), the different quantities are expressed in consistent units as given
below :

M is expressed in N mm ; 7 in mm*

o is expressed in N/mm? ; y in mm
and E is expressed in N/mm?; R in mm.

7.5.2. Condition of Simple Bending. The equation (7.4) is applicable to a member
which is subjected to a constant bending moment and the member is absolutely free from
shear force. But in actual practice, a member is subjected to such loading that the B.M. varies
from section to section and also the shear force is not zera. But shear force is zero at a section
where bending moment is maximum. Hence the condition of simple bending may be assumed
to be satisfied at such a section. Hence the stresses produced due to maximum bending mo-
ment, are obtained from equation (7.4} as the shear forces at these sections are generally zero.
Hence the theory and equations discussed in the above atticles are quite sufficient and give
results which enables the engineers to design beams and structures and calculate their stresses
and strains with a reasonable degree of approximation where B.M. is maximum,

7.6. BENDING STRESSES IN SYMMETRICAL SECTIONS

The neutral axis (N.A.) of a symmetrical section {such as circular, rectangular or square)
lies at a distance of d/2 from the outermost layer of the section where d is the diameter (for a
circular section) or depth (for a rectangular or a square section). There is no stress at the
neutral axis. But the stress at a point is directly proportional to its distance from the neuiral
axis. The maximum stress tahos place at the outermost layer, For a simply supported beam,
there is a compressive stiess above the neutral axis and a tensile stress below it. If we plot
these stresses, we will get a figure as shown in Fig. 7.5.
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] B AR
N Stress distribution
d acress a section

i Oy 3]

Fig. 7.5

Problem 7.1. A steel plate of width 120 mm and of thickness 20 mm is bent inio a
circular arc of radius 10 m. Determine the maximum stress induced and the bending moment
which will produce the maximum stress. Take E = 2 x 10° Nimm?.

Sol. Given :
Width of plate, b =120 mm
Thickness of plate, =20 mm
3 3
Moment of inertia, f= bt” _120x207 8 x 10* mm?
12 12

Radius of curvature, R=10m=10x 103 mm
Young's modulus, E =2 x 10° N/mm?
Let 0,0 = Maximum stress induced, and

M = Bending moment.
Uszing equation (7.2), o_ E ‘

vy R

E .
o=5 Xy )

Equation (i) gives the stress at a distance y from N.A.

Stress will be maximum, when y is maximum. Buty will be maximum at the top layer or
hottom layer.

i 20
ymw=§=?=10mm.
Now equation (i) can be written as
E .
Oma:c = E x ymu.x
2% 10°
= =" x 10 = 200 N/mm2. Ans.
10 % 10° _
From equation (7.4), we have
M_E
I R
E 2x 107
M=—xI= 4
TR ek deh

=16 x 10° N mm = 1.6 kNm. Ans.
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Problem 7.2. Calculate the maximum stress® induced in a cast iron pipe of external
diameter 40 mm, of internal diameter 20 mm and of length 4 metre when the pipe is supported
at its ends and carries a point load of 80 N at its cenire.

Sol. Given :

External dia., D =40 mm

Internal dia., d =20 mm

Length, L=4m=4 %1000 = 4000 mm
Point load, W=80N

In case of simply supported beam carrying a point load at the centre, the maximum
bending moment is at the centre of the beam. )

T i
",

o M =8 x 10* Nmumn
Fig. 7.6 (b} shows the cross-section of the pipe.
Moment of inertia of hollow pipe,

LI
1—64[13 dil

L L _
) [40% - 204)] o4 [2560000 — 1600001

=117809.7 mm?
Now using equation (7.4),
M o
T - ; (i)
when y is maximum, stress will be maximum. Buty is maximum at the top layer from the N.A,
D 40 :
ymu=E=?=2Omm .

*The bending stress will be maximum at the section where B.M. is maximum. This is because
M_o or g= M x
F r*
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The above equation (i) can be written as

E_ O max
T Y
M
Gma.r = -I“ xymux
8x10% x 20 2
= = - - An 2]
1178097 13.58 N/mm S

7.7. SECTION MODULUS

Section modulus is defined as the ratio of moment of inertia of a section about the neutral
axis to the distance of the outermost layer from the neutral axis. It is denoted by the symbol Z.
Hence mathematically section modulus is given by,

Lt ..(1.5)
ymm:
where I= M.O.I. about neutral axis
and  y_ . = Distance of the outermost layer from the neutral axis.
From equation (7.4), we have

M o

Iy
The stress o will be maximum, when y is maximum. Hence above equation can be
written as

A_J___ S max
I Ymes
M= Crox _iw
But :}’L =27
max
M=o Z .{7.6)

o e

In the above equation, M is the maximum bending moment (or moment of resistance
offered by the section). Hence moment of resistance offered the section is maximum when
section modulus Z is maximum. Hence section modulus represent the strength of the section.

7.8. SECTION MODULUS FOR VARIOUS SHAPES OR BEAM SECTIONS

1. Rectangular Section N b ’

Moment of inertia of a rectangular section about an T
axis through its C.G. (or through N.A.) is given by, di2
bd? |
=Ty T g
Distance of outermost layer from N.A. is given by,
d
ymax = E

Section modulus is given by,
Fig. 7.7
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1 bd® bd® 2 bd?
Z= N =TT e 1)
Ymax {9, (EJ
2. Hollow Rectangular Section
‘ BD®  bd®
Here RETRNETY

1
- 3 3
=5 BD® - bd%] 1 1R
’ 3}
d
A

D
Ymax = / i”z
P yI 2 _N./ﬁ.v,,_m,“._ e
LD _pat) ' f
S Pl 7T
(E) Fig. 7.8
1
=35 [BDB - bd3] .{7.8)
3. Circular Section
For a circular section,
o _a
I= i d* and y,_. = 5
3
= dt
I
g=——=bt T A7.9)

_ T ot g4
Here I~64[D di]
and yng
T o4 4
—[D*-d
"o I _64[ 1
=
2
T

- 4 . J4
= 39D [D4-d*]  .{7.10)

Problem 7.3. A cantilever of length 2 metre fails when a load of 2 kN is applied at the
free end. If the section of the beam is 40 mm x 60 mm, find the stress at the failure.

Sol. Given :
Length, L=2m=2x10° mm
Load, W=2EKN=2000N
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Section of beam is 40 mm x 60 mm. '

Width of beam, b =40 mm
Depth of beam, d =60 mm
2 kN
h 4 {440 mm-—¥|
60
mim
b 2m :}
Fig. 7.10 Fig. 7.10 (a)

Fig. 7.10 (a) shows the section of the beam.
Section modulus of a rectangular section is given by equation {(7.7).
bd? 40 x 602

Z="—"=
6

Maximum bending moment for a cantilever shown in Fig. 7.10 is at the fixed end.
' M=WxFL=2000x2x 10° = 4 x 165 Nmm

= 24000 mm?

Let 0,,. = Stress at the failure
Using equation (7.6), we get
M = Gma.x - Z
M 4x10°
e = o = = om = 166.67 N/mm?,  Ans.

o mex o Z 24000
Problem 7.4. A rectangular beam 200 mm deep and 300 mm wide is simply supported
over a span of 8 m. What uniformly distributed load per metre the beam may carry, if the
bending stress is not to exceed 120 Nimm?.

Sol. Given: wim tength
Depth of beam, d =200 mm e
Width of beam, b = 300 mm 4+ )
Length of beam, L=8m Y L ——b
Max. bending stress, WTL WTL
0, = 120 N/mm?
Let w = Uniformly distributed load per Fig. 7.11
m length over the beam :
(Fig. 7.11 (@) shows the section of the beam). {4 300 mm —»|
Section modulus for a rectangular section is given by equa- T—
tion (7.7). 200
bd? 300 x 200° n
Z= % =& = 2000000 mm? l_

Fig, 7.11 ()
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Max. B.M. for a simply supported beam carrying uniformly distributed load as shown in
Fig. 7.11 is at the centre of the beam. It is given by

peWxL_wx8 (v L=8m)
8 8
= 8w Nm = 8w x 1000 Nmm
= 8000w Nmm (- 1m = 1000 mm}
Now using equation (7.6), we get
M=o, -%Z
or 8000w = 120 % 2000000
w = Ew =30 x 1000 N/m = 30 kN/m. Ans.

Problem 7.5. A rectangular beam 300 mm deep is simply supported over a span of
4 metres. Determine the uniformly distributed load per metre which the beam may carry, if
the bending stress should not exceed 120 Nimm®. Take I = 8 x 10° mm?,
{Annamalai University, 1991}

Sol. Given :
Depth, d = 300 mm
Span, L=4dm
Max. bending stress, @,,, =120 N/mm? -
Moment of inertia, I=8x108 mm* win Jengt
Let, w = UDUL. per metre length over the
beam in N/m. Ag G . 4B
The bending stress will be maximum, where Cf—2m————— 2 m——>
bending moment is maximum. For a simply — 4 M ]
supported beam carrying U.D.L., the bending 2w 2w
moment is maximum at the centre of the beam .
[ie., at pomt Cof Fig. 711 (b)] Fig. 7.11 (&)
Max. BM. = 2w x2-2wx1
=4dw -2
2 2
- 9 Nm [AlSOM=wXL :wixtl 16w=2wJ
8 8
= 2w x 1000 Nmm
or M = 2000w Nmm
Now using equation (7.6), we get
M=0,, *Z LD
I 8x10° d
where Z = -2 ['_' Yoz = — = 33_(_}9_ =150 mm)
Vmae 150 2 2
Hence above equation (7) becomes as )
5000w = 120 x 53 10°
120 x 8 x 10°
or = e ——— = 3200 N/m. Amns.
= T2600 x 150 m. Ans
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Problem 7.6. A square beam 20 mum x 20 mm in section and 2 m long is supported at the
ends. The beam fails when a point load of 400 N is applied at the centre of the beam. What
uniformly distributed load per metre length will break a cantilever of the sume material 40 mm
wide, 60 mm deep and 3 m long 7

Sol. Given : . 1400 N
Depth of beam, d = 20 mm c 3
Width of beam, b=20mm - 1‘ s N
Length of beam, L=2m " g
Point load, W =400 N Fig. 712

In this problem, the maximum stress for the
simply supported beam is to be ealculated first. As the material of the cantilever is same as
that of sizaply supported beam, hence maximum stress for the cantilever will also be same as
that of simply supported beam.

Fig. 7.12 (a) shows the section of beam. H— 20mm —#
The section modulus for the rectangular section of simply sup- T
" ported beam is given by equation (7.7). 20
2 2 mm
Z:bd =20><?..() =4000 m® l
6 -6 3
Max. B.M. for a simply supported beam carrying a point load
at the centre (as shown in Fig. 7.12) is given by,
M= w: “- 40(.): 2 _ 200 Nm Fig. 7.12 (a)
= 200 x 1000 = 200000 Nmm
Let o, = Max. stress induced
Now using equation (7.6), we get
M=o,.%2
or 200000 =g, % é%g)—q
200000 % 3
O = ——Z(ﬁ = 150 N/mm?
Now let us consider the cantilever as shown in
Fig. 7.13. wN/m RUN
Let w = Uniformly distributed load per m run. _
Maximum stress will be same as in case of sim- 3m »
ply supported beam.
p.p 2 Fig. 7.18
o O e = 150 N/mm
Width of cantilever, b =40 mm b 40 mim-»|
Depth of cantilever, d =60 mm
Length of cantilever, L=3m
Fig. 7.13 (2} shows the section of cantilever beam. 8o
2
Section modulus of rectangular section of cantilever = —‘é—
2
7= M_ = 24000 mm? Fig. 7.13 (a)
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Maximum B.M. for a cantilever

2 2
925— e ’;3 = 4.5w Nm = 4.5 x 1000w Nmm

- M =45 x 1000w Nmm
Now using equation (7.6), we get

M= Lo S Z
or 4.5 % 1000w = 150 x 240060
_ 150x24000 o N/m.  Ans.
45 x 1000

Problem 7.7. A beam is simply supported and carries a uniformly distributed load of
40 kNfm run over the whole span. The section of the beam is rectangular having depth as
500 mm. If the maximum stress in the material of the beam is 120 Nimm? and moment of
inertia of the section is 7 x 10% mm?, find the span of the beam.

Sol. Given :
U.D.L, w =40 kN/m = 40 x 1000 N/m
Depth, d = 500 mm
Max. stress, 0, = 120 N/mm?
M.O.L of section, I =7 x.10% mm*
Let L = Span of gimply supported beam.
Section modulus of the section is given by equation (7.5}, as
I
7=
ymax
d 500
where ¥, = 33 ° 250 mm
7 x 10°
Z= 250 = 28 x 10° mim?
The maximum B.M. for a simply supported beam, carrying a U.D.L. over the whole span

w. L

is at the centre of the beam and is equal to

M= w.8L2 =40000><L2

8
= 500012 Nm = 5000L? x 1000 Nmm
Now using equation (7.6), we get

M=o0,. %2
or 5000 x 1000 x L2 = 120 x 28 x 10°
. 120 % 28 x 10°
TS XTPR T _94x28
or L= 5000 % 1000 X

L= /24x28 =8.197 m say 8.20 m. Ans.

Problem 7.8. A timber beam of rectangular section is to support a load of 20 kN uniformly
distributed over a span of 3.6 m when beam is simply supported. If the depth of section is to be
fwice the breadth, and the stress in the timber is not to exceed 7 NimmZ, find the dimensions of
the cross-section.
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How would you modify the cross-section of the beam, if it carries o concenirated load of
20 kN placed at the centre with the same ratio of breadih to depth ? .

Sol. Given :
Total load, W=20kN=20x 1000 N
Span, L=36m
Max. stress, Oy = 7 Nfmm?
Let b = Breadth of beam in mm
Then depth, . d=2bmm
. bd*
Section modulus of rectangular beam = r
2 3
L= 7bx(:b) :gg—mm3
Maximum B.M., when the simply supported beam carvies a U.D.L. over the entire span,
2 T
is at the centre of the beam and is equal to w;';l or -1%" .
.6
M= —ﬁgi - -—————2000(; 238 _ 9000 Nm

= 9000 x 1000 Nmm
Now using equation {7.6), we get

M= T - VA

3

or 9000 x 1000 = 7 x %
or ps o 32 9000x 1000 _, goceq . 108

Tx2
b = (192857 x 108)13
=124.47 mm say 124.5 mm. Ans.
and d=2b=2x1245 = 249 mm. Ans.

Dimension of the section when the beam carries a point load al the centre.

B.M. is maximum at the centre and it is equal to L when the beam carries a point

load at the centre.
WxL 20000x36
M=—= 4
= 18000 x 1000 Nmm
Oy = 1 N/mm?
263

and Z= S5 ) (-- In this case also d = 2b)

Using equation (7.6), we get
M=o,,.2Z

9

or 18000 »x 1000 = 7 x %

= 18000 Nm
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_ 3x 18000 x 1000

bi =3.85714 x 108
Tx2
b = (3.85714 x 105)1% = 156.82 mm. Ans.
and - d=2x156.82 = 813.64d mm. Ans.

Problem 7.9, A timber beam of rectangular section of length 8 m is simply supported.
The beam carries a U.D.L. of 12 kN/m run over the entire length and a point load of 10 kN at 3
metre from the left support. If the depth is two times the width and the stress in the timber is not
to exceed 8 Nimm?2, find the suitable dimensions of the section.

Sol. Given :

Length, L=8m

Un.L., w = 12 kN/m = 12000 N/m
Point load, W=10kN = 10000 N
Depth of beam =2 x Width of beam
d=2b

Stress, O = 8 Nimm?

Tirst caleulate the section where B.M., is maximmum. Where B.M. is maximum, the shear
force will be zero. Now the equations of pure bending can be used. For doing this, calculate the
reactions B, and R, as shown in Fig. 7.14. :

10 kN
A. C 2 kN/m B
ry F
[ 3 m
o &m »
R, Ra
Fig. 7.14

Taking moments about A, we get
Ry x8=12000x 8 x 4 + 10000 x 3
12000 = 32 + 30000
BT 8
R, =Total load - K,
= (12000 x 8§ + 10000) — 51750 = 54250 N
Now SFatA=+R,=+54250 N
SF just LHS. at C =54250- 12000 x 3 =+ 18250 N
SF. justRHS. of C  =18250- 10000 = 8250 N
SF.atB . _ =—Rp=-51T60 N
The S.F. is changing sign between section CB and hence at some section in C and B the
S.F. will be zero.
Let S8.F. is zero at x metre from B.
Equating the S.F. at this section to zero, we have
12000 xx - Rp=0
or 12000 x x - 51750 =0
51750

x= 12000 =4.3125m

=51750 N
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Maximun: B.M. will occur at 4.3125 m from B.

4.3125
2

Maximum B.M. =M = Ry » 43125 — 12000 x 4.3125 x

= 51760 x 4.3125 — 111585.9375
= 111585.9375 Nm = 111585.9375 x 1000 Nmm
Section modulus for rectangular beam is given by,

bd®? bx (26 26°

Z=—— = o
) 6 6 3
Now using equation (7.8), we get
M=o, .Z
2b®
-Or 111585.9375 x 1000 = 8 x mé-"
5 3x111585.9375 x 1000
b= 16 =20.9223 x 108

o b =(20.9223 x 105} = 2795.5 mm. Ans.
~=nd d=2x2755=551 mm. Ans.
Problem 7.10. A rolled steel joist of I section has the dimensions : as shown in Fig. 7.15.

This beam of I section carries « u.d.l of 40 kNIm run on a span of 10 m, calculnte the maximum
tress produced due to bending.

Sol. Given :
wdl, * w =40 kN/m = 40000 N/m —eoomn—f |
Span, L=10m | i | 20 mm
Moment of inertia about the neutral axis —T—
_ 200 x 400% (200 - 10} x 360°
= 12 - 12 360 mm
= 1066666666 — 738720000
= 327946666 mm* - -}
Maximum B.M. is given by, N A 400mm
g 2 10 mm
o XD 40000x 10 — e
8 8
- = 500000 Nm
= 500000 x 1000 Nmm | 20 wn
=5 x 10° Nmm t
Now using the relation, Fig. 7.15
M o
Iy
M
o= 7 Ry
8
=X = 2x 10 o0 (¥, = 200 mm)

ey o X107
max = TF X Vmax = Songina66
= 304,92 N/mm?. Ans.
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Problem 7.11. An I-section shown in Fig. 7.16, is simply supported over a span of 12 m.
If the maximum permissible bending stress is 80 Nimm?2, what concentrated load can be earried
at a distance of 4 m from one support ?

Sol. Given :

Bending stress, o, = 80 N/mm?

Let W = Concentrated load carried at a distance of 4 m from support B

in Newton

To find the maximum bending moment {(which will be _'L ¢ 160 mm ,
at point € where concentrated load is acting), first calculate Frismm[ !
the reactions R, and R. ;

Taking moments about point A, we get

RBpx12=Wx8 N ‘Emm
W 2
: 12 3 e O
' 2 W N A
and Ry=W-Ry=W- W= o 225 mm

B.M. at point C

But B.M. at C is maximum

Maximum B.M., AN
8 8 (@
Mnm=§WNm=‘§WX 1000 Nmm w
5000 A ol e
Now find the moment of inertia of the given I-sec- * b4 m—>
tion about the N.A. 12 mﬁ-———;
w
;. 100x225° (100 -7.5) x (225 - 2x 11.5)" T - =
ST 12 12
Fig. 7.16
: 2)°
= 94921875 — ﬁfl—go—)—

= 04921875 — 63535227.55 = 31386647.45 mm*
Now using the relation,

M_o
Iy
_Ai _ O max
or I Yo
225
where Yo = —“2— = 112.5 mm.

Now substituting the known values, we get
8000

( 3 W) _ 80

31386647.45 112.5

80 3 An
. = = 77 N. S.
or W= 125 © 31386647.45 x ooo0 8369




310 STRENGTH OF MATERIALS

BENDING STRESSES IN BEAMS 391

Problem 7.12. Two circular beams where one is solid of diameter D and other is a
hollow of outer dia. D and inner din. D, are of the same length, same material and of same
weight, Find the ratio of section modulus of these circulur beams.

Sol. Given :
Dia. of solid beam =D
Dias. of hollow bearsn =D and D,
Let L = Length of each beam (same length)
‘ W = Weight of each beam (same weight)
p = Density of the material of each shaft (same material}
Now weight of solid beam =p x g x Area of section x L

—pxgx ; DixL
Weight of hollow beam = p x g x Area of section x L
n
=pXgx 1 [Dﬂz—Df}xL
But the weights are same
T x
pxngszL-_-pxgx 1 D2~ DEIxL

or D?= D02 _ Di2 B3]
Now section modulus of solid section,

7
Z= 3 n [See equation (7.9)]
And section modulus of hollow section, :
) m
Z = —32D0 [Byt- DA [See equation {7.10}]
n
= ﬁ [D02 + Diz] [D02 - D!-Q]

Section modulus of solid section
Section modulus of hellow section

T
LT
- 32
n 2 2 2 2
320, [Dy* + D211 Dy* -~ D*]

~ D% x D, ~ D x D, x D?
D%+ DAIIDY® - DY (D + DP1LD,? - D)
_ DxDyx[D,*- DA
[Dy® + DA1(D,? - D)
__DxD,
(Dt + D)
Also from equation (i),
D*=DZ-D? or DE=D2-D?

[~ D?=D?- D2 from equation ()]

()

Substituting the value of D.2 in equation (i), we get
Section modulus of solid shaft D x Dy _ DxD,

Section modulus of hollow shaft D2 + D2 - D? ~ (2D,? - D?)
2
Section modulus of hollow shaft 21),32 -D? _ 20," D?

or - = _
Section modulus of solid shaft Dx D, DxDy DxDy
D, D
=2 D D, Ans,

Problem 7.18. A water main of 500 mm internal diameter and 20 mm thick is running
full. The water main is of cast iron and is supported af two points 10 m apart. Find the maximum
stress in the metal. The cast iron and water weigh 72000 N/im? gnd 10000 Nim? respectively.

(Annamalai University, 1990)

Sol. Given :

Internal dia., D,=500mm=05m

Thickness of pipe, t =20 mm

<. Outer dia., Dy=D;+2xt=500+2x 20 = 540 mm = 0.54 m

Weight density of cast iron = 72000 N/m®

Weight density of water = 10000 N/m?

L S 2 _ 2
=7 D2= n x 0.5% = (0.1960 m

This is also equal to the area of water section.
Area of water section = 0.196 m?

Internal area of pipe

it n
Quter area of pipe =7 D= Vil 0.54% m*

T

VI

{a) . (&)
Fig. 7.17

Fis

4

x
DOZ - Z D£2 .
kL T .
=4 {D2-D2= 1 [0.542 — 0.5%] = 0.0327 m*

Area of pipe section=
Moment of inertia of the pipe section about neutral axis,

T pa_pa 4_ 5004 = 1.1 9 4

I= ” (D, -D4 e [540* - 500%] = 1.105 x 10° mm

Let us now find the weight of pipe and weight of water for one metre length.
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Weight of the pipe for one metre run
= Weight density of castiron x Volume of pipe
= 72000 x [Area of pipe section x Length]
= 72000 x 0.0327 x 1 (~+ Length=1m)
_ = 2354 N
Weight of the water for one metre run
= Weight density of water x Volume of water
= 10000 x (Area of water section x Length}
=10000 x 0.196 x 1 = 1960 N
. Total weight on the pipe for one metre run
=2354 + 1960 = 4314 N

Hence the above weight is the U.D.L. (uniformly distributed load) on the pipe. The

wdaximum bending moment due to U.D.L. is w x L8, where w = Rate of U.D.L. = 4314 N per
metre run.

Maximum bending moment due to U.D.L.,

wx [P 4314 x 10

M= 5 P (- L=10m)

= 53925 Nm = 53925 x 108 N mm
Now using M =2,

Iy
M
o= Xy

The stress will be maximum, when v is maximum. But maximum value of

y= % = % =270 mm

Yo = 270 mim )
. M 53925 x 10°
o Maximum stress, o= — = —— x 270
% T = s = 05707

=13.18 N/mm?. Ans.

.79. BENDING STRESS IN UNSYMMETRICAL SECTIONS

In case of symmetrical sections, the neutral axis passes through the geometrical centre

.~ “the section. But in case of unsymmetrical sections such as L, T sections, the neutral axis

uoes not pass through the geometrical centre of the section. Hence the value of v for the topmost

layer or bottom layer of the section from neutral axis will not be same. For finding the bending

-...ress in the beam, the bigger value of y is used. As the neutral axis passes through the centre

of gravity of the section, hence in unsymmetrical sections, first the centre of gravity is calculated
7" the manner as explained in chapter 5.

Problem 7.14. A cast iron bracket subject to bending has the cross-section of I-form with
rnequal flanges. The dimensions of the section are shown in Fig. 7.18. Find the position of the
reeutral axis and moment of inertia of the section about the neutral axis. If the maximum bend-
ing moment on the section is 40 MN mm, determine the maximum bending stress. What is the

ture of the siress ¢

'BENDING STRESSES INBEAMS _ : a1

Sol. Given :

Max. B.M., M = 40 MN mm = 40 x 10° Nmm

Let us first calculate the C.G. of the section. Let ¥ is the distance of the C.G. from the
bottom face. The section is symmetrical about y-axis and hence ¥ is only to be calculated.

Then,
) v - Ayyy + Agys + Agyy
(A, + Ag + Ay)
where A, = Area of bottom flange = 130 x 50 = 6500 mm*
¥, = Distance of C.G. of A, from bottom face
= % =25 mm

A, = Area of web = 200 x 50 = 10000 mm?
¥, = Distance of C.G. of A, from bottom face
200
=50+ 5 = 150 mm )
A, = Area of top flange = 200 x 50 = 10000 mm?
¥y = Distance of C.G. of A, from bottom face -

=50+200+%:275mm.

H-— 200 mm —DI
*
S50 mm
Br_acket L 4
200
i S U, -l ‘50 mim mm
je— 130 mm —»}
" Fig. 7.18
6500 x 25 + 10000 x 150 + 10000 x 275
y= 6500 + 10000 + 10000
162500 + 1500000 + 2750000
, = 26500
4412500
—_—— = 51
56500 166 min

Hence neutral axis is at a distance of 166.51 mm from the bottom face. Ans.
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Moment of inertia of the section about the N.A.
I= 11 + Iz + Ia
where I, = M.O.L of bottom flange about N.A.
= M.O.IL of bottom flange about an axis passing through its C.G.
+ 4, x (Distance of its C.G. from N.A.)?

130 x 50°
= =5 + 6500 x {166.51 - 25)?

= 1354166.67 + 130163020 = 131517186.6 mm*

j¢——— 200 mm ———»{ e—a—

[l o -/

Fy
133.49
mm

i

fe—130mm —»  j—————»|

o, = 23,377

Fig. 7.19
I, = MLO.L of web about N.A.

_ 50 x 200°
T
_ 50 x 200°

Similarly
+4,. (166.51 —y,)?

+ 10000 (166.51 — 150)2

= 33333333.33 + 272580.1
= 33605913.43 mm*
and . I; = M.CQ.L of top flange about N.A.
200 » 50°
BT

200 x 50°
= =57 + 10000 x (275 - 166.51)2

= 2083333.33 + 117700801 = 119784134.3 mm*

I=1I +1,+1,=131517186.6 + 33605913.43 + 119784134.3
= 284907234.9 mm?, Ans.
Now distance of C.G. from the upper top fibre

=300- ¥ =300 - 166.51 = 133.49 mm

+A4, . (y,— 166.51)?
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and the distance of C.G. from the bottom fibre
= ¥ = 166.51 mm
Henee we shall take the value of y = 166.51 mm for maximum bending stress.
Now using the egquation C
M
I

< la

M 40 x 108

O=—xy= ——— - x 166.51 = 23.377 N/mm?
2849072349

I
Magzimum bending stress

= 23.377 N'mm?. Ans.
This stress will be compressive. In case of cantilevers, upper layer is subjected to tensile
stress, whereas the lower layer is subjected to compressive stress.
Problem 7.15. A cast iron beam is of I-section as shown in Fig. 7.20. The beam is simply
supported on a span of 5 metres. If the tensile stress is not to exceed 20 Nfmm?, find the safe

© uniformly load which the beam can carry. Find also the maximum compressive stress.

_L j¢— 80 mm —»]
20 mm @

169.34 mm
200 mm

2

] l—

Sol. Given :

Length of beam, L=5m

Maximum tensile stress, o, =20 N/mm?

First caleulate the C.G. of the section. Let ¥ is the distance of the C.G. from the boitom
face. As the section is symmetrical about y-axis, hence ¥ is only to be calculated.,

Ay + Apys + A3y

Now y=
(A + Ay + Ag)
(160 x 40).% + {200 x 20)[40+ 2;;0)+(80 x20).(40 + 200 + %) :

160 x 40 + 200 x 20 + 80 x 20
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128000 + 560000 + 400000 1088000
6400 + 4000 + 1600 T 12000

N.A. lies at a distance of 90.66 mm from the bottom face or 260 — 90.66 = 169.34 mm
- from the top face.

Now moment of inertia of the section about N-axis is given by,
IsIL+1,+1;
* where [; = M.O.L of bottom flange about N.A.
: = M.O.L of bottom flange about its C.G. + A,
x (Distance of its C.G. from N.A.)?

= 90.66 mm

160 x 40°
- % + 160 x 40 x (90.66 - 20)2

= 853333.33 + 31954147.84 = 32807481.17 mm?*
I, = M.O.I. of web about N.A.
= M.O.L of web about its C.G. + 4,
% (Distance of its C.G. from N.A.)?

20 x 200°
= ——3‘-15— + 200 x 20 x (140 — 90.66)2

= 13333333.33 + 9737742.4 = 23071075.73 mm?
= M.O.I. of top flange about N.A.
= M.O.L of top flange about its C.G. + 4,
x (Distance of its C.G. from N. A}

80 x 20°
== * + 80 x 20 x (250 - 90.66)2

= 53333.33 + 40622776.96 = 40676110. 29 mm*
I = 32807481.17 + 23071075.75 + 40676110.29 = 96554667.21 mm*.

For a simply supported bear, the tensile stress will be at the extreme bottom fibre and
" compressive stress will be at the extreme top fibre.

Here maximum tensile stress = 20 N/mm?
Hence for the maximum tensile stress,
¥ = 90.66 mm

. [i.e., ¥ is the distance of the extreme bottom fibre {(where the tensile stress is maximum} from
- the N.A.1

e the relation. =2
Using the relation, 775
M= g x i
¥
.20 x 96554667.21 (- o=0,=20N/mm?
T 9066 ’ o
= 21300389.85 Nmm L)

Let w = Uniformly distributed load in N/m on the simply supported beam.

2
The maximum B.M. is at the centre and equal to wl
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M= w>;52 N = wx258x 1000

Equating the two values of M, given by equation (i) and {ii), we get
3125w = 21300389.85

_ 21300389.85

3125

Nmm = 3125 v Nmm ..-(i)

= 6816.125 N/m. Ans.

Muximum Compressive Stress
Distance of extreme top fibre from N.A,,
¥, = 169.34 mm
M =21300389.85
I =96554667.21

Let o, = Max. compressive stress
M o
Using the relation, T = ;
M
G= Xy
M 21300389.85
— = .34 = 37.357 N/mm®. Ans.
or O, = F Xy, = 9655466791 x 169.34 = 37.3 e

Problem 7.16. A cast iron beam is of T-section as shown in Fig. 7.21. The beam is
simply supported on a span of 8 m. The beam carries a uniformly distributed load of 1.5 ENim
length on the entire span. Determine the maximum tensile and maximim compressive siresses.

l-q———- 100 mm ————H
‘T‘ T F
32.23 @ 23 mm
mm
I
80 mm
100
@ mm
67.77 mm
L AN, N
—»{20 mm —
Fig. 7.21
Sol. Given :
Length, L=8m
U.D.L, w = 1.5 kN/m = 1500 N/m

To find the position of the N.A., the C.G. of the section is to be calculated first. The C.G.
will be lying on the y-y axis.
Let ¥ = Distance of the C.G. of the section from the bottom
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20 80
(100 x 20) (80+4J+80x20x——
_ Aryy +Asyy - ) 2 2
YT A+ A (100 x 2) + (80 x 20)
00 244000
_ 180000 + 64000 _ e

2000+ 1600 3600
N.A lies at a distance of 67.77 mm from the bottom face or 100 - 67.77 = 32.23 mm
from the top face. :
Now moment of inertia of the section about N.A. is given by,
I=1+1,

where I, = M.O.L of top flange about N.A.
= M.O.L of top flange about its C.G. + A, x (Distance of its C.G. from N.A.)?

3
2 J00x207 100 x 20) x (32.23 - 10)?

= 66666.7 + 988345.8 = 1055012.5 mm?
I,=M.O.L of web about N.A.
= M.O.L of web about its C.G. + 4, x (Distance of its C.G. from N.A)?

- 20—’1‘59— + (80 % 20) x (B7.77 — 40)?

= 853333.8 + 1233876.6 = 2087209.9 mm*
I=1 +I,=1055012.5 + 2087209.9 = 31422224 mm?.
Fora s1mp1y supported beam, the maximum tensile stress will be at the extreme bottom
fibre and maximum compressive stress will be at the extreme top fibre.
Maximum B.M. is giver by,

2 15 2
M= w’;L - “’008" 8 - 12000 Nm
= 12000 x 1000 = 12000000 Nmm

Now using the relation
M_o o s=%x ¥
I ¥ I
(i) For maximum tensile stress,
y = Distance of extreme hottom fibre from N.A, = 67.77 mm
12000000
3142222.4
(ii) For maximum compressive stress,
y = Distance of extreme top fibre from N.A. = 32.23 mm
M 12000000
” =77 "V 7 31429924
Problem 7.17. A simply supported beam of length 3 m carries a point load of 12 kN at
distance of 2 m from left support. The cross-section of the beam is shown in Fig. 7.22 (b). Deter-
mine the maximum tensile and compressive stress at X-X.
Sol. Given :
Point lead, W=12kN=12000 N
First find the B.M. at X-X. And to do this first caiculate reactions R, and .

o= x 87.77 = 258.81 N/mm?2. Ans.

% 32.23 = 123.08 N/'mm®. Ans.
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)!( l‘IE kN P H—i’i o5 H‘—,
| T e
; 1
! 150 75
E mm mm
Ll
I mm

Al i 4B 4 ¥

lé—15m |4—1m-b fe— 100 mm —»]
Ry =4 XN Ry =8 kN
(@ (&)
Fig. 7.22
Taking moments about A, we get
Ryx3=12x2
12x2
Ry= 3 =8kN and R, =W-Ry;=12-8=4kN
B.M. at X-X =R, x15=4x15=6kNm
=6 x 1000 Nm = 6000 x 1000 Nmm
= 6000,000 Nmm

- M = 6000,000 Nmm

Now find the position of N.A. of the section of the beam. This can be obtained if we know
the position.of C.G. of the section.

Let . ¥ = Distance of the C.G. of the section from the bottom edge

Ay - A :
e 54 ki 24 (Negative sign is due to cut out part)

A -4y
75

(150 % 100) x 75 — {75 % 50) x (50 + EJ

150 = 100 — 75 x 50
_ 1125000328125 _ 796875 . .o
15000 - 8750 11250 oo W

Henece N.A. will lie at a distance of 70.83 mm from the bottom edge or 150 - 70.83 =
79.17 mm from the top edge as shown in Fig. 7.23.

Now the moment of inertia of the section about N.A. is given by,
i I=I1-1,
where I, = M.O.L of outer rectangle about N.A.
= M.O.L of rectangle 100 x 150 about its C.G. + A,
x (Distance of its C.G. from N.A.)2

100 x 1502
==y — *+100x 150 x (75 - 70.83)2

= 28125000 + 260833.5 = 28385833,5 mm?* -
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I,=M.Od. of cutout rectangular part about N.A.
= M.Q.L of cut out part about its C.G. + 4,
% (Distance of its C.G. from N.A.)2

50 x 75°

le— 100 mm —»|
— 25 k_,?ﬁn"“’{ 25 je—

1]

+ B0 %75

. 2
x (50 + % - 70.83)
1757812.5 + 1042083.375 -
= 2799895.875 mm* N
I=1I,-I,=28385833.5 - 2799895.875
= 25685937.63 mm?*

The bottom edge of the section will be subjected X
to tensile stress whereas the top edge will be subjected
to compressive stress. The top edge is at 79,17 mm from
N.A. whereas bottom edge is 70.83 mm from N.A.

Now using the relation,

I

(i) For maximum tensile stress, y = 70.83 mm
Maximum tensile stress,
6000000

= 9558593763
(if) For maximum compressive stress,

x T0.83 = 16.60 N/mm? Ans.

y = 7917 mm.
Maximum compressive stress,
M 6000000

= = = .17 = 18. /mm?. Ans.
0= "7 XY= GogranT6a % 79.17 = 18.56 N/mm: S

7.10. STRENGTH OF A SECTION

The strength of a section means the moment of resistance offered by the section and
moment of resistance is given by,

M=oxZ ( —AI£=E or M:gxI:chwhereZ=-§]
g

where M = Moment of resistance
o = Bending stress, and

Z = Section modulus.

For a given value of allowable stress, the moment of resistance depends upon the section
modulus. The section modutus, therefore, represents the strength of the section. Greater the
value of section modulus, stronger will be the secticn.

The bending stress at any point in any beam section is proportional to its distance from
the neutral axis. Hence the maximum tensile and compressive stresses in a beam section are
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proportional to the distances of the most distant tensile and compressive fibres from the neu-
tral axis. Hence for the purposes of economy and weight reduction the material should be
concentrated as much as possible at the greatest distance from the neutral axis. This idea is
put into practice, by providing beams of I-section, where the flanges alone with-stand almost
all the bending stress.

We know the relation :

M_o o oM M
oy o o=pxys {sz
Y

where Z = Section modutus.

For a given cross-section, the maximum stress to which the section is subjected due to a
given bending moement depends upon the section modulus of the section. If the section modu-
lus is small, then the stress will be more. There are some cases where an increase in the
sectional area does not result in a decrease in stress. It may so happen that in some cases a
slight increase in the area may result in a decrease in section modulus which result in an
increase of stress to resist the same bending moment.

Problem 7.18. Three beams have the same length, same allowable bending stress and
the same bending moment. The cross-section of the beams are a square, rectangle with depth
twice the width and a circle. Find the ratios of weights of the circular and the rectangular
beams with respect to square beams.

Sol. Given :

Pig. 7.24 shows a square, a rectangular and a cireular gection.

|<-—x———+[ |<—b-—>| d
I

2b

3

(@) ® )
Fig. 7.24

Let x = Side of a square beam
b = Width of rectangular heam
2b = Depth of the rectangular beam
d = Diameter of a circular section.
The moment of resistance of a beam is given by,
M=oxZ
where Z = Section modulus.

As all the three beams have the same allowable bending stress (o), and same bending
moment (M), therefore the section modulus (Z) of the three beams must be equal.
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Section modulus of a square beam

bd®*
=£=%=xi’; w2 (- b=d=x)
¥y a x
2)
_x
6

Section modulus of a-rectangular bearn
bd®  bx(26)
12 12 (e d=25)

12 2 3
Section modulus of a eircular beam
i
64 _mdt 2 md®
= d 64 d 32
2
Equating the section modulus of a square beam with that of a rectangular beam, we get
ﬁ = ?’. 58
6 3
3% 2P
3. T = (.25 3
B =geg g C0
or b =(0.251% x = 0.63x D)
Equating the section modulus of a square beam with that of a circular beam, we get
@ _ad?
6 32
3 3
B=3 o 4= g) L= 11927«
67 Gn

The weights of the beams are proportional to their cross-sectional areas. Hence
Weight of rectangular beam  Area of rectangular beam

Weight of square beam Area of square beam
_bx2b 0.63x x 2 x0.63x
a XXX - XXX
= 0.7938. Ans.

Weight of circular beam  Area of circular beam

and Weight of square beam " Area of square beam
nd?
A7 md? ek {1.1927x)2
= —— = - d=1.1927.
2 4x? 4x® ( %)

= 1.1172. Ans.
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Problem 7.19. A beam is of square section of the side ‘@’ If the permissible bending
stress is ‘07, find the moment of resistance when the beam section is placed such that (i) two
sides are horizontal, (ii) one dingonal is vertical. Find also the ratio of the moments of the
resistance of the section in the two positions. (Bangalore University, July 1988}

Sol. Given : '

Bending stress = o

1st Case
Fig. 7.25 () shows the square beam section when two sides are horizontal.

c
(o} (&)

Fig. 7.25

Let M, = Moment of resistance of the square beam when two sides are horizontal.
Moment of resistance is given by,

M=oxZ
. M, =o xZ (D
where Z, = Section modulus '
a X a3
I T3 ot 2 &
VYoge @2 12 a6
ad
M =ox ik Ans. (i)
2nd Case _
Fig: 7.25 () shows the square beam section when one diagonal is vertical.
Let M, = Moment of resistance of the beam in this position
M,=0oxZ,
where Z, = Section modulus for the section shown in Fig. 7.25 (b).
bA®
g, 9t
_ 4 - ) 12
Ymax a
V2

3
( M.O.L of a triangle about its base = % There are two triangles)
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3
2. o (%]
L2 N2 [ Here base = b =+/2a and h = —a—}

V2

Ml
-E=w——;5—j=v’§ = 1.414, Ans.
(o]

o Problgm 7.20. Prove that the moment of a resistance of a beam of square section, with
its diagonal in the plane of bending is increased by flatting top and bettom corners as shown in
Sa

g

Fig. 7.26 and that the moment of resistance is a maximum when y = . Find the percentage

increase in moment of resistance also.
Sol. Given :

Fig. 7.26 (a) shows a square section with diagonal AC vertical. Let the portions AEF and
CGH be cut off. ’

Let I, = M.O.L of the square ABCD about diagonal B.ID.
Z, = Section modulus of square ABCD
M, = Moment of resistance of the square ABCD
I, = M.O.L of the new section with cut off portion (i.e., M.O.L of DEFBHG about

diagonal BD)
Z, = Bection modulus of new section
M, = Moment of resistance of the new section.
In Fig. 7.26 (u}, diagonal AC = 2¢

(2a~ 2y} =2(a—
“KH (a -y}

~,

E e

Fig. 7.26
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Diagonal DB = AC = 20,
Now moment of inertia of the square ABCD about N.A. (i.e., diagonal BD)) is given by
: I, = MLOT. of twe triangles ABD and BCD about their base BD

3 . 3
=2x§~h~=2xm— (Heve b=2c and h = a)
12 12
ol
EY
a®
. I 3
Section modulus, Z, = = (Here y,,,, = a)
. Vmax a
4
AR R G
3 o 3
Moment of resistance is given by,
M=oxZ
M, =0xZ,=0x % o% = & x 0.3333° D)

Now the M.O I of the new section with cut off portion (i.e., M.O.I of DEFBHG) about
the diagonal BD is given by [Refer to Fig. 7.26 (b)].
I, = M.O.L of four triangles (i.e., triangles DEK, FLB, DGH and HLB) plus
M.0.1. of rectangle EFHG about N.A. (ie., diagonal BD)
_4xbh® EFxEG® _ dxyxy? +2{a—y)>c(2y)3
R

12 12
{(~ Hereb=y h=y EF=2a-y and EG = 2y)

4 4 3 14
= 4(a )x3#y+4ay 4y 4a3—4
=2y~ la- = st o ayt-y
gy TV T T T TS
and section modulus of new section is given by,
4
L 3 ay® - y*
Zy= 2t (- Herey,, =y
Ymax y
4
=3 ay? -y
Now moment of resistance of the new section is given by,
4 12 3 ..
M2=G><Z2=le:§a'} -y } ..(i1)

daM.
The moment of the resistance of the new section will be maximum, if dy2 =10.

Hence differentiating equation (ii) w.r.t. y and equating it to zero, we get

LApRE I 3) -
£[ofor )

or a [%a x 2y - 3y2) =0 {~~ ocandea are constants}
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or %a x9y-82=0 (- o cannot be zero)
| 3 2—§ax
Yy = 3 Y
8 &
or y-fany s e

SBubstituting this value of y in equation (if}, we get

) . 2 3
M, mox | Eae[B2) _(8a) g |4x84 5 512 5
3 9, Lo S laxsl® "729
=a x [1.05350% - 0.7023¢%] = o % 0.3512 &8 (i)

But from equation (i), M| = o x 0.3333 ¢*
M, is more than M,. And from equation {iii), it is clear that M, 5 15 maximum when

Ba
y= ?. Ans.
Now increase in moment of resistance
=My, — M, =0 x 0.3512 ¢® — 0 x 0.3333 2
=ox 0.0179 o
Percentage increase in moment of resistance
_ Increase in moment of resistance

Original moment of resistance
_ ox00719x¢°

T ox03333 xa®

Problem 7.21. Prove that the ratio of depth to width of the strongest beam that can be
cut from a circular log of diameter d is 1.414. Henee ecalculate the depth and width of the
strongest beam that can be cut of a cylindrical log of wood whase diameter is 200 mm.

% 100

x 100 = 5.37%. Ans.

Sol. Given ;
Dia.oflog=d — b -]
" Let ABCD be the strongest rectangular section which D c x
can be cut out of the cylindrical log.
Let b = Width of strongest section. d I

d = Depth of strongest section.

L — d
Now section modulus of the rectangular section -
)
P12 ) ppt ' A ¥
L= =t N . B.
p; 7 “ ) _
9 Fig, 7.27

In the above equation, b and # are variable.
From ABCD, b2 R = 2
or : h2=g2. p2

Substituting the value of 22 in equation (i), we get
' b 1
= 22 _ B2 = = 2 _p3 (L)
Z= 5 [d? - b2] G [bd? - 5] _ ).

In the above equation, d is constant and hence only variable is b.

Now for the beam to be-strongest, the section modulus should be maximum (or Z should
be maximum). ' :

For maximum value of Z,

dZ
db ” 0
2 _337 2 _qp?
or d |bd* - & -0 ord 3b -0
db -6 &
or d2-362=0 or d? = 352 I Eri
But from triangle BCD,
d* = b% + h?
Substituting the value of d? in equation (iif), we get
b2+ h2=3b% or A2=202
or h=+2 xb _ .(iv}
or . %zf = 1.414. Ans.
Numerical Part
Given, & =300 mm
But for equation (iii), d® = 362 or 362 = d? = 3002 = 90000
or b2 = EQ?)‘ = 30000

- b = (30000} = 173.2 mm. Ans.
From equation (iv),

h=+2 xb=1414 x 173.2 = 249.95 mm. Ans.

7.11. COMPOSITE BEAMS (FLITCHED BEAMS)

A beam made up of two or more different materials assumed to be rigidly connected
together and behaving like a single piece is known as a composite beam or a wooden flitched
beam. Fig. 7.27 {a) shows a wooden beam (or timber beam) reinforced by steel plates. This
arrangement is known as composite beam or a flitched beam. The strain at the common surfaces
will be same for both materials. Also the total moment of resistance will be equal to the sum of
the moments of individual gections.

When such a beam is subjected to bending, the bending stresses and hence strains due
to bending stresses at a point are proportional to the distance of the point from the common
neutral axis. Consider the composite beam as shown in Fig. 7.27 (a) and let at a distance y from

. the NLA., the stresses in steel and wood are f; and f, respectively.
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Let E, = Young's modulus of steel plate ) Steel Woaden Steel
1, = Moment of inertia of steel about N.A. plate\ o Pece § Plate
M, = Moment of resistance of steel ]
E, = Young’s modulus of wood
I, =M.O.L of wood about N.A.
M, = Moment of resistance of wood,

ZE‘W -
AMANINERRY

(- Stress in steel = o))
Strain in wood at a distance y from N.A.

Strain in steel at a distance y from N.A. d
Stress o : / -
== F, / A

AR ~(T.11) Fig. 7.27 (a}
or _E
. Ul = EZ X G2
=mx a, A

. where m = E,;" and is known as modular ratio between steel and wood.

Using the relation M -Z , we get
I vy
M= G
¥
Hence moment of resistance of steel and wood are given by,
o
M1=—1><I1 and M2=93x1
y y 7

~ Total moment of resistance of the composite section,
M=M +M,

=—+*—Lti=2xl, (v 0 =moy,from equation i)

O
= —yﬂ [y + 1} . (7.12)

. in eq_uation {(7.12} I, + ml, can be treated as equivalent moment of inertia of the cross-
section, ag if gll made of material 2 (i.e., wood) which will give the same amount of resistance
as the composite beam. Let this be denoted by I.

T=ml +1, {7.13)

Then = 9372 x I (7.14)
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The equivalent section is produced by using I = I, + mI,. This can be done by multiplying
the dimensions of the material 1 in the direction parallel to the N.A. by m. The equivalent
figura can be used for finding the position of N.A. and equivalent moment of inertia.

Problem 7.22. A flitched beam consisis of a wooden joist 10 em wide and 20 cm deep
strengthened by two steel plates 10 mm thick and 20 em deep as shown in Fig. 7.28. If the
mazximum stress in the wooden joist is 7 NimmZ, find the corresponding maximuim stress atiained
in steel. Find also the mament of resistance of the composite section. Take Young's modulus for
steel = 2 % 10° Nimm? and for wood = 1 x 10# Nimm?2.

Sol. Given :

Let suffix 1 represent steel and suffix 2 repre- [t om
sent wooden joist.

Width of wooden joist, b, =10 cm

Depth of woeden joist, dy=20cm °

Width of one steel plate, b, =1cm

Depth of one steel plate, d; =20 cm

Number of steel plates =2 / 20 cm
Max. stress in wood, 0,=7 N/mm? ﬂ—-—é— =y
E for steel, E =2x10° N/mm?

E for wood, , E, = 1 x 10* N/mm? /

Now M.O.L of wooden joist about N.A.,
byds®  10x20°

=71 12 4 #L
= 6666.66 cm! Stdel Wobdan '
= 6666.66 x 10* mm? plate joist ﬁ.ff;'
M.O.L of two steel plates about N.A., Fig. 7.28
_2xbd” _ 2x1x20°
1712 T 12

=1933.33 em? = 1333.33 x 107 mm*.
Now modular ratic between steel and wood is given by,
b 2x 10°
T E, T 1x10t
The equivalent moment of inertia (I) is given by equation {7.13).
: I=mi +1,
=90 x 1333.33 x 10* + 6666.66 x 10*
— 104(26666.6 + 6666.66) = 104 x 33333.2
Moment of resistance of the composite section is given hy equation (7.14).

=20

M:glxl
¥

7 x 10* x 333332
- 10x 10
- 933532 4 % 102 N mm = 23333.24 Nm. Ans.

(v y=10cm =10 x 10 mm)
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Maximum Stress in Steel )
Let . ¢, = Max. stress in steel.
Now using equation, we get

=20x 7 [ %=m=2_()and 02=7N/mm2J
2

= 140 N/fmm?2, Ans.
2nd Method

Total moment of resistance is equal to the sum of moment of resistance of individual
.member.

M=M, +M, -(£)
where M1=9i><11 _ﬂf{=2
"y I vy
140 . :
=00 * 1333.83 x 10 (v y=10x10 =100 mam
= 18666620 Nmm = 18666.620 Nm

Iy
and M,=—2xIJ,
277 2

7
= 4
100 x 6666.66 x 10* Nmm

= 46666.62 Nmm = 4666.662 Nm
M =M, + M, = 18666.620 + 4666.662
= 23333.282 Nm. Ans.
3rd Method
The equivalent moment of inertia (I) is obtained by producing equivalent section.
(@) The equivalent wooden section is obtained by multiplying the dimension of steel

plate in the direction parallel to the N.A. by the modular ratio between steel and wood (z'.e., by

L E 2 x 10%
multiplying by =% =
: EY E. T 1a10
width of one steel plate parallel to N.A. is 1
cm. Hence equivalent wooden width for this ) . .
steel plate will be 20 x 1 =20 ¢m. Thisis shown N A
in Fig. 7.29.

Equivalent M.O.L is given by,
b3 Fig. 7.29, Equivalent wooden section

==

12

f+-—20 em—ja10 crde—20 em—]

= 20J . But the
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{20 + 10+ 20) x 20°
N 12 :
= 33335.33 cm?® = 33333.33 x 10 mm*
Total moment of resistance
= Moment of resistance of the equivalent wooden section

[8)
=—x1I
¥

_ Stress in wood “
¥

I

= -1%6 x 33333.33 x 10% = 23333333.33 Nmm

= 233338.333 Nm. Ans.
(b} The equivalent steel section is obtained by multiplying the dimensions of wooden

" joist in the direction parallel to N.A. by the modular ratio between wood and steel (i.e., hy

1x10f 1 ]
. . b wo 5 " o0l
multiplying by E, 2x10% 20
But the width of wooden joist parallel to N.A. is 10 cm. Hence : o

equivalent steel width will be 10 x 2—10 = 0.5 cm. This is shown in

Fig. 7.30. \
Hence equivalent M.O.L is given by ‘ \ \ .
13
I= % 20 cm % § :
T (1405 + 1) x 208 N
- 12 N _§ § A
= 1666.66 cm*

= 1666.66 x 10* mm*

M= xr \ \
y N
= 240 1666.76 x 10¢
100 * O Fig. 7.20. Equivalent
(Here o is the stress in steel steel section
and = 140 N/mm?)
= 23333240 Nmm

= 23333.240 Nm. Ans.

Note. The width of the single wooden beam for the total moment of resistance of 23333.33 Nm
should be 20 + 10 + 20 = 50 cm as shown in Fig. 7.29. But the width of flitched beam for thc? same
moment of resistance is only 1 -+ 10 + 1 = 12 cm as shown in Fig. 7.28. Hence flitched beams require less

space.
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Problem 7.23. A timber beam 100 mm wide and 200 mm deep is fo be reinforced by
. bolting on two steel flitches each 150 mm by 125 mm in section. Calculate the moment of
- resistance in the following cases : (i) flitches attached symmetrically at the top and bottom ;
. (3i) flitches attached symmetrically at the sides. Allowable stress in timber is 6 N/mm®. What is
- the maximum stress in the steel in each case ? Take E = 2 x 10° Nimm? and E, = 1 x 10* Nimm?®.

Sol. Given :
. 1st Case. Flitches attached symmetrically at _L|4—150 mm———>|
the top and bottom. 12.5 mm A Steel
' (See Fig. 7.31). - plaie
Let suffix 1 represents steel and suffix 2 repre- '
sents timber. 4}——Timber
Width of steel, b, = 150 mm 200 mm
Depth of steel, d, =12.5 mm ] — . -
Width of timber, b, =150 mm Nl ' A
Depth of timber, d, = 200 mm
Number of steel plates =2
Max. stress in timber, o, = 6 N/mm?
E for s'teei, E, = E =2 x 10° N/mm® 12.5 fem 17 Mi’?ﬁiﬁ'
E for timber, E,=E,=1x 10* N/mm?
Distance of extreme fibre of timber from N.A., Fig. 7.31
¥, = 100 mm

Distance of extreme fibre of steel from N.A.,
¥ =100+125= 112.5 mm.
Let o * = Max. stress in steel
g, = Stress in steel at a distance of 100 mm from N.A.

o Now we know that strain at the common surface is same. The strain at a commoen distance
of 100 mm from N.A. is steel and wood would be same. Hence using equation {7.11), we get

51 _ O3
EI .—EZ
E 5
o ! _2x10° o 190 N/mm?.

= —Xx0,= ———
VTE; T 1k 10t
But o, is the stress in steel at a distance of 100 mm from N.A. Maximum stress in steel

would be at a distance of 112.5 mm from N.A. As bending stresses are proportional to the
.- . distance from N.A.

gy _ 01*
Hence 106~ 1125
s 1125 112.5

of = —— x O = x 120 = 135 N/'mm?. Ans.
100 160

Now moment of resistance of steel is given by

O * . -
M, = ; x I\ {where o,* is the maximum stress in steel}
1

135
=115 <l
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where I, =M.OI of two steel plates about N.A.
=2 x [M.O.L one steel plate about its C.G. + Area of one steel plate
x (Distance between its C.G. and N.A)?

bd; d Y
=zx[—1i21—+bld1x(100+?1”

3 2
=2x[15—0’;—21~2—‘5—+150x12.5x[100+3—22£) ]

=9 x [24414.06 + 21166992.18]
= 42382812.48 mm*

135
= 4
M, = s x 42382812.48

= 50B59374.96 Nmm = 50859.375 Nm
Similarly, M, = -2 xI,
Ya
_ 6, 150x200°
100 12 :
= 6000000 Nmm = 6000 Nm
- Total moment of resistance is given by,
M=M +M,
= 50859.375 + 6000 = 56859.375 Nm. Ans.
2nd Case. Flitches attached symmetrically at the sides (See Fig. 7.32)
Here distance of the extreme fibre of steel from N.A.

:}-%Qz'ifimm. }1'—“—150!‘00‘!———'%
In the first case we have seen that stress in sicel — _p| le—125mm 125 mm—e
at a distance of 100 mm from N.A. is 120 N/mm?. 7 g
Hence the stress in steel at a distance of 73 mm
from N.A. is given by,
Gla»ic = 1_3% % 75 T [ 77 ] =
(-~ Stress are proportional 150 ™™ 200 mm
to the distance from N.A.) l‘é
. = 90 N/mm? : ‘ 7z
Maximum stress in steel :

=g, =90 N/mmZ. Ans.

Fig. 7.32
Total moment of resistance is given by,
M=M +M,
where M, = Moment of resistance of two steel plates
g, F¥
= x 1
ymcur

(Here o,** = Maximum stress in steel = 90 N/mm?)
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20
=7z x4
I, =M.O.L of two steel plates about N.A.

12.5 x 150°
o L0 x 1007

W por = 75 mm)

=2 = 7031250 mm?

20 :
M, = 75 X 7031250 Nmm = 8437500 Nmm = 8437.5 Nm.
Similarly, M, = Moment of resistance of timber section

Gy

=% x ],
Ya z

6  150x%200° 150 x 2008

=—— v =

100 12 12

= 6000000 Nmm = 6000 Nm
.. Total moment of resistance,
M=M +M,
=8437.5 + 6000 = 14437.5 Nm. Ans,

Problem 7.24. Two rectangular plates, one of steel and the other of Brass each 40 mm
wide and 10 mm deep are placed together to form a beam 40 mm wide and 20 mm deep, on two
supports 1 m apart, the brass plate being on the top of the steel plate. Determine the maximum
load, which can be applied at the centre of the beam, if the plates are :

(i) separate and can bend independently,

(if} firmly secured throughout their length. -

Maximum allowable stress in steel = 112.5 N/mm?® and in brass = 75 N/mm?Z. Take
E = 2 x 10° Nimm? and E, = 8 x 10% N/mm?. :

Sol. Given : i

Width of plates, b = 40 mm + I

Depth of plates, d =10 mm 10 mm e BB |
Span, L=1m 4

Stress in steel, o, = 112.5 N/mm? ‘0 an- _________________________ |
Stress in brass, o, = 75 N/mm? + Steel '
Value of £ for steel, £ =2 x 105 N/mm? L

Fig. 7.33

Value of E for brass, E, = 8 x 10* N/fmam?.
1st Case. The plates are separate and can bend independently.

Since the two materials bend indepehdently, each will have its own neutral axis. It will
be assumed that the radius of curvature R is the same for both the plates.

E
Using the relation s_=
y R
or Be Exy
a
or B= Eixys. _ Eyxy
e Op
or Os _ Eyxy,
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But y, = v, as the two plates are having their own N.A. The distance of the extreme
fibre of brass from its own N.A. is 5 mm. Also the distance of extreme fibre of steel from
its N.A. = 5 mm.

Now the allowable stress in steel is 112.5 N/mm?2

ie., ¢, = 112.6 N/m?,
Then maximum stress in brass will be,
o 1125
o o s o 22EY 2
%= 5r Y 45 N/mm

This is less than the allowable stress of 75 N/mm?2.
Note. If maximum stress in brass is taken as 75 N/mm?. Then the stress in steel will be o =25
x g, = 2.5 x 187.5 N/mm? This stress is more than the aliowable stress in steel.

The total moment of resistance is given by,
M=M+M,
where M_ = Moment of resistance of steel plate.

GS
== xI
¥so
3 103
- 1125 x 40 %107 v I, =M.O.L of steel plate = MJ
5.0 12 Y
= 75000 Nmm = 75 Nm
and M, = Moment of resistance of brass plate
Ty
=—% xf
Yb b
45 40 x10°
==3 X BT 30000 Nmm = 30 Nm
M=M+M, =75+30
=105 Nm )

Let W = Maximum load applied at the centre in N to a simply supported beam.
Then maximum bending moment will be at the centre of the beam. And it is equal to,

Wx L’ Wx1.0

== s Nm AL
Equation ({) and (i), we get
w
T =105 or W=4x105=420N. Ans.

2nd Case. The plates are firmly secured throughout their length.

In this case, the two plates act as a single unit and thus will have a single N A. Let us
convert the comnposite section into an equivalent brass section as shown in Fig. 7.34 (). ~

The equivalent brass section is obtained by multiplying the dimensions of steel plate in .
the direction parallel to the N.A. by the modular ratio between steel and hrass {(i.e., by
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: E
“multiplying by E—s = 2.5). But the width of steel plate parallel to N.A. is 40 mum. Hence equivalent
&

" brass width for the steel plate will be 40 x 2.5 = 100 mm. This is shown in Fig. 7.34.

‘Ld—m mm~—+| \4—40mm—>| 'L
10 T{E Brass r @ | 10 mm _L
10 mm Steel 7.88 m}_[ ''''''''''''''''''''' “T_lm rﬁm
T Floe —— 40x25—100mm B )
(a) Composite beam (b Equivalent brass section
Fig. 7.34 -
Let ¥ = Distance between C.G. of the equivalent brass section and

bottom face.
Ay + Agyy
Al + Ay
10010 x5+ 40 x 10 x {10 + 5)
100x 10 +40 x 10
_ 5000 + 6000 _ 11000 786 mm
1000 + 400 1400 ' .

Hence N.A. of the equivalent brass section is at a distance of 7.86 mm from the bottomn
face.

Now the moment of inertia of the equivalent brass section about N.A. is given as
I =[M.O.I of rectangle 100 x 10 about its C.G.
+ Area of rectangie 100 x 10 x {Distance between its C.G. and N.A]
+ [M.O.L of rectangle 40 x 10 about its C.G. + Area of rectangle 40 x 10
% (Distance between its C.G. and N.A. Y|

| 100 x 10° 40 x 10°
12

+ 100 x 10 x (7.86 - 5)2] + +40x 10 %[5+ (10-7.86)]

=8333.33 + 8179.6 + 3333.33 + 20391.84
= 40238.1 mm*.
Distance of upper extreme fibre from N.A.
=20-786=12.14 mm
Distance of iower extreme fibre from N.A,
= 7.86 mm
Now allowable stress in brass is given 75 N/mmZ2, As the upper plate is of brass.
Hence the upper extreme fibre will have a stress of 75 N/mm?. Then the lowermost fibre

)
will have the stress = 1514 x 7.86 = 48.56 N/mm?. In Fig. 7.34 (b), the lowermost fibre is also

- of brass. Hence the actual stress in the lowermost fibre of steel will be
= 48.56 x 2.5 = 121.4 N/mm?.
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But the safe stress in steel is given as 112.5 N/mm® Hence the brass cannot be fully
stressed.

If we take maximum stress in steel at the bottom to be 112.5 l\I."nm-Jn2 then the
corresponding stress in brass at the bottom fibre will he

1125
——— =45 N/m
25 5 N/mm?.
o, = 112.5 N/mm? and o, = 45 N/mm?,

Now using the relation,

,pte.lawm

M
I
M

or

5

TR 40238.1 = 230370.8 Nmm

= 230.3708 Nm (i)

The maximum bending moment at the centre of a simply supported beam, carrying a
point load W at the centre is given by,

_WxL Wx10

1 P Aiw)
Equating (i) and {iv), we get

W
i 230.3708
W =4 x 230.3708 = 921.48 N. Ans.

HIGHLIGHTS

1. The stresses produced due to constant bending moment (with zero shear force) are known as
bending stresses.

2. 'The bending eguation is given by,
M o
Ty
where 3f = Bending moment

o = Bending stress

I = Moment of inertia about N.A.

4 = Distance of the fibre from N.A.

R = Radius of curvature

E = Young's modulus of beam.

3. The bending stress in any layer is directly proportional to the distance of the layer from the
neutral axis (N.A.).

_E
R

4. The bending stress on the neutral axis is zero.
5. The neutral axis of a symmetrical section {such as circular, rectangular or square) lies at a

d .
distance of 5 from the outermost layer of the section where d is the depth of the section.



STRENGTH OF MATERIALS

338
6. If the top layer of the section is subjected to compressive stress then the bottom layer of the
section will be subjected to tensile stress.
7. Fhe ratio of moment of inertia of a section about the neutral axis to the distance of the outermost
layer from the neutral axis is known as section modulus. It is denoted by Z.
i
Ymax
8. Section modulus for various sections are given as:
bd® .
= ...For rectangular section
= 6_11D- {BD? _ bd?) ...For a hollow rectangular section
J’Cda
= — ...For a circular section
32
= 555 [D* - d4 ...For a hollow circular section.
9. For finding bendirg stresses in unsymmetrical section, first their C.G. is to be obtained. This
gives the position of N.A. The bigger value of y is to be used in bending equation.
10. The moment of resistance offered by the section is known as the strength of the section.
11. A beam made up of two or more different materials assumed to be rigidly connected together and
behaving like a single unit, is known as a composite beam or flitched beam.
12. The strain at the common surface of a composite beam is same.
91 _ 92
B E
. E, . . . ) .
13. The ratio of &, known as modular ratio of first material to the second material.
]
14. Total moment of resistance of a composite beam is the sum of the moment of resistance of indi-
vidual section.
EXERCISE 7
(A) Theoretical Questions
1. Define the terms : bending stress in a beam, neutral axis and section medulus.
2. What do you mean by ‘simple bending’ or ‘pure bending’ ? What are the assumptions made in the
theory of simple bending 7
3. Derive an expression for bending stress at a layer in a beam.
4. What do you understand by neutral axis and moment of resistance ?
5. Prove that relation,

M o E
I y R
where M = Bending moment, I=MOL

o = Bending stress, y = Distance from N.A.
E = Young’s modulus, and R = Radius of curvature.

(Bongalore University, Jan. 1990)
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6. What do you mean by section moedulus ? Find an expression for section modulus for a rectangu-
tar, circular and hollow circular sections.
7. How would you find the bending stress in unsymmetrical section ?
8. What is the meaning of ‘Strength of a section’ ?
9. Define and explain the terms : modular ratio, flitched beams and equivalent section.
10. What is the procedure of finding bending stresses in case of ﬂ[tched beams when it is of
(i) a symmetrical section and (Zf) an unsymmetrical section ?
11. Explain the terms : Neutral axis, section modulus, and moment of resistance.
(Bangalore University, July 1988)
12, Show that for a beam subjected to pure bending, neutral axis coincides with the centroid of the
cross-section. (Bangalore University, March 1989)
13. Prove that the bending stress in any fibre is proportional to the distance of that fibre from
neutral layer in a beam. (Bhavnagar University, 1992)
(B) Numerical Problems
1. A steel plate of width 60 mm and of thickness 10 mm is bent into a circular are of radius 10 m.
Determine the maximum stress induced and the bending mement which will produce the maxi-
mum stress. Take E = 2 x 10° N/mm?. [Ans. 100 N/mm? ; 100 Nm]
2, A cast iron pipe of external diameter 60 mm, internal diameter of 40 mm, and of length 5 m is
supported at its ends. Calculate the maximum bending stress induced in the pipe if it carries a
point load of 100 I at its centre. [Ans. 7.34 N/mm?]
3. A rectangular beam 300 mm deep is simply supported over a span of 4 m. What uniformly dis-
tributed load per metre, the beam may carry if the bending stress is not to exceed 120 N/mm?2 ?
Take I = 8 x 105 mm*. [Ans. 3.2 kN/m]
4. A cast iron cantilever of length 1.5 metre fails when a point load W is applied at the free end. If
the section of the beam is 40 mm x 60 mm and the stress at the failure is 120 N/mm?, find the
point load applied. [Ans. 1.92 kN]
5. A cast iron beam 20 mm x 20 mm in section and 100 cm long is simply supported at the ends. It
carries a point load W at the centre. The maximum stress induced is 120 N/mm?. What uniformly
distributed load will break a cantilever of the same material 50 mm wide, 100 mm deep and 2 m
long ? [Ans, 5 kN per m run]
6. A timber beam is 120 mm wide and 200 mm deep and is used on a span of 4 metres. The beam
carries a uniformly distributed load of 2.8 kN/m run over the entire length. Find the maximum
bending stress induced. [Ans. 7 N/mm?]
7. A timber cantilever 200 mm wide and 300 mm deep is 3 m long. It is loaded with a U.D.L. of
3 kN/m over the entire length. A point load of 2.7 kN is placed at the free end of the cantilever.
Find the maximum bending stress produced. [Ans. 7.2 N/mm?]
8. A timber beam is freely supported on supports 6 m apart. It carries a uniformly distributed load
of 12 kN/m run and a point load of 9 kN at 3.5 m from the right support. Design a suitable section
of the beam making depth twice the width, if the stresz in timber is not to exceed 8 N/mm?2.
{Ans, 230 mm x 460 mm]}
9. A beam of an I-section shown in Fig. 7.35 is simply supported over a span of 4 metres.

Determine the load that the beam can carry per metre length, if the aliowable stress in the
heam is 30.82 N/mm?. [Ans. 2,5 kN/m run]
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10. A beam is of T-section as shown in Fig. 7.36. The beam is simply supported over a span of 4 m
and carries a uniformly distributed load of 1.7 kIN/m run over the entire span. Determine the
maximum tensile and maximum compressive stress. [Ans. 8 N/mm? and 4.8 NAnm?]

f————— 150 mm ——p|

}‘

50 mm

150 mm

50 mm

Fig. 7.36

11. A simply supported beam of length 4 m carries a point load of 16 kN at a distance of 3 m from left
support. The cross-section of the beam is shown in Fig. 7.37. Determine the maximum tensile
and compressive stress at a section which is at a distance of 2.25 m from the [eft support.

[Ans. 24.9 N/mm? ; 27.84 N/mm?2]
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Fig. 7.37

3
. A . X
Prove that the moment of resistance of a beam of square section is equal to o x - where ‘" is

the permissible stress in bending, x is the side of the square beam and beam is placed such that
its two sides are horizontal.
Find the moment of resistance of the above beam, if it is placed such that its ene diagonal is

[Ans. 2% x 0/ x 3]

A flitched beam consists of a wooden joist 150 mm wide and 300 mm deep strengthened by a
steel plate 12 mm thick and 300 mm deep on either side of the joist. If the maximum stress in the
wooden joist is 7 N/mm?, find the corresponding maximum stress attained in steel. Find also the
moment of resistance of the composite section. Take E for steel = 2 x 105 N/mm? and for
wood = 1 x 104 N/mm?2. [Ans. 140 N/mm?2, 66150 Nm]
A timber beam 60 mm wide by 80 mm deep is to be reinforced by bolting on two steel flitches,
each 60 mm by 5 mm in section, Find the moment of resistance in the following cases : ({) flitches
attached symmetrically at top and bottom ; (i) flitches attached symmetrically at the sides.
Allowable timber stress is 8 N/mm?. What is the maximum stress in the steel in each case ? Take
E for steel = 2.1 x 105 N/mm? and for timber = 1.4 x 10* N/mm?,

[Ans. (i) 3768 Nm, g, = 135 N/mm? (i) 1052 Nm, a, = 90 N/mm?]
Two rectangular plates, one of steel and the other of brass each 37.56 mm by 10 are placed to
either to from a beam 37.5 mm wide by 20 mm deep, on two supports 75 cm apart, the
brass component being on top of the steel component. Determine the maximum central load
if the plates are (i) separate and can bend independently, (i} firmly secured throughout
their length. Permissible stresses for brass and steel are 70 N/mm? and 100 N/mm?2. Take
E, = 0.875 x 10° N/mm? and E_ = 2.1 % 105 N/mm?, [Ans. (i) 472.2 N (i} 1043.5 N}
A timber beam 150 mm wide and 100 mm deep is to be reinforced by two steel flitches each
150 mm » 10 mm in section. Calculate the ratio of the moments of the resistance in the two-
mentioned cases : (i} Flitches attached symmetrically on the sides (i) Flitches attached at top
and bottom. [Ans. 0.31]

vertical, the permissible bending stress is same (i.e., equal to ‘&%),
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Shear Stresses in Beams

8.1. INTRODUCTION

In the last chapter, we have seen that when a part of a beam is subjected to a constant
bending moment and zero shear force, then there will be only bending stresses in the beam.
The shear stress will be zero as shear stress is equal to shear force divided by the area. As
shear force is zero, the shear stress will also be zero.

But in actual practice, a beam is subjected to a bending moment which varies from
section to section. Also the shear force acting on the beain is not zero. It also varies from
section to section. Due to these shear forces, the beam will be subjected to shear stresses.
These shear stresses will be acting across transverse sections of the beam. These transverse
shear stresses will produce a complimentary horizontal shear stresses, which will be acting on
longitudinal layers of the beam. Hence beam will also be subjected to shear stresses. In this
chapter, the distribution of the shear stress across the various sections (such as Rectangu-
lar section, Circuiar section, I-section, T-sections ete.) will be determined.

8.2. SHEAR STRESS AT A SECTION

Tig 8.1 (@) shows a simply supported beam carrying a uniformly distributed load. For a
uniformly distributed load, the shear force and hending moment will vary along the length of
the beam. Consider two sections AB and CD of this beam at a distance dx apart.

A C 6&&?‘
\ék
Fy h /\
B D 3k i
(e}
I
A c ) J_
o—efzzzzzzi S s
N '(' B R 3: MU I e \f\ g
f A N/J/;j’ A
(M) Y R
— cix—» f— b —|
8 D
(&) (c}
- Area, A = Area of EFGH
Fig. 8.1
342
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Let at the section AB,
F = Shear force
M = Bending moment
and at section CD, F + dF = Shear force
M + dM = Bending moment
I = Moment of inertia of the section about the neutral axis.

Let it is required to find the shear stress on the section AB at a distance y, from the
neutral axis. Fig. 8.1 (¢) shows the cross-section of the beam. On the cross-section of the beam,
let EF be a line at a distance y, from the neutral axis, Now consider the part of the beam above
the level EF and between the sections AB and CD. This part of the beam may be taken to
consists of an infinite number of elemental cylinders each of area dA and length dx. Consider
one such elemental cylinder at a distance y from the neutral axis.

dA = Area of elemental cylinder
dx = Length of elemental cylinder
y = Distance of elemental cylinder from neutral axis
Let o =Intensity of bending stress® on the end of the slemental cylinder on the

section AB
o + do = Intensity of bending stress on the end of the elemental cylinder on the
section CD.
The bending stress at distance y from the neutral axis is given by equation (7.6) as
M o
I vy
g = ﬂ—l- Xy
I

For a given beam, the bending stress is a function of bending moment and the distance
y from neutral axis. Let us find the bending stress on the end of the elemental cylinder at the
section AB and also at the section CD.
Bending stress on the end of elemental cylinder on the section AB, (where bending
moment is M) will be
o= ﬂ x y
I
Similarly, bending stress on the end of elemental cylinder on the section CD, (where
bending moment is M + dM) will be
{M + dM}
I xy
I
(- On section CD, B.M. = M + dM and bending stress = ¢ + do)
Now let us find the forces on the two ends of the elemental eylinder.
Force on the end of the elemental cylinder on the section AB
= Stress x Area of elemental cylinder '
=—oxdA :

c+do=

*Bending stresses are acting normal to the cross-section.
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Vzgxydi ('.‘U=}M~xy)

Similarly, force on the end of the elemental eylinder on the section CD

= (o +do) dA
(M +dM
=—~ﬁi}—)xydi [-.'0+dc=Mxy]

A At 1’:he two ends of the elemental cylinder, the forces are different. They are acting along
" the same line but are in opposite direction. Hence there will be unbalanced force on the elemental
.. cylinder.

<. Net unbalanced force on the elemental cylinder
(M +dM)
I

aM
= 5 xy x dA L)

xydi-—zl;ixydi

: The total unbalanced force above the level EF and between the two sections AR and CD
- may be found cut by considering all the elemental cylinders between the sections AB and CD
. and above the level EF (i.e., by integrating the above equation (i)}.

. Total unbalanced force
=jd—IM~xydi=dTMfdeA -
aM —
. =T-XA)<_)’ ('.'Jydi=ij7}
where A = Area of the section above the level EF (or above ¥
= Area of EFGH as shown in Fig. 8.1 (¢)

¥ = Distance of the C.G. of the area A from the neutral axis.

Due to the total unbalanced force acting on the part of the beam above the level EF and

. . between the sections AB and CD as shown in Fig. 8.2 (a), the beam may fail due to shear.

".. Hence in order the above part may not fail by shear, the horizontal section of the beam at the

level EF must offer a shear resistance. This shear resistance at least must be equal to total
 unbalanced force to avoid failure due to shear. '

Area A
A & | H prrr i G
b A Y //
R - E / F
S S I
N A N A
e g —]

{a) )
Fig. 8.2
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. Shear resistance (or shear force) at the level EF
‘ = Total unbalanced force
=§}"‘i xAx ¥ D)
Let © = Intensity of horizontal shear at the level EF
b = Width of beam at the level EF
Area on which 7 is acting
=bxdx
- . Shear force due to t
= Shear stress x Shear area
=1Txb xdx (D)
Equating the two values of shear force given by equation (if) and (iii). we get

txbxdx=gx!{x?

I  bxdx
_dM Ay
Todx Ixb
A5
J a F =Shear force | --{8.1)
Ixb di
The shear stress given by equation (8.1) is the horizontal shear stress at the distance y,
from the neutral axis. But by the principal of complementary shear, the horizontal shear stress
is accompanied by a vertical shear stress v of the same guantity.
Sometimes A x ¥ is also expressed as the moment of area A about the neutral axis.
Note. In equation {8.1), b is the actual width at the level EF {Though here b is same at all
levels, in many cases b may not be same at all leveis} and I is the total moment of inertia of the
section about N.A. ’
Problem 8.1. A wooden beam 100 mm wide and 150 mm deep is simply supported over
o span of 4 metres. If shear force at a section of the beam is 4500 N, find the shear stress at a
distance of 26 mm above the N.A.

=F x

Sol. Given :
Width, b =100 mm T (4 iR
Depth, d =150 mm : /% man
; 75 mm _L
Shear force, F=4500 N P / <
Let © = Shear stress at a distance of 25 mm above lmm ¥t
. the neutral axis. W T‘ """"""" TR
w Using equation (8.1), we get 150 mm
Ay .
=F — e
: =TT ( l
where A = Area of the beam above y,

i = 100 x 50 = 5000 mm? j«— 100 mm —>|

(Shaded area of Fig. 8.2) Fig. 8.3
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¥ = Distance of the C.G. of the area A from neutral axis

=25+%=50mm

I =M.O.I of the total section
bt
12

_ 100 x 1507

= 28125000 mm*

b = Actual width of section at a distance y; from N.A. =100 m
Substituting these values in the above equation (i), we get
_ 4500 x 5000 x 50
728125000 x 100
Problem 8.2. A beam of cross-section of an isosceles triangle is subjected to a shear force
of 30 kN at a section where base width = 150 mm and height = 450 mm. Determine :
(i) horizontal shear stress at the neutral oxis,
(it} the distance from the top of the beam where shear stress is maximum, and
(iii) value of maximum shear stress.
Sol. Given :
Shear force at the section, F = 30 kN = 30,000 N
Bage width, CD = 150 mm
Height, 2 = 450 mm.
{i) Horizontal shear stress at the neutral axis

= 0.4 N'mm?2. Ans.

The neutral axis of the triangle is at a distance of % from

2h
base or Y from the apex B. Hence distance of neutral axis from

B will be 2 X;SO = 500 mm as shown in Fig. 8.3 {¢}. The width of Fig. 8.3 ()
the section at neutral axis is obtained from similar triangles BCD and BNA as
NA_ 300
CDr 450
300 300
or NA_450 CD—450x150f100mm
The shear stress at any section is given by equation (8.1} as
Axy .
T=Fx
Ixb -4

where T = Shear streas at the section
F = Shear force = 30,000 N

A = Area above the axis at which shear stress is to be obtained
[i.e., shaded area of Fig. 8.3 {a}]
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- NA;SOO 100;300 - 15000 mm?

¥ = Distance of the C_.G. of the area A from neutral axis

=%x300=100mm

I=M.0.I of the total section about neutral axis

where B = Base Width of Trianglej

_ Base width x Height® _ BxA®
B 36 T

_150x450°
————— = NN

36
b = Actual width of the section at whlch shear stress is to be obtained
=NA = 100 mm.
Substituting these values in equation (i), we get
= 30,000 x 22000 X ;00 N/mm?
(150 X 450] <100
36

= 1.185 N/mm?. Ans.

(if) The distance from the top of the beam where shear stress is maximum

Let the shear stress is maximum at the section EF
at a distance x from the top of the beam as shown
in Fig. 8.3 (b). The distance EF is obtained from similar
triangles BEF and BCD as

EF =
D~ 450
EF = % x CD = m x1560 = 3
The shear stress at the section EF is given by equa-
tion {8.1) as G I o
Axy N ‘
1=Fx T2b WG Fig. 8.3 (b)

where F = 30,000 N
A = Area of section above EF i.e., Area of shaded triangle BEF

_EFxnggx
T2 "3
ﬁ

G
¥ = Distance of C.G. of the Area A from neutral axis

_2h %x _ 2x450 2x _ (300“21)

rol R
[T
Iz
|
0
Iw
S A

"3 3 3
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I = M.O.1. of ABCD about neutral axis
150 x 450°
= —— mm
36
b = Width of section EF = % .
Substituting these values in equation (if), we get
2
30,000 x (56—] x (300 - 2%]
T= = 0.0000395x [300 - Z_x)
150 x 450° ) x ‘ 3
36 3
2x2
= 0.0000395 (30096 - T] _ L)
. dt
For maximum shear stress T =0
4
or 300- 2 x2x=0 or 300= —
3 3
©or x = .30('}; 3 = 225 mm. Ans.

Hence, shear stress is maximum at a distance of 225 mm from the top of the beam.

(iii) Value of Maximum Shear Stress

The value of maximum shear stress will he obtained by substituting x = 225 mm in
equation {ii7).

. Maximum shear stress = 0.0000395 (300 x 295 — % x 2252]

= 1.333 N/mm2 Ans.

“ 8.3. SHEAR STRESS DISTRIBUTION FOR DIFFERENT SECTIONS

The following are the important sections over which the shear stress distribution is ta
be obtained :
1. Rectangular Section,
3. I-Section,
5. Miscellaneous Sections.
8.3.1. Rectangular Section. Fig. 8.4 shows a rectangular section of a heam of width b
and depth d. Let F is the shear force acting at the section. Consider a level EF at a distance y
from the neutral axis.
The shear stress at this level is given by equation (8.1) as
Ay
: Tbxl
" where A = Area of the section above y (i.e., shaded area ABFFE)

- (£-5)xs

2. Circular Section,
4. T-Sections, and

t=F
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A B

‘ T // (;g—y) q
dare pt

L b

a N A
X—p ¢
PN )
(@)
Fig. 8.4

¥ =.Distance of the C.G. of area A from neutral axis
1{d d y_» d_1 d
:y-}-__.._ = T — e e = — —_
2[2 3’) TTATeTYY z[“z)
b = Actual width of the section at the level EF
I = M.G.1 of the whole section about N.A.
Substituting these values in the above equation, we get

d 1 d
Bl - = i
(2 y)xbxz(y+2]

bx1I

Fla® :
Y2 -{8.2)

From _equation (8.2), we see that ¢ increases as ¥ decreases. Also the variation of © with
respect to v is a parabola. Fig. 8.4 () shows the variation of shear stress across the section.

At the top edge, y = g and hence

_Fi{d® (dV]_ F
r'zl[im(i)}ﬁxo"o

At the neutral axis, y =0 and hence

F{d2 } F d?
T —0 :—xT

Tarld ol
2
- ﬂi_ - i bel?
87 bd? A I =
12
12
12 F F
=8 5d "0 g @
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N h " Shear force F
ow average shear stress, T = —— = .
g ' e Areaof section bxd

Substituting the above value in equation {i), we get
T=1l5xT,, -{8.3)
Equation (8.3) gives the shear stress at the neutral axis wherey = 0. This stress is also

the maximum shear stress.
T = 1.5rwg ...(8.4}

max

From equation. (S.i), T= % In this equation the value of AY can also be caleulated as

given below :
Ay = Moment of shaded area of Fig. 8.4 (a) about N.A.

Consider a strip of thickness dy at a distance y from N.A. Let dA is the area of this strip.
Then dA = Area of strip = b x dy
Moment of the area dA about N.A.

=dA.y or yxdA

=y x bdy v dAd=bxdy
The moment of the shaded area about N.A. is obtained by integrating the above equa-

tion between the limits y to g

-. Moment of shaded area about N.A.
di2
= yxbxdy

¥

d/2
=% yxdy
¥

A[2] 2l [

But moment of shaded area about N.A. is also equal to Ay

(as & is constant}

Substituting the value of AY in equation (8.1), we get

T =

2
Fx bld”_ ¥
21 4 _F d2 2
Txb ot 7Y
This equation is same as equation (8.2).

Problem 8.3. A rectangular beam 100 mm wide and 250 mm deep is subjected to a
- maximum shear force of 50 kN. Determine :
(i) Average shear stress,

(iii) Shear stress at a distance of 256 mm above the neutral axis.

(i) Maximum shear stress, and
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Sol. Given : J+— 100 mme—b|
Width, b = 100 mm 3
Depth, d = 250 mm T
Maximum shear force, F=50kN =50,000 N.
. o 250
(i) Average shear stress is given by, N Al ™M
. = F _ 50,600 T
“E  Area bxd 15
= 90000 _ 5 nnm2 Ans. b
100 x 250 !
(i) Maximum shear stress is given by equation (8.4) -
. T = L5 X Fig. 8.4 (c)
=1.5%x2= 3 Nmm?2 Ans.
(iit) The shear stress at a distance y from N.A. is given by equation (8.2).
d?.
557
. 0 2
50000 (625060 50000 % 12
= ——x P (——4 - 625} = 5100w on07 X 15000 N/mm?
12
= 2.88 N/mmZ2. Ans.
Alternate Method [See Fig. 8.4 (d)]
The shear stress at a distance 25 mm from n
axis is given by equation (8.1) as ucral e 100 mm —
Axy C.G.
v=Ex 10095
where F =50,000 N IL /i "l_
A = Area of beam above 25 mm (i.e., shaded area 25 2m Y _L
in Fig. 8.4 {d)) T A 250

¥ = Distance of the C.G. of the area A from
neutral axis
100

=25+T=75mm

I =M.0.1 of total section about neutral axis
bd® 100 x 250°
EETRT
b = Actual width of the section at a distance 25 mm from neutral axis = 100.
Substituting these values in equation (8.1), we get
10000 x 75

100 x 250°

= 100 x 100 = 10000 mm?2 ”’f

Fig. 8.4 (d)

7 = 50,000 x
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_ 50000 x 10000 x 75 % 12
T 100x250% x 100
Problem 8.4. A timber beam of rectangular section is simply supported at the ends and
- carries a point load ot the centre of the beam. The maximum bending stress is 12 Nimm? and
maximum shearing stress is 1 Nimm?2, find the ratio of the span to the depth.
Sol. Given :

Maximum bending stress, O, = 12 Nimm? lw

= 2,88 N/mm?2. Ans.

Maximum shear stress, T = 1 N/mm?,
Let b = Width of the beam,-
d = Depth of the beam,
L = Span of the beam,
W = Peint load at the centre.

Maximum shear force, F=

= |

x L
4

and maximum B.M., M=

(W)
Shear fi
Now average shear stress, = ear Joree _ 2 = s

aug Area bxd 2bd’
Maximum shear stress is given by equation (8.4)

Tnuzx =1.5x Tuvg

e W w
;oor 1=15x %J [ T = b Toug =—w—-J

or - =— {7)

max
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4 L W
=15X'§xd [ b_d
ok
= Xd
L 12
E_E__G' Ans.

AN

from equation (i)]

Problem 8.5. A simply supported wooden beam of span 1.3 m having a eross-section
150 mm wide by 250 mm deep carries @ point loud W at the centre. The permissible stress are
7 Nfmm? in bending and 1 Nimm? in shearing. Calculate the safe load W.

Sol, Given : W
Span, L =130 mm l
Width, b = 150 mm
Depth, d =250 mm w 1 + w
Bending stress, o = 7 N/mm? 3 p————1am————* 5
Shearing stress, =1 N/mm? _ Fig. .6
WxL W )
Maximum BM,, M= —— = — x 1.3
=T 2
W
=7 x 1.8 x 1000 Nmm = 325 W Nmnm
W
Maximum S.F. =y N. _

() Value of W for bending stress consideration

Using bending equation

o

M _ o
Iy
where M = 325 W Nmm '
3 3
po b8 _ 18502507 _ 05910500 mms
12 12
o =7 N/mm?
d 205
and y:§=?=125.
Substituting these values in the above equation (i}, we get
32W 7
195312500 125
_ 7x195312500 -~ 33653.8 N,
325 x 125

(i) Value of W for shear stress consideration
Average shea;‘ stress,
i W
Shear force [?J _ w
Twg = Avea  bxd 2x150x250

-.(d)
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Maximum shear stress is given by equation (8.4)

3
Tmax E * Tuug
But T = 1 N/mm?
3
1= _ W

2 * 2 x 150 x 250

or W= m%{»gj_?g_o_ = 50000 N,

Hence, the safe load is minimum of the two values (ie., 33653.8 and 50000 N) of W,
Hence safe load is 33653.8 N. Ans.

8.3.2. Circular Section. Fig. 8.7 shows a
circular section of a beam. Let B is the radius of <
the circular section of F iz the shear force acting B
on the section. Consider a level EF at a distance R
¥ from the neutral axis. N 0 A

The shear stress at this level is given by
equation (8.1} as

e Nl

Trnax

FxAxy .
Ik -0 @ ®
where AY = Moment of the shaded area about Fig. 8.7 '

the neutral axis (N.A.)
I = Moment of inertia of the whole circular section
b = Width of the beam at the level EF.
Consider a strip of thickness dy at a distance y from N.A. Let dA is the area of strip..
Then dA=bxdy=EF xdy (v b=EF)
=2 x EB xdy (- EF=2xEB)

=2% (R?_ 4% xdy
' (- Inrt. angled triangle OB, side EB = JRZ - 5%)

Moment of this area_dA about N.A.
=y x d,A

=yx2 ,‘RQ_J’E x dy
=2y JRz—yz dy

Moment of the whole shaded area about the N. A is obtained by integrating the above
equation between the limits y and R

AF =j 2 JR? - 5% dy
Y
== Jj -2y ,_/'RZ - 3% dy.

( dA =2 (Rz —_}'2 dy)
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Now (- 2y) is the dlfferentlal of (R? - y2). Hence, the integration of the above equatlon
becomes as
2 23278
Ay =-— BT -y
3/2 )

— .3_ [(R?. - R2)3;‘2 _ (R2 _y2)3/2]

2 [0- '(R2 2)3/2] == (RE 2)3/2
T3

Substltutmg the value of A¥ in equation (z) we get
ZeRY L 422
x 3( ¥4}
Ixb

But b=EF=2><EB=2x1,IR2_yZ

Substituting this value of » in the above equation, we get

T=

%F(Rz 2y

F

T mm—— = (RE - y?

Ix 2R - »* EI( ¥

Equation (8.5) shows that shear stress distribution across a circular seetion is parabolic.

Also it is clear from this equation that with the increase of y, the shear stress decreases. At

¥ =R, the shear stress, v = 0. Hence shear stress will be maximum when y = 0 i.e., at the
neutral axis.

Aty = 0 ie., at the neutral axis, the shear stress is maximum and is given by

...(8.5)

F
Tma.r = 5 R2
[= = ph= 2" x(2 R =
But 64D 64><( ) (~ D=2R)
i
= pd
=3 R
FxR: 4 F
Ty = e = 3% R .(8.6)
3x—R*
4
But average shear stress,
. = Shear force _F
- “&  Area of circular section =R
Hence equation (8.6) becomes as,
4 ‘
T =T XT (8.7}

mox 3 aug
Problem 8.6. A circular beam of 100 mm diameter is subjected to o shear force of § EN.
Cualculate :
(i) Average shear stress,
(iif) Shear stress at a distance of 40 mm from N.A.

(ii) Maximum shear stress, and
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Sol. Given :
Diameter, =100 mm
100
- Radius, R= - = 50 mm

Shear force, = F =5 kN = 5000 N.
(i) Average shear stress is given by,

_ Shear force
Trwg - - .
Area of circular section
= 50002 = 0.6366 N/mm?  Ans.
(50) )
(i) Maximum shear stress for a circular section is given by equation (8.7
Tm&‘_’ﬂ = x Taug

x 0.6366 = 0.8488 N/mm®. Ans.

i o |ds

(iii} The shear stress at a distance 40 mm from N.A. is given by equation (8.5).
F
=Y o pr_ a2
T=37 B - %)
5000

= e (502 - 40%

T 4
vy =40 dI:—mo)
3% 2% x 100° ( TR e

64

___ 5000x64
8 x m x 100000000
= 0.3055 N/mm?. Ans.

(2500 — 1600}

8.3.3. I-Section
Fig. 8.8 shows the I-section of a beam.

M B >
F
il :
Flange
4
Web ~a 2
_____ [ S d D » Tmax
N A >
b d
2
l h A
l h 4
() (b)
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Let B = Overall width of the section,
‘f D = Overall depth of the section,
: b = Thickness of the web, and
d = Depth of web.
The shear stress at a distance y from the N.A., is given by equation(8.1) as
Ay
Ixb
In this case the shear stress distribution in the web and shear stress distribution in the
flange are to be caleulated separately. Let us first calculate the shear stress distribution in the
flange. o
(i) Shear stress distribution in the flange

Consider a section at a distance y from N.A. in the Tr/T / A

T=Fx

flange as shown in Fig. 8.8 (¢).
Width of the section = B

D2 " g R

I

N A

Shaded area of flange, A= B (g - y)

Distance of the C.G. of the shaded area from neutral
axis iz given as

Fig. 8.8 (¢)

Hence shear stress in the flange becomes,
_Fx4y
T IxH

D 1(D
_rs(g-o)3(3 )

- IxBE

_ﬂ[zf; 2
=orila) 77
_E(DE s o (8.8)
“arle 7Y

Hence, the variation of shear stress (1) with respect to y in the flange is parabolic. It is
alsa clear from equation {8.8) that with the increase of y, shear stress decreases.

{a) For the upper edge of the flange,

=)

(- Here width = B)

¥

=0,

Rl eiy

Hence shear stress, T
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(b) For the lower edge of the flange,

_d
YT
. S A E ) R X
ence Tor|"e A2 oI\ 4 " 4
F .

=2 (p2_g2 .

=3 (DE-dD . ...{8.9)
(i) Shear stress distribution in the web
Consider a section at a distance y in the web from the V A

N.A. as shown in Pig. 8.9, T ’ !
Width of the section = b.
D2 g4 )

flange area about N.A. plus moment of the shaded area of the
web about the N.A.
. A¥ = Moment of the flange area about N.A.

+ moment of the shaded area of b
web about N.A.

(D d] 1[1) a’J (d J l(d )
=Bl —-—ix=|=+—{+b|=-y|x=1=+y
2 2) 2l2 32 2 212 |

Here AY is made up of two parts i.e., moment of the L _l K3

B b(d? 9 .
= 2% g2 g —| T Fig. 89
3 (D2~ d?) + 2(4 ¥ )
Hence the shear stress in the web becomes as
FxAy F B, s 2 b(d '
= = —— x|—=—(D°-d = =- ‘
YT TTxb T Ixb "[8( ela Y ~(8.10)

From equation (8.10), it is clear that variation of t with respect to y is parabolic. Also
with the increase of y, © decreases.
At the neutral axis, y = 0 and hence shear stress is maximum.
F |B b d?
T - |2 D2 _ d2 YR
e be[a( “2"4}
2 _ g2 2
_F | BT -d%) bd” (8.11)
Ixb 8 8
At the junction of top of the web and bottom of flange, .
d

2
Hence shear stress is given hy,

__F 1B e g2, b([d _(dY
t"be{sw d“z[f"(?)”

FxBx{(D?*-d%
ST sIxe T
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The shear stress distribution for the web and flange is shown in Fig. 8.8 (&). The shear -

stress at the junction of the flange and the web changes abruptly. The equation (8.9} gives the
stress at the junction of the flange and the web when stress distribution is considered in the
flange. But equation (8.12) gives the stress at the junction when stress distribution is consid-
ered in the web. From these two equations it is clear that the stress at the junction changes

F B F
DI _ 4t - k. (D2 g%
abruptly from al (D% - d?) to 5 %8l (D% - d%).

Problem 8.7. An I-section beam 350 mm x 150 mm f¢——— 150 mm ———|
has « web thickness of 10 mm and a flange thickness of _n_| _L

20 mum. If the shear force acting on the section is 40 kN, 129 mm
find the maximum shear stress developed in the I-section. Ea
Sol. Given :
Overall depth, D = 350 mm
Overall width, B = 150 mm £
Web thickness, b =10 mm § N A
Flange thickness, =20 mm . N

10 mm
f—

Depth of web, d=350-(2x 20)=310 mm
Shear force on the section, F = 40 kN = 40,000 N.
Moment of inertia of the section about neutral axis,

e 310mm
4
e

150x350° 140x310° , ¥ |20
I= - mm
12 12 e s 10
= 535937500 — 347561666.6 18- =
= 188375833.4 mm®.

Maximum shear stress is given by equation (8.11)
F | BW*-d*  bd*
T = = .
max Ixb 8 8

~ 40000 150(350° - 310%) 10 x 3107
" 188375833.4 x 10 8 8

= (.000021234 [1?" (122500 - 96100) + 120125}
= 13.06 Nmm?. Ans.
Alternate Method
The maximum shear stress developed in the I-section will be at the neutral axis. This
shear stress is given by,
FxAxy
-EHNI.'C = I x b
where F=40,000 N
A x ¥ = Moment of the area above the neutral axis about the neutral axis
= Area of flange x Distance of C.G. of the area of flange from neutral axis + Area
of web above neutral axis x Distance of the C.G. of this area from neutral axis
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2
= 3000 x 165 + 1550 x 77.5
= 495000 + 120125 = 615125 mm?
I = Moment of inertia of the whole section about neutral axis
= 188375833.4 mm? (Already Calculated)
b = Width of the web at neutral axis
= 10 mm

:(150x20)x(3_12+ﬁj+(ﬁx1ojx 310 1)

5. = 40,000 x 615125 = 18.06 N/mm?
1883758334 x 10 |06 Nmm?. - Ans.
Prob
oo Calculaijl:lb g.zti'lo; ]:;2 f;;)il:r; fr;/'é ;}z;tcti; :h; :Zear stress distribution across the section.
Soi. Given :
From problem 8.7, we have
B =150 mm ; D = 350 mm
d =310 mm ; b=10mﬁl
F=40000 N ; I =188.375 x 108 mm?

T = 13.06 N/mm?,

Shear stress distribution in the flange
The shear stress at the upper edge of the flange is zero.
Actually shear stress distribution in the flange is given by equation (8.8) as

F (Dz ZJ
T= 57l 45
7 )

]4—“"“—~— 150 mm _—_.l_L

e 10.51———#|

| lzomm
T kil
E E
g8 £
Y TR
] 10 mm
4
k3 |20mm
(a) T (8)
Fig. 8.11
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For the upper edge of the flange,

y:

D
2
B D_z_(i?_f _F(p?_D%) _,
oIl 2 hz) i erl 4 4
For the lower edge of the upper flange (i.e.,} at the joint of web and flange,
d

2
Substituting this value in equation (i), we get

_F D_ﬂ_[gf _F(D* &
T=orle \2) T2l e 4

40000
T (3507 - 310%)

F
=— (D%- d,2 =
8l ¢ ) 8 x 188.375x 10

= 0.7007 N/mm?,

Shear stress distribution in the web

The shear stress is maximum at N.A. and it is given by,
¢ =18.06 N/mm?® {calculate in problem 8.7)

LY
The shear stress at the junction of web and flange is given by equation (8.12) as

FxB
- D‘Z _ d?.
T STb )
00 x 150
40000 x 15 (3507 — 3102) = 10.51 N/mm?

= 8% 188375 % 10° x 10
(The shear stress at the junction can also be

obtained as equal to

B 150
— x 0.7007 = To % 0.7007 = 10.51 N/mm?)

Now shear stress distribution which is symmetrical about N.A., can be plotted as shown
in Fig. 8.11 (b). The shear stress for web and flange are parabolic. The shear stress at the
junction suddenly changes from 0.707 to 10.51 N/mm?.

Total Shear force carried by the web

Total shear force carried by the web will b
I-section minus the total shear force carried by the two flanges.

Total shear force carried by the web
= Total shear force carried by I-section minus two times

carried by one flange
: (i)

= 40,000 — 2 x Shear force carried by one flange
aleulate the shear stress in the

To find the shear foree carried by one flange, first ¢
flange at a distance 'y’ from neutral axis. Now consider an elemental sirip of flange of thick-
ness ‘dy’. Then area of strip will be width of the flange x thickness of strip i.e., dA = 150 x dy.

Now the shear force carried by the elemental strip

e equal to the total shear force carried by the

the shear force
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= Shear stress at a distance y in the flange x Area of the strip

=1 x 150 x dy
Total shear force carried by the flange will be obtained by integrating the above equa-
. 310 350 .
tion from = to . (i.e., from 155 to 175).
Total shear force carried by one flange
175 -
= J. T x 150 x dy D)
1585
) The value of “’ (i.e., shear stress) in the flange at a distance y from neutral axis is given
by ‘
- FxAxy
T Ixb

where F=40,000
Ay = Moment of area of the flange above ¥, about neutral axis
[i.e., shaded area of Fig. 8.8 {c) on page 357]

-5{z-7)3(5+)

=150(35?0—ny1(-3£(1+;\!) (v

Hi =1 =35
2l 3 .ereB 50, D 0)

=150{175 - y) x % (175 +¥)
=75 (1752 - y%) = 75 (30625 — y2)
I = Moment of inertia of the whole section about neutral axis
= 188.375 x 105 mm*
b = Width of flange
= 160 mm.
Substituting the above values, we get

1 = 40,000 x 75 (30625 - %)
188.375 % 10% x 150

Substituting this value of © in equation (i), we get
Total shear force carried by one flange

{Already calculated)

= 0.000106 (30625 — v2)

175
= Lss 0.000106(30625 — %) x 150 x dy

1758
= 0.000106 x 150 _[155 (30625 - y%) dy

' 47175
=0.0159 [306253» - J
3.
155

=0.0159 [30625 (175 - 155) - % (175% - 1553 )}

:
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=0.0159 [612500 - %(5359375 - 3723875)]

= (.0159 [612500 ~ 545166.66]

= 107061 N

Substituting this value in equation (if), we get

Total shear force carried by web

= 40,000 - 2 x 1070.61
= 37858.78 N = 37.858 kN. Ans.

8.3.4. T-Section. The shear stress distribution over a T-section is obtained in the same
manner as over an I-section. But in this case the position of neutral axis {i.e., position of C.G.)
is to be obtained first, as the section is not symmetrical about x-x axis. The shear stress distri-
bution diagram will also not be symmetrical.

Problem 8.9. The shear force acting on a section of a beam. is 50 EN. The section of the
beam is of T-shaped of dimensions 100 mm » 100 mm x 20 mm as shown in Fig. 8.12. The
moment of inertia about the horizontal neutral axis is 314.221 x 104 mm?, Calculate the shear
stress at the neutral axis and at the junction of the web and the flange.

e
J——r 100|mm —] [ 35.35 —»
D : T
: 32.22 7.07
[ ) — 35,285
N A L
Ee ;
o E @
IS
o
67.78
I 20 mm
— | e
LI
@ 'y (b)
Fig. 8.12

Sol. Given :
Shear foree, F=50kN =50000 N
Moment of inertia about N.A.,
I=314.221 x 10 mm*
First calculate the position of neutral axis. This can be obtained if we know the position
of C.G. of given T-section. The given section is symmetrical about the axis Y-¥ and henee the
C.G. of the gection will lie on ¥-¥ axis. '

Let y¥ = Distance of the C.G. of the section from the top of the flange.
. A yi+d y
L i SLE S -3
Then ¥ (4, + 4y
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803
(100 x 20) » 10 + (20 = 80) [20 + ?)
{100 x 10} + {10 = 90
20000 + 96000

= 72000+ 1600 82.22.

. Hence, neutral axis will be at a distance of 32.92 mm from the top of the flange as shown
in Fig. 8.12 (a). .

Shear stress distribution in the flange
Now the shear stress at the top edge of the flange, and hottom of the web is zero.

Shear stress in the flange just at the junetion of the flangé and web is given by,
FxAy
Ixb
A = 100 x 20 = 2000 mm?
% = Distance of C.G. of the area of flange from N.A.

where

= 32.22 ~ 222 = 22.22 mm

b = Width of flange = 100 mm
_ 50000 x 2000 x 22.22

7= T = 7.07 N/mm?,
314.221 % 107 % 1_00

Shear stress distribution in the web
The shear stress in the web just at the junction of the web and flange will suddenly

100
jncrease from 7.07 N/mm? to 7.07 % o0 = 35.35 N/mm®. The shear stress will be maximum at

N.A. Hence shear stress at the N.A. is given by
Fx Ay
T Ixb
where A¥ = Moment of the above N.A. about N.A. _
= Moment of area of flange about N.A. + Moment of area of web about N.A.

. 2222
=20 x 100 % (32.22 — 10) + 20 x (32.22 - 10) x 2

= 44440 + 4937.28 = 49377.284 mum?
b =20 mm
o= 50000 x 49377.284
314.221x 10* x 20
Now the shear stress distribution diagram can be drawn as shown in Fig. 8.12 (b}.

8.3.5. Miscellaneous Sections. The shear stress distribution over miscellaneous sec-
tions is obtained in the same manner as over a T-section. Here also the position of neutral axis

is obtained first.

= 39,285 N/mm?
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Problem 8.10. The shear force actin, ; ]

8.1¢ : _ g on a beam at an I-section with un, 1

g?g :;é\fx 21"161; sgc.?oné z: .<>;‘f;1t3.‘.ur}?,L in Fig. 8.13. The moment of inertia of the sectiorezqslfizﬁa;\lfgzs Zg
: . Calculate the shear stress at the N.A. istributi

B e i aciate the o i and also draw the shear stress distribution

0.952
—— 200 mm —
x
@ 50
v
13349 T
83.49
B I R y 4
E N A Fy
E
o
(]
&
. 50 mm 116.51
@ " 166.51
T F
@ 50 mm
N+ v

je— 130 mm ——s]

Fig. 8.13
Sol. Given :
Shear force, F=50kN=50000N
Moment of inertia about N A,
I =2.849 x 108 mm*.
Let us first calcutate the positi ig i i i iti
C.G. of the given I-section. Let JI:‘ is 1311; ﬁiﬁczg}stﬁeogfg.ngig gleei%z?c;gl ?aizstltllz):n()f the
Ay + Agys + Ay
(A} + Ay + Ag)
A| = Area of bottom flange
= 130 x 50 = 6500 mm?
A, = Area of web = 200 x 50 = 10000 mm?
A, = Area of top flange = 200 x 50 = 10000 mm?
¥, = Distance of C.G. of A, from bottom face
50
= E =25 mm
¥, = Distance of C.G. of A, from bottom face
200

‘—'50‘ — =
+ 9 150 mm

¥y = Distance of C.G. of A, from bottom face

¥E=

where

=50+200+-5§q=275mm
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8500 x 25 x 10000 x 1560 + 10000 x 275
=166.61 mm
6500 + 10000 + 10000

Hence N.A. is at a distance of 166.51 mm from the bottom face (or 300 — 166.51 = 133.49 mm
from upper top fibre).

y*

Shear stress distribution
(i) Shear stress at the extreme edges of the flanges is zero.
(ii) The shear stress in the upper flange just at the junction of upper flange and web is
given by, :
Fx Ay
I'xh
where A = Moment of the area of the upper flange about N.A.
= Area of upper flange x Distance of the C.G. of upper flange from N.A.
= (200 % 50) x (133.49 — 25) = 1084800
b = Width of upper flange = 200 mm
50000 x 1084800
2.849 x 108 x 200
(ii{) The shear stress in the web just at the Jjunction of the web and upper flange will

T=

T= = 0.9520 N/mm?,

200
suddenly increase from 0.952 to 0.952 x —= = 3.808 N/mm?2.

50
{iv) The shear stress will be mazimum at the N.A. This is given by
_FxAy
Tnax = I = b

where A¥ = Moment of total area (about N. A) about N.A.
= Moment of area of upper flange about N.A. + Moment of area of web about N.A.
= 200 x 50 x {(133.49 — 25) + (133.49 - 50) x 50 x 9—3%—@)
= 1084900 + 174264.5 = 1259164.5 .
and b =50 mm
50000 x 1259164.5
T I
max 9 849 5 10° x 50
(v) The shear stress in the lower flange just at the junetion of the lower flange and the
web is given by )

= 4.4196 N/mm?2,

F x Ay
I'xb
where AY¥ = Moment of the area of the lower flange about N. A
=130 x 50 x {166.51 — 25) = 918125
b = Width of lower flange = 130 mm
50000 x 918125
~ 2849 x 10° x 130

= 1.239 Nfmm?,
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(vi} The shear stress in the web just at the junction of the web and lower flange will
suddenly increase from 1.239 to l—g?—)%% = 3.22 N/mm?.

The shear stress diagram is shown in Fig. 8.13 ().
o Problem 8.11. The shear force acting on a beam at a section is F. The section of the beam
is trz.angular base b and of an altitude h. The beam is placed with its base horizontal. Find the
maximum shear stress and the shear stress at the N.A.

Sol. Given :
Base =5
Altitude = 4
The N.A. of the triangle ABC will lie at the C.G. of the triangle. But the C.G. of the

triangle will be at a distance of % from the top.

.~ Neutral axis will be at a distance of 23-@ from the top.

(b}
Fig. 8.14
. Consider a level EF at a distance y from the N.A. The shear stress at this level is given
Y,
Fx Ay
=TT h LD

where AY = Moment of the shaded area about the neutral axis

= Area of triangle CEF x Distance of C.G. of triangle CEF from N.A.

;{leFxxe(%_ng)
2 3 3

- (é x %xx}x% th-x) (= As triangles CEF and CAB are similar.
Hence%x% or EF:%xAB=be]

= é ® % x % th-x)

= % % éﬁ x (h~x)
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I = Moment of inertia of the whole triangular section CAB about N.A.
b = Actual width at the level EF

=EF = xxb .
h
Substituting these values in equation (i), we get
1 bx?
.. Fxg.——h—.(k—x) 1 F.xth-x)

- xxb T3 I

Ix22
A
F :
= — (xh - x2) i)

3I
From equation (i), it is clear that variation of T with respect to x is parabolic. At the top,
x =0 and hence t is also zero. At the bottom x = k and 7 is also zero. )

Atthe NA x = %’l , and hence the shear at the N A. becomes as,

F|2h (2.&]2
T=—|—xh~|—
37| 3 3

=§{yf__gﬁ}£x<sh2-4h2) F 2n* 2 Fh®

= x — X
31 9 27 I

ar) 3 9 37 g
3
But I= L
36
2
.2 FR® _ 2 36xFh?
35)
_8 F
=3 (8133

Maximum shear stress
The shear siress of any depth x from the top is given by equation {ii). The maximum
shear stress will be obtained by differentiating equation (if) with respect to x and equating to

ZETO.
d| F
I— — h bl 2 =
dx [31 (xh - )} 0
F
or : — (b~ 2x) =0
37 ¢ )
or h-2x=0 (-~ Fand I are constants and cannot be zero)
or h
)

Now substituting this value of x in equétion (i), we get

Flhn (h)g
Tax = 57 =xh-| =
31{2 2
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| 3f|2 "¢ 3l 4 12
: 7 - ﬂs_ [ . bR? }
3 b=
' 12 20 12
36
_36 Fp'
127 b’
3F
= 7)7; ..'{8.14)

Now draw the shear stress diagram as shown in Fig. 8.14 (b},

Note. In the ahove case, the shear stress is not maximum at the N.A., but it is maximum at a
depth of A/2 from the top. In all other cases, the shear stress was maximum at the N.A,

Problem 8.12. A beam of triangular cross-section is subjected to a shear force of 50 kN.
: The bees width of the section is 250 mm and height 200 mm. The beam is placed with its base
! horizontal. Find the maximum shear stress and the shear stress at the N.A.

Sol. Given :
Shear force, F =50 kN = 50000 N
Base width, b = 250 mm
Height, h = 200 mm
Maximum shear stress is given by equation (8.14}.
3F 3 x 50000
‘Em= E = m =3 N/rnm2. Ans.

Shear stress at N.A. is given by equation (8.13).
BF _ _8x50000
3bh 3% 250x200
Problem 8.13. A beam of square section is used as @ beam with one diagonal horizontal.

The beam is subjected to o shear force F, at a section. Find the maximum shear in the eross-
section of the beam and draw the shear distribution diagram for the section.

Sol. Given :
Fig. 8.15 shows a square beam ABCD, having diagonal AC horizontal.

= 2.67 N/mm?. Ans.

T =

B
A

(a} &
Fig. 8.15



370 STRENGTH OF MATERIALS

Let 4 = Length of diagonal AC. This is also lengih of diagonal BD.

The N.A. of the beam shown in Fig. 8.15 (a), passes through diagonal AC. ‘

Consider a level EF at a distance y from the N.A. The shear stress at this level is given
by, '

_FxAy )

where A¥ = Moment of the shaded area about N.A.
= Area of triangle BEF x Distance of C.G. of triangle BEF from N.A.

=(leFxx) [—é—ng
2 2 3
EF x x

1 b ‘
=[zx2mxx] 2-2 B X EP-—%_xb-2
‘[z"z" x}(z 3"] ( ca wo e x]

I = Moment of inertia of the whole section about N.A.

b 3
’”[E] bt

AT
and b = Actual width at the level EF = 2x
Substituting these values in equation (i}, we get
2(b_ 2_x]
Fxz (2 3) Fx24x [36-—41:}
4 - 4 6
[é—J x 2x b
48
= i‘éi x (35 - 4x) ) i)
b

At the top, x = O hence t =0

b

Atthe NA, x = > hencev= 40 & [35-4%)
2 FER 2

AF oF
B w7

SR~
o

Maximum shear stress

Maximum shear stress will be obtained by differentiating equation (i) with respect tox
and equating to zero. ‘

d | 4F :
Eﬁ;—* (3bx - 4x2)] =}

4K
or X (3b-8x)=10
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or 3-8 =0 [ g— cannot be zero)
b
! or x=
Substituting this value of x in equation (if), we get maximum shear stress.
= A (g ) A 30,09 F
max b4 3 8 - b4 8 P 4 b2 -

The shear stress distribution is shown in Fig. 8.15 (b).

Problem 8.14. Fig. 8.16 shows a section, which is subjected to a shear force of 100 kN.
Determine the shear stresses at A, B, C and D. Shketch the shear stress distribution aiso.

150 mm

Fig.

' Sol. Given :
' Shear forced, F = 100 kN = 100000 N,

The neutral axis will be at a distance oi = 62.5 mm from the top, as the given

section is symmetrical about X-X and ¥-Y axis.
Moment of inertia of the given section abort N.A. is given by,
I=M.OI of rec:-  ie 125 x 150 about N.A.
— M.O.I two semi-circle (or one cirewlar hole) about N.A.

3
S 126X 1507 m x 100* mm* = 8.025 x 107 mm?*
12 64
The shear stress is given by,
_ FxAy
T Ixb
At A, A¥ =0 and hence t=0

At B, A¥ = Moment of area (125 x 25} about N A,
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=(125x25)x(50+%§] [ A-125x25 andi=50+%]

=125 % 95 x 62.5 = 1.853 % 10° mm?
b =125 mum

_ 100000 x 1.9581 x 10°
T 8.025x10" x 125
At C, A¥ = Moment of area above an horizontal line passing through C.C.,
about N.A.
= Moment of area of rectangle 125 x 50 about N.A.
_ Moment of area of circular portion between C and B about N.A.

= 5.165 N/mm?. Ans.

=50
= {125 x 50) x (25+§9}—jy 2x . dy.y
2 =25

50
=3.125 x 105 - J‘z5 2w 2500 - yg Xyx dy’ ['.‘ x= 1#R2 -wyz)

50
=3.125 x 105 - LS — 2500 - 32 (- 2y) x dy

60
.| (2500 - yH)¥2 ¢
=3.125 x 10 +[ 2

25

=3.125 x 105 + % (2500 - 50%)¥2 — (2500 — 252)%2]
=3.125 x 10° + g— [0 — {2500 — 625)*2]

- 3.125 x 10° + -g (— 81189)

=3.195 x 105 — 54126 = 258374 mm?
b = Width of beam at C {i.e., length C-C)
= Width of complete section — 2
x Width of circular portion at C

(i.e., length EC}
=125 -2 x R? - 257

=125~ 2 x +/50% — 257
=125- 86.6
=58.4 mm
. 100000 x 258374
3025 x 107 x 38.4
= 22,25 N/mm?2.  Ans.
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At D, Ay = Moment of area above N.A., about N.A.
= Moment of area of rectangle 125 x 75 about N.A.
— Moment of area of circular portion between 17 and B ahout N.A.

=50
=125 x 75 x 12 _ '[’ 9x.dyy
2 =50

50
= 351500 — _[G 2% /2500 — y% x ¥ x dy -

50 Z
= 351500 — jﬁ - 2500 - % (= 2y)dy

( %= 2506':?}

= 351500 + [

(2500 - y2)¥2 50
3/2

0

= 351500 + % (2500 - 50232 = (2500 - 0)%2]

= 351500 + g [0 — 125000]

= 351500 — 83333.33 mm®
= 268166.67 mm®
b = Width of beam at D (i.e., length D-D)
= 25 mm
_ 100000 x 268166.67
T 3025x 107 x 25
The variation of shear stress is shown in Fig. 8.16 (b).

= 35.46 N/mm?2 Ans.

HIGHLIGHTS

1. The stresses preduced in a beam, which is subjected to shear force is known as shear stresses.
The shear stress at a fibre in a section of a beam is given by,
Fx Ay
Ixb
where F = Shear force acting at the given section.
A = Area of the section above the fibre.
¥ = Distance of the C.G. of the area A from the N.A.
I = Moment of inertia of whole section about N.A.
b = Actual width at the fibre.
The shear stress distribution across a rectangular section is parabolic and is given by,

o F(E e
o1 |2 77

where d = Depth of the beam
y = Distance of the fibre from N.A.
4. The maximum shear stress is at the N.A. for a rectangular section and is given by,

T =

)

Tnlax =15 TaugA
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5. The shear stress distribution across a circular section is parabolic and is given by,
F
= (R?-y%.
Yi Y
6. The shear stress is maximum at the N.A. for a circular section and is given by,
4
Ta = 3 % arg -
7. The shear stress distribution in I-section is parabolic. But at the junction of web and flange, the
shear stress changes abruptly. The shear stress at the junction of the flange and the web changes
F B F
from af D2 - d? to 2 X7 (D2 d2) abruptly,
where D = Overall depth of the section,
d = Depth of web,
b = Thickness of web,
B = Qverall width of the section.
8. The shear stress distribution for unsymmetrical sections is obtained after caleulating the position
of N.A.
9. In case of triangular section, the shear siress is not maximum at the N.A. The shear stress is
maximun at # height of A/2.
10. The shear stress distribution diagram for a composite section, should be drawn by calculating
the shear stress at important points.
EXERCISE 8
(A) Theoretical Questions
1. What do you mean by shear stresses in beams ?
2. Prove that the shear stress at any point (or in a fibre} in the cross-section of a beam which is
subjected to a shear force F, is given by
A
t=Fx
bxl
where A = Area of the section above the fibre,
y = Distance of the C.G. of the area A from N.A,,
b = Actual width at the fibre, and
I = Moment of inertia of the section about N.A.
3. Show that for a rectangular section of the maximum shear stress is 1.5 times the average stress.
4. Prove that the shear stress distribution in a rectangular section of & beam which is subjected to
a shear force F is given by
F dj 2
Tar 7
5. Prove that the maximum shear stress in a circular section of a beam is 4/3 times the average
shear stress.
6. Derive an expression for the shear stress at any peint in a circular section of a beam, which is
subjected to a shear force F.
7. How will you draw the shear stress distribution diagram for composite section ?
8,

How will you prove that the shear stress changes abruptly at the Junction of the flange and the
web of an I-section ? .
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9,

10.

11.

12.

10.

The shear stress is not maximum at the N.A. in case of a triangular section. Prove this state-
ment.
Prove that the maximum shear stress in a triangular section of a beam is given by

3F

Tmax = T

where b = Base width, and
h = Height.

Show that the ratio of maximum shear stress to mean shear stress in a rectangular cross-section
is equal to 1.50 when it is subjected to a transverse shear force F. Plot the variation of shear
stress across the section. (Bangalore University, March 1989)
Sketch the distribution of shear stress across the depth of the beams of the following cross-
sections :
(i) T-section, and

(if) Square section with diagenal vertical. (Bangalore University, March 1989}

(B) Numerical Problems

A rectangular beam 100 mm wide and 150 mm deep is subjected to a shear force of 30 kN.
Determine : (i} average shear stress and (i} maximum shear stress. [Ans. 2 N/mm? ; 3 N/mmZ]
A rectangular beam 100 mm wide is subjected to a maximum shear force of 100 kN. Find the
depth of the beam if the maximum shear stress is 6 N/mm?2, [Ans. 250 mm]
A timber beam of rectangular section is simply supported at the ends and carries a point lead at
the centre of the beam. The length of the beam is 6 m and depth of beam is 1 m. Determine the
maximum bending stress and the maximum shear stress. [Ans. 12 N/mm?2 ; 1 N/mm?]
A timber beam 100 mm wide and 150 mm deep supports a uniformly distributed load of intensity
w kN/m length over a span of 2 m. ’
If the safe stresses are 28 N/mm? in bending and 2 N/mm? in shear, calculate the safe intensity
of the load which can be supported by the beam. fAns. 20 kN/m]
A circular beam of 1056 mm diameter is subjected to a shear force of 5 kiN. Calculate : (¢} average
shear stress, and (i} maximum shear stress. Also sketch the variation of the shear stress along
the depth of the beam. [Ans. (i) 0.577 N/mm? (i) 0.769 N/mm?]
The maximum shear stress in a beam of circular section of diameter 150 mm, is 5.28 N/mm?2.
Find the shear force to which the beam is subjected. {Ans, 70 kN]
A beam of I-section is having overall depth as 500 mm and overall width as 190 mu. The thick-
ness of flanges is 256 mm whereas the thickness of the web is 15 mm. The moment of inertia
about N.A. is given as 6.45 x 10% mm*. If the section carries a shear force of 40 kN, caleulate the .
maximum shear stress. Also sketch the shear stress distribution across the section.

[Ans. 62.33 N/mm?]
An I-section has flanges of width & and the overall depth is 2. The flanges and web are of
uniform thickness ¢. Find the ratio of the maximum shear stress to the average shear stress.

[Ans. 2.25]

An I-section has the following dimensions :
flanges : 150 mm x 20 mm
web : 30 mm x 10 mm.
The maximum shear stress developed in the beam is 16.8 N/mm?2. Find the shear force to which
the beam is subjected. [Ans. 50 kIN]
A 12 em by 5 em I-section is subjected to a shearing force of 10 kN. Calculate the shear stress at
the neutral axis and at the top of the web. What percentage of shearing force is carried by the
web ? Given [ = 220 x.10* mm*, area = 9.4 x 102 mm?, web thickness = 3.5 mm and flange
thickness = 5.5 mm. lAns. 27.2 N/mm? ; 20.1 N/mm? ; 9.5 kN. i.e., 95% of the total]
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1l

12.

i3.

" 14.

The shear force acting on a section of a beam is 100 kN. The seetion of the beam is of T-shaped of l

dimensions_ZOO ma X 250 mm x 50 mm. The flange thickness and web thickness are 50 mm.
Moment of inertia about the horizontal neutral axis is 1.134 x 10 mm?. Find the shear stress at
the neutral axis and at the junction of the web and the flange.

[Ans. 11.64 N/mm? ; 2.76 N/mm? and 11.04 N/mm?]
A beam is of T-section, flange 12 em by 1 em, web 10 cm by 1 cm. What percentage of the shearing
force at any section is carried by the weh 7 [Ans. 93.5%]
For the .section shown in Fig. 8.18, determine the average shearing stresses ai A, B, C and D for
a shearing force of 20 kN. Draw also the shear stress distribution across the section,

fAns. 0 ; 6.47 N/mm? ; 27.7 N/mm? ; 44.4. N/mm2]

|4-——— 60 mm

Fig. 8.18

A rectangular beam is simply supported at the ends and carries a point load at the centre. Prove
that the ratio of span to depth

_ Maximum bending stress

"~ 2 x Maximum shear stress '
fHint. Let W = Point load at centre,
b = width, and d = Depth.

Max. Shear force = —ZW—, Max. bending moment = 1%

[.‘_‘_’E]
i) WL & 3WL

Max. bending stress = M St e
Z (pg®) 4 " bd® 2 0d?
6
3
Max. shear stress = g Average shear stress
3 Max. shearforce 3 W 1 3 w
T K e W e X = e X e
2 Areaofsection 2 2 bxd 4 bx
3 WL
Max. bending stress 2 pd? L
2 % Max. shear stress 9.3 W S d
4 bxd

9

Direct and Bending Stresses.

9.1. INTRODUCTION

Direct stress alone is produced in a body when it is subjected to an axial tensile or
compressive load. And bending stress is produced in the body, when it is subjected to a bending
moment. But if a body is subjected to axial loads and also bending moments, then both the
stresses (i.e., direct and bending stresses) will be produced in the body. In this chapter, we
shall study the important cases of the members subjected to direct and bending stresses. Both
these stresses act normal to a cross-section, hence the two stresses may be algebraically added
into a single resultant stress.

9.2. COMBINED BENDING AND DIRECT STRESSES

Consider the case of a column® subjected by a compressive load P l
acting along the axis of the column as shown in Fig. 9.1. This load will |
cause a direct compressive stress whose intensity will be uniform across |
the cross-section of the column. ' |

Let a, = Intensity of the stress |
A = Area of cross-section - |

i
!
|
!

P = Load acting on the column.
Then stress,

Load P
“ Area A

Now consider the case of a column subjected by a compressive load P
P whose line of action is at a distance of @’ from the axis of the column as Fig. 9.1
shown in Fig. 9.2 (a). Here ‘¢’ is known as eccentricity of the load. The eccentric load shown in
Fig. 9.2 (&) will cause direct stress and bending stress. This is proved as discussed below :

1. In Fig. 9.2 (b), we have applied, along the axis of the column, two equal and
opposite forces P. Thus three forces are acting now on the column. One of the forces is shown
in Fig. 9.2 (¢} and the other two forces are shown in Fig. 9.2 (d).

2. The force shown in Fig. 9.2 (¢) is acting along the axis of the column and hence this
force will produce a direct stress. :

3. The forces shown in Fig. 9.2 (d) will form a couple, whose moment will be P x e. This
couple will produce a bending stress.

Ta

"% Column is a vertical member subjected to a compressive load.

377
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Hence an eccentric* load will produce a direet stress as well as a bending stress. By
adding these two stresses algebraically, a single resultant stress can be obtained.

1 of
T

P

|
| |
! !
l !
| |
| i

HF’

|

| P

| I

| |

| I

Lo !

| I
) (b) (@) (@)
Fig. 9.2

9.3. RESULTANT STRESS WHEN A COLUMN OF RECTANGUELAR SECTION IS SUB-
JECTED TO AN ECCENTRIC LOAD

A column of rectangular section subjected to an eccentric load is shown in Fig. 9.3. Let
the load is eccentric with respect to the axis Y-Y as shown in Fig. 9.3 (b). It is mentioned in
Art. 9.2 that an eccentric load causes direct stress as well as bending stress. Let us calculate
these stresses.

Let P = Eccentric load on column
e = Fceentricity of the load
o, = Direct stress
o, = Bending stress
b = Width of column 7
d = Depth of column E
Area of column section, A = & x d

Now moment due to eccentric load P is given by,
M = Load x eccentricity

=Pxe
The direct stress (o,) is given by,
Load (P) P ,
%% hrea A A8

This stress is uniform along the cross-section of the column.

The bending stress o, due to moment at any point of the column section at a distance ¥
from the neutral axis ¥-Y is given by
M _ o

I =xy

* Eccentric load is a load whose line of action does not coincide with the axis of the column. The
accentricity of the load may be about one of the axis, or about both the axis,

DIRECT AND BENDING STRESSES 379

05=:%xy BREr)] | e |P

where I = Moment of inertia of the column section about |
. d.b* |

the neutral axis ¥-¥ = 15 i _
Substituting the value of I in equation (if), we get |
M 12 M |
o=t g X T g |
i2 l
The bending stress depends upon the value of ¥ from |

the axis Y-Y.

The bending stress at the extreme is obtained by Elevation

(a)
b
substituting y = — in the above equation.

9 C
Position
12M b 6M of load P
= —_—a X = 4 —:
BEEGR 2T T4 X
6P xe .
=t db2 (‘.' M:Pxe) Y_Eb B
6Pxe 6Pxe
=+ ==
T d.b.b Axb

(v Area=bxd=A4A)

The resultant stress at any point will be the alge-
braic sum of direct stress and bending stress.

I ¥ is taken positive on the same side of Y-Y as the ' {c)
load, then bending stress will be of the same type as the
direct stress. Here direct stress is compressive and hence
bending stress will also be compressive towards the right
of the axis Y-Y. Similarly bending stress will be tensile towards the left of the axis ¥-Y. Taking
compressive stress as positive and tensile stress as negative we can find the maximum and
minimum stress at the extremities of the section. The stress will be maximum along layer BC
and minimum along layer AD.

¥

Crmax

Fig. 9.3

Let o, = Maximum stress (i.e., stress along BC)

o, . = Minimum stress (i.e., stress along AD)

min

Then o

e = Direct stress + Bending stress

=3a, + Ty
_P 6P.c

=+

A Ab

P[ 6xe]
—|1+
A b

= Direct stress — Bending stress
=0y G

{(Here bending stress is +ve)

-{(8.1)

and

Gnu'n
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=£_§i2:££1_6“} : (9.2)
A Ab A b

These stresses are shown in Fig. 9.3 (o). The resultant stress along the width of the

column will vary by a straight line law.
If in equation (9.2), o, 15 negative then the stress along the layer AD will be tensile. If

min

is zero then there will be no tensile stress along the width of the column. If o, 1s positive

L
t}Tgﬁ there will be only compressive stress along the width of the column.
Problem 8.1. A rectangular column of width 200 mm 10 mm | 240 kN
and of thickness 150 mm carries a point load of 240 EN at an | T
eccentricity of 10 mm as shown in Fig. 9.4 (i). Determine the maxi- |
mum and minimum stresses on the section. i
Sol. Given: [
Width, b = 200 mm |
Thickness, d = 150 mm |
Ares, A=bxd |
= 200 x 150 = 30000 mm? |
Eccentric lead, . |
P =240 kN 200;mm
_ f—
= 240000 N Y]
Eccentricity, —T_ [
e=10 i 150 _'!E“_
Let O, = Maximur stress, and mm = —
O, = Minimum stress. AL |
(i) Using equation (9.1), we get Y!
1
P Gxe . .
Fnax = Z [1 * b ) —L Flzgdogrfm(t)
]
_ o0, 8x10) +
30000 200 =5.8 o
=81 +0.3) = 104 Nm%. Ams. | =10.4
(ii) Using equation {(9.2), we get 3
Fig. 9.4 (i)

_2(1_6"3) |
UminﬁA b )

_ 240000 [1_ 6 x 10
30000 200

These stresses are shown in Fig. 9.4 (ii).

Problem 9.2. If in Problem 9.1, the minimum stress on the section is given zero then
find the eccentricity of the point load of 240 kN acting on the rectangular column. Also calculate
the corresponding maximum stress on the section.

Sol. Given :

The data from Problem 9.1 is : .

b=200mm, d=150mm, P =240000N, A =30000 mm?

] = 8(1-0.3) = 5.6 N/'mm?2., Ans.

DIRECT AND BENDING STH.ESSES

33/
Minimum stress, l |
O = 0 |‘ 20G mm :l
Let ¢ = Eccentricity
Using equation (9.2), we get
P 1 Gxe
Opnin = K - b Oay = 16
240000 6xe
or =T 1=
30000 200
Gxe Gxe
1- = = i
or 500 0 or 1 560 Fig. 9.5
200
e= & 33.33 mm. Ans.

Corresponding maximum stress is obtained by using equation (9.1).
P ( 6 x e)
o =—|1+

mex A b
_ 240000 1+ 6 x 200 2
= 30000 G =8(1 + 1) = 16 N/mm’
200

The stresses are shown in Fig. 9.5.

Proble‘m 9.3. Ifin Problem 9.1, the eccentricity is given 50 mum instead of 10 mmi then
find the maximum and minimum stresses on the section. Also plot these stresses along the

width of the section.
Sol. Given :
The data from Problem 9.1 is :
b = 200 mm

4 Nimm® m\

—‘L HEOOmm-—-—F

d-= 150 mm _T_ T
P = 240000 N
A = 30000 mm?

Eccentricity,
e = 50 mm

{{) Maximum stress {(c

) 15 given by
equation {2.1) as

Fig. 9.6

240000 ( 6 x 50
1+
200

) is given by equation (9.2) as

J =81 + 1.5) = 20 N/mm2. Ans,

(i} Minimum stress (o0,,;,

5. =£(1_6xe)
HitR A b

3

T

20 Nfmm’

1
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240000 6 x b0
= 730000 ( " 200

Negative sign means tensile stress.

The stresses are plotted as shown in Fig. 9.6.

Note. From the above three problems, we have

: 2 b : ..
(i} The minimum stress is zero when e = wgg mm or 3 mm {as b = 200). This is clear from

Problem 9.2.

) = 8(1 - 1.5)=—4 N/mm? Ans.

b
(ii) The minimum stress is +ve (i.e., compressive) when e < X This is clear from Problem 9.1 in
2060 .
which ¢ = 10 mm which is less than ry (i.e., 33.33).
b
(#i#) The minimum stress is —ve (i.e., tensile) when e > I This is clear from Problem 9.3 in which

200
e = 50 mm which is more than ' (i.e., 33.33).

Problem 9.4. The line of thrust, in a compression testing specimen 18 mm diameter, is
parallel # the axis of the specimen but is displaced from it. Calculate the distance of the line of

thrust from the axis when the maximum stress is 20% greater s |P
than the mean stress on a normal section. H
Sol. Given : ;
Diameter, d = 15 mm [
Area, A= E x 15% [
[
=176.714 mm? | ~
O,y = 20% greater than mean |
120 me " |
= —— x mean stress
100 res i
= }.2 x mean stress. i
Let P = Compressive load on specimen |
e = Eccentricity
Load P
3, —-—_ o ———— 2
Mean stress Area - 176714 N/mm 15 mm
We know that moment, - -
M=Pxe
Now bending stress is given by
M_oy
I vy
M
%= . T
Maximum bending stress will be when y = = 52{ + Timax
Hence maximum bending stress is given by, ‘l‘

Oy = EL—{ x (i i] Fig. 9.7

ECT AND BENDING '
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M d
= — X =
I 2
M « d
== - -
5 ( -2 d4]
64
32 M
=
3
32Pxe
sETS (v M=Pxe)
Direct stress due to load is given by,
L PP
07 A 176714
Maximum stress = Direct stress x Bending stress
=0, + 0y
P 32Pxe
or = ————— i
Omex = 176714 T 2d? _ ~®
But C,0 = 1.2 % Mean stress (given)
r
=12 % = i) | -_F_
* 176714 - (EE) [ Mean stross - 176.714)
Equating equations {f) and (ii), we get
P 3Pxe ., P
176714 ad® T 176714
or M_ 1z2Pp P _0ap
nd® T 176714 176714 T 176.714
or 32xe _ 0.2

s TEETA {Cancelling P to both sides)

e 02xnxd® _ 0.2 xnx15°
32x176.714 32 x 176714

=0.375 mm. Ans.

Problem 9.5. A hollow rectangular column of external depth I m and external width
(_3.8 m is 10 cm thick. Calculate the maximum and minimum stress in the section of the column
if a vertical load of 200 kN is acting with an eccentricity of 15 em as shown in Fig. 9.8.

Sol. Given : '

External width, B =08m =800 mm

External depth, D =1.0m =1000 mm
Thickness of walls, f=10cm = 100 mam
Inner width, b=RB-2x100

=800 - 200 = 600 mm
Inner depth, d=D-2xt

= 1000 - 2 x 100 = 800 mm
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Area, A=BxD-bxd _ H ; Area of cross-section,
= 800 x 1000 - 600 x 800 i x
= 800000 — 480000 ; A=y D~
= 320000 mm? l :
M.O.L about ¥-¥ axis-is given by, : = (400 - 200%) = 30000 x  muw’
_ 1000 x 800° 800 x 600° —L\Aif«—/—L— Moment of inertia
T 12 T 1 T X
- = 42.66 x 10° - 14.4 x 10° i I=q D7-db
= 28.26 x 10? mm* ! x
Eccentric load, P = 200 kN = 200,000 N | = g (400%-200% =3.75 x 10° x  mm*
Eccentricity, e = 15 cm = 150 mm § i Eccentric load, P = 80 kN = 80000 N '
We know that the moment, 100 mm soo! Let e = Eccentricity when there is no tension.
M=Pxe KN .mm
= 900,000 x 150 T e 100 mm : Now direct stress, o, = £ 80000 D)
/ 2 __,%_ A 30000 x =
. = ‘300.0000 Nmm ;4—‘— 6‘)0‘“’""_’ ] We know that moment,
The bending stress is given by, ?T?rg 2 i g M=P xe=80000 x e
M o 1000 | - —— I —a _,_2_ — Now bending stress (o,) is given by
= % T
1 y f I_‘E’I ; M o
1 [~] el - X
M % | I v
%= < ‘I
¥ % : ] Mxy
Maximum bending stress will be when E o 9 =7
y = =400 100 mm Y! The hending stress will be maximum when
M D 400
gb_Tx(xéi()O) s y==rg == ==200mm Cimax
Omin
s 300000009 % 400 5 Maximum bending stress is given by, l
28.26 x 10 : . Mx (22000 M x200 Fig. 9.9
= + 0.4246 N/mm? e O = 7 =*T7
Direct stress is given by, 200000 80000 x & x 200
=TT ]
=i = * 375% 10° (i)
%= A T 320000 Fig. 9.8 " e 107
= 0.625 N/mm? : Now minimum stress is given by,
Maximum stress = 0, + 0, = 0.625 + 0.4248 : Omin = %0~ %
= 1.0496 N/mm? {Compressive). Ans. : _ 80000 80000 x e x 200
Minimum stress = 0, ~ 0, = 0.625 — 0.4246 T 30000xm 375x10% xx
= 0.2004 N/mm? (Compressive). Ans. There will be no tension if o, = 0
Problem 9.6. A short column of external diameter 40 cm and internal diameter 20 cm For no tension, we have
carries an eccentric load of 80 RN. Fi ma{ the greatest eccentricity which the load can have with- . 30000 80000 x & x 200
out producing lension on the cross-section. ‘ = -
30000x7  375x10% x=n

Sol. Given :
External dia.,
Internal dia.,

80000 80000 x e x 200

D =40 em = 400 mm
30000xx  8375x10% xx

d =20 cm = 200 mm

or
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375 x 10° x u x 80000
~ 30000 x 1 x 0000 x 200

Problem 9.9. If in the Problem 9.6, the eccentricity of the point load is given as 150 mm,
. then calculute the moaximum and minimum stress in the section.

Sol. Given:
lq———— 400 mm "’l
£

The data from Problem 9.6 is :
P = 80000 N, A = 30000 x x mm?
Moment of inertia, [=3.75x 108 x = mm? e

or e = 62.5 mm. Ans.

D = 400 mm, d = 200 mm

Eccentricity, e = 150 mm T

N . P 80000 o
ow direct stress, o, = e ——*—30000 e max
= (.8488 N/mm? J-

We know that moment,
M = P x e = 80000 x 150
= 12000000 Nmm
Maximum bending stress is given by,
M XY _ 12000000 x (= 200)
ST 315x10%xn
= = 2.037 N/mm?
Maximum stress =0, + 0y
= 0.8488 + 2.037 = 2.8858 N/mm? (Compressive). Ans.
=0y — T
= (.8488 - 2.037 = — 1.1882 N'mm? (Tensile). Ans.
The stress distribution across the width is shown in Fig. 9.10.

Fig. 9.10

g, (" ¥ = =200 mm)

Minimum stress

9.4. RESULTANT STRESS WHEN A COLUMN OF RECTANGULAR SECTION IS SUB-
JECTED TO A LOAD WHICH IS ECCENTRIC TO BOTH AXES

A column of rectangular section ABCD, subjected to a load which is eccentric to both
axes, is shown in Fig. 9.11.
Let P = Eccentric load on column

e, = Eccentricity of load about X-X axis D Yli T c
e, = Eccentricity of load about ¥-Y axis ! Boa poit T
b = Width of column i‘_ y : d
d = Depth of column e [T 250U B I
o, = Direct stress ‘ X Oi X
o, = Bending stress due to eccentricity e, |
ay, = Bending stress due to eccentricity e, A ]

M, = Moment of load about X-X axis
=Pxe

My = Moment of load about Y-Y axis
=P x ey

Y|Plan B
e ——

Fig. 9.11

e
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I, = Moment of inertia about X-X axis

bd?

12
I by = Moment of inertia about Y-Y axis
L@t
12 :

Now the eccentric load is equivalent to a central load P, to i i
, together with a bend
P x e, about Y-Y and a bending moment P x e_ about X-X. ing moment

{i} The direct stress (v,) is given by,

L

) A WD)
(it} The bending stress due to eccentricity e is given by,

Oy =

_Myxx=Per,xx

G, = . _ ..
by Iyy Iyy (. My =Bx ey} (i)
. . b b
In the above equation x varies from — 3 to + 3 —_

(#ii) The bending stress due to eccentricity e, is given by,

_Mx)(y Pxexxy
be" I; = I
xx

xx

In the above equation, y varies from — g to + g

The resultant stress at any point on the section
=0y 20y, x

A I Y | : -.(9.3)

(i) At the point C, the co-ordi .
— P , the co-ordinates x and y are positive hence the resultant stress will be

{ii)} At the point A, the co-ordi i
ill be minimum[:) rdinates x and y are negative and hence the resultant stress

(iii) At the point B, x is +ve and y is —ve and hence resultant stress
P Myx M.y

AT, I,
(iv) At the point D, x is —ve and y is +ve and hence resultant stress

. Problem 9.8.. A short column of rectangular cross-section 80 mm by 60 mm carries a
oad of 49 kN at a point 2_?0 mm from the longer side and 35 mm from the shorter side. Determine
the maximum compressive and tensile stresses in the section.
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Sol. Given : ¥

Df<-«—~w—~4-——80 mm———qc

Width, b =80 mm
Depth, d =60 mm T oas |1 Shorir
Area, A =80 x 60 = 4800 mm? M 30 mm

Point load, P = 40 kN = 40000 N 60 mm 0 L\'?.! 35 mm—»i_
Eccentricity of load about X-X axis, X """—ria ———————— "

e =10 mm [
Eccentricity of load about Y-Y axis, |

e, = b mm L 4 [

Moment of load about X-X axis,
M, =P xe_ =40000x 10
= 400000 Nmm
Moment of load about Y-¥ axis,
M:p =Px g, = 40000 x 5 = 200000 Nmm
Moment of inertia about X-X axis,

XX

1
L.=15% 80 x.60% = 1440000 mm?

1
Similarly, I,, = 75 % 60 % 80° = 2560000 mm*

(i) The maximum compressive stress will be at point C where x and y are positive. The
value of x = 40 mm and y = 30 mm at C.
Hence maximum compressive stress is given by equation (9.3)

= B‘PM}’ ol +WM': Xy

A I ¥ L
40000 . 200000 x 40 . 400000 x 30
4800 2560000 1440000

=8.33 + 3.125 + 8.33 = 19.785 N/mm?, Ans.

(if) The maximum tensile stress will be at point A where x = ~ 40 mm and ¥ = ~ 30 mm.
Henee using equation {9.3), we get
P M, xx N M, xy

Resultant stress at =—+
A I I,

Y¥
_ 40000 200000 x 40 _ 400000 x 30
T 74800 2560000 1440000
= 8.33 - 3.125 - 8.33 =~ 3,125 N/mm?. Ans.

Problem 9.9. A column is rectangular in cross-section of 300 mm x 400 mm in dimen-
- sions. The column carries an eccentric point load of 360 kN on one diagonal at a distance of
quarter diagonal length from a corner. Calculate the stresses at all four corners. Draw stress
distribution diagrams for any two adjacent sides. (Bhavnagar University, Feb, 1992}

Sol. Given :

Width, b = 300 mm

Depth, d = 400 mm

(Taking +ve sigi)
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Area, A=5bxd=2300x400 |<— 300 mm —>|
=12 % 10* mm? D Y| C
Fecentric load, P = 360 kN = 360000 N K3 |
The eccentric load is acting at point E, where , [
distance EC = one quarter of diagonal AC. ey
: 75_?
Now diagonal AC= \'}3002 +400% =500 | 1008
) P A M
IACAB, tanf=3 m 0|
!
3 . 4 l
cosB_sand sm8—5 i
1
Also OF = EC = ~ of AC N !
4 A I B
= i x 500 = 125 mm Flg. 9.12 (@)
. . 4
And ex=EF=OEsm9=125x§=100mm
3

ey:OF:OEcose=125x—5—=75mm

Moment of load about x- axis,
M, =P =xe, =360000x 100 = 36000000 Nmm
Moment of load about y-y axis,
My =Px e, = 360000 x 75
= 27000000 Nmm

1
Also I = x 300 x 400° = 16 x 108 mm*

=12
1
. 3. 8 4
Iw‘ 15 x 400 x 3002 = 9 x 10° mm
The resultant stress at any point is given by equation (9.3) as
P M,xx M
Resultant stress =+ } + -mffl

xy

(@) Resultont stress at point C
At point €, x = 150 mm and y = 200 m
Resultant stress at C

P M, x150 M, x200

= +

A I, I.

360000 27000000 x 150 36000000 x 200
T 19 10! 2% 108 16 x 10°

3+ 4.5+ 4.5 N/mm?
= 12 N/mm? (compressive). Ans.

1}

Load
point
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(ii) Resultant stress at point B
At point B,x = 150 mm and y =- 200 mm
P M, x150 . M, = (- 200)

=%
Resultant stress at B 4 I, 16 % 108

360,000 27000000 x 150 36000000 x 200

T 12x10F T 9x10° 16 % 10°
=3+45-45
= 3 N/mm? (compressive). Ans.
(iii) Resultant stress at point A
At point A, x = — 150 mm and y = — 200 mm
Resultant stress at point A

P My x (- 150) . M, x(--200)

=—+

A 1, I,
_ 360000 27000000 x 150 _ 36000000 x 200
12 x 10t ax 10° 16 x 10°
=3-45-45

==—6 N/mm? (Tensile). Ans.
(iv) Resultant stress at point D
At point D, x = - 150 mm and y = 200 mm
Resgultant stress at point D

P M,(~150) M, x200
=—+ +

A I, I,

360000 27000000 x 150 36000000 x 200
T 12 x 10* 9% 108 16 x 10°
=3-45+45

= 3 N'mm? (compressive). Ans.

Stress distribution for AB and BC (i.e., two adjacent sides)

Fig. 9.12 (b) shows the stress distribution along two adjacent sides (i.e., AB and BC).
At point A, resultant stress is 6 N/mm? (tensile) whereas at point B, the resultant stress is
3 N/mm? (compressive). Take AE = 6 N/mm? and BF = 3 N/mm? Join F to F.

For side BC, the resultant stress at B is 3 N/mm? (compressive) whereas at point C the

resultant stress is 12 N/mm? (compressive).
Take BH =~ 3 N/mm? (compressive) and CG = 12 N/mm? {compressive).
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|<—12 N/mm2—>|G

-~

A B B H
E —bi.'i N.’mm2|<—
F
4
& N/mm®
L B8
A

ia Nmm®

Fig. 9.12 {&)

Problem 9.10. A masonry pierof Smx 4 m
supports a vertical load of 80 EN as shown in

F‘

Fig. 9.13. R

Y!(—2 m ——
|<—4 m—«—Lw--—>

(o) Find the stresses developed at each cor- T
ner of the pier.
(&) What aedditional load should be placed

at the centre of the pier, so that there is no tension I

anywhere in the pier section ? %
(c) What are the stresses af the corners with

the additional load in the centre ?
Sol. Given : j

Load point

Width b=4m
Depth, d=3m
- Area, A=4x3=12 mm?
Point load, P =80 kN
Eccentricity of load about X-X axis,
e.=05m
Eccentricity of load about Y-¥ axis,
g, = 1.0m
Moment of load about X-X axis,
M, =P xe =80x05=40kNm
Similarly, My =Px e, = 80 x 1.0 = 80 kNm
Moment of inertia about X-X axis,

1
Im=ﬁx4x33=9mm4

Fig. 9.13

>
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i
. I 3_ 4
Similarly, Iyy =12 X 3 x4 =16 m*

{a) Stresses developed at each corner of the pier
The resultant stress at any point is given by equation (9.3).
Myxx Mexy

I, I

% wx .
(i) At point A, x = — 2.0 m and y = — 1.5 m. Hence resultant stress at A {i.e, 0,)is
obtained by substituting these values in the above equation (i).
5 8_0+80x(—2.0)+40x(—1.5} :
4712 16 9
=6.66 - 10 - 6.66
= — 10 kN/m? {Tensile). Ans.
(i) A point B, x = 2.0 m and y = — 1.5 m. Hence resultant stress at B (i.e., op) is obtained
by substituting these values in equation (.
80 80x20 d4d0x(-15)
Og=——+ +
12 16 9
=6.66 + 10 - 6.66 -
= 10 kN/m? (Compressive). Ans.
{#ii) At point C, x = 2.0 m and ¥ = 1.5 m. Hence resultant stress at C {i.e., o} is given by,
80 B80x2.0 40x1.5
O~= — + +
¢7 12 16 g
=6.66 + 10 + 6.66
= 23.38 kN/m? (Compressive). Ans.
(iv) At point D, x = — 2.0 m and y = 1.5 m. Hence resultant stress at D (i.e., o) is given by,

80 BOx{-2.0) 40x1.56
+ +

AT 16 9
= 6.66 — 10 + 6.66

=+ 3.38 kN/m? (Compressive). Ans.
(5) Additional load of the centre of the pier, so that there is no tension anywhere in the
pler section.
Let W = Additional load (in kN) placed at the centre for no tension anywhere in the
pier section.
The above load is compressive and will cause a compressive stress

Hence resultant stress = §+

= Sy KN (- A=l2m?

As this load is placed at the centre, it will produce a uniform compressive stress
across the section of the pier. But we know that there is tensile stress at point A having
magnitude = 10 kN/m?2, Hence the compressive stress due to load W should be equal fo
tensile stress at A.

w_ 10
12
or : W=10x12 =120 kN. Ans.
(c) Stresses at the corners with the additional load at the centre
W 120
Stress due to additional load = —=—_- = 10 kN/m? (Compressive)

A 12

-3

DIRECT AND BENDING STRESSES o 303

This stress is uniform across the cross-section of the pier. Hence to find the stresses at
the corners with this additional load, we must add the stress 10 kN/m? in each value of the
stresses already existing in the corners.

StressatA, 0, =- 10+ 10=0. Ans.
y _Similarly, o, = 10 + 10 = 20 kN/m?%, Ans.
O = 23.33 + 10 = 33.33 kN/m® Ans.
and op = 3.38 + 10 = 13.33 kN/m?%.  Ans.

9.5. RESULTANT STRESS FOR UNSYMMETRICAL COLUMNS WITH ECCENTRIC
LOADING

In case of unsymmetrical columns which are subjected to eccentric loading, first the
centre of gravity (i.e., C.G.) of the unsymmetrical section is determined. Then the moment of"
inertia of the section about the axis passing through the C.G. is caleulated. After that the
distances between the corners of the section and its C.G. is obtained. By using the values of the
moment of inertia and distances of the corner from the C.G. of the section, the stresses on the
corners are then determined. .

Problem 9.11. A short column has a square section 300 mm x 300 mm with o square
hole of 150 mm = 160 mm as shown in Fig. 9.14. It carries an eccentric load of 1800 kN,
located as shown in the figure. Determine the maximum compressive and tensile stress across
the section.

T /H .

L tﬁﬁ,‘iﬁs%fm |

X »—%LFLZ t507mm
/ y -

A
vl
Fig. 9.14
Sol. Given :
Dimension of column = 300 mm x 300 mm
Dimension of hole = 150 mm x 150 mm
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Area of section, © A = 300 x 300 — 150 x 150
= 90000 ~ 22500
= 67500 mm?
Point load, P = 1800 kN = 1800000 N
The point load is acting on Y-Y axis. The given section is also symmetrical about
Y.Y axis. But it is unsymmetrical to X-X axis. Let us first find the position of X-X axis. For
this, find the distance of C.G. from the bottom line AB. Let ¥ is the distance of the C.G. of
the section from the bottom line AB.

Aryy + Asys
(4 + A;)
where A; = Area of outer square = 300 x 300 = 90000 mm?
¥, = Distance of C.G. of outer square from line AB = 150 mm
A, = Area of square hole = 150 x 150 = 22500 mm? = - 22500 mm?
(~ve sign due to cut out portion)

Then ¥y=

150
¥, = Distance of C.G. of square hole from line AB = 100 + -5 = 175 mm

90000 x 150 - 22500 x 175
(90000 - 22500)

_ 13500000 - 3937500
- 67500
.. The axis X-X lies at a distance 141.66 mm from line AB or at a distance of 300
—'141,66.= 158.34 ram from line CD.

The load is unsymmetrical to X-X axis.
Hence eccentricity, e = 158.34 — (60 + 30) = 78.34 mm
Moment about X-X axis,
M =P x e =1800000 x 78.34
= 14101200 Nmm
Now let us calculate the moment of inertia of the section about X-X axis.
- Let I; = M.O.I of outer square ABCD about X-X axis.

= M.Q.I. of ABCD about an axis parallel to X-X and passing through
its C.G. + Area of ARCD (Distance of C.G. of ABCD from X-X axis)?

300 x 300°

T12

= 675000000 + 6260004 = 681260004 mm*
I, = M.O.L of square hole about X-X axis

=M.0Q.L of hole about its C.G. + Area of hole (Distance of C.G. of
hole from X-X)*

¥y =

= 141.66 mm

+ 300 x 300 x (158.34 — 150)*

_ 150 x 1507
e T2
= 42187500 + 25010001 = 67197501 mm?*

= 150 x 1500175 — 141.66)*
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Net moment of inertia of the section about X-X axis is given by
I=I -1,
= 681260004 —~ 67197501 = 614062503 mm*
Now direct stress is given by,
_ P _ 1800000

%= 1= ers00 - 26.66 N/mm?
This stress is uniform across the section.
Bending stress is given by,
M o
Ty
or g, = MIX u (i)

The maximum value of y from X-X axis is 158.34 mm. This is the distance of the line CD
from X-X axis. As load is acting above the X-X axis, hence the bending stress will be compressive
on the edge CD. This stress is obtained by substituting y = 158.84 mm in equation {).

Bending stress at the edge CD due to moment

_ M x168.34 141012000 x 158.34
" 614062503 614062503
= 36.26 N/mm? (Compressive).
Bending stress at the edge AB will be tensile. The distance of AB from X-X is 141.66 mm,

Bending stress at the edge AB due to moment will be cbtained by substituting y =
- 141.66 in equation (i).
Bending stress at the edge AB due to moment

M x 141.66 141012000 x 141.66 )
== 1 777 Giaoeaso3  -remsile)
=— 32.529 N/mm?
Resultant stress at the edge CD
=0, + G,
= 26.66 + 36.66 = 63.32 N/mm? (Compressive). Ans.
and resultant stress at the edge AB
= 26.66 — 32.529 = — 5.869 (Tensile). Ans.

Problem 9.12. A short column has a rectangular section 160 mm x 200 mm with a
eircular hole of 80 mm dicmeter as shown in Fig. 9,15, It carries an eccentric load of 100 kN, at
a point as shown in the figure. Determine the stresses at the four corners of the section.

Sol. Given :
Width, B =160 mm
Depth, D =200 mm
Area of rectangular ABCD,
A, =160 x 200 = 32000 mm?
Dia. of hole, d = 80 mm

Area of hole, A, = Z— % 802 = 5026.5 mm?
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Y
14— 83.72 mm—m

D

X
A
Fig. 9.15
Area of section, A=A, - A, = 32000~ 5026.6
= 26973.5 mm?

Eccentric load, P=100kN =100 x 163 N
The given section is symmetrical about X-X axis. But it is unsymmetrical to ¥-¥ axis.
Let us first find the position of ¥-¥ axis. For this find the distance of the C.G. of the
section from the reference line AD. Let ¥ is the distance of the C.G. of the section from the
reference line AD. '
_ A+ Agxy
Then x = —m

where A, = Area of rectangle ABCD = 32000 mm?
x, = Distance of C.G. of rectangle ABCD from reference line AD = 80 mm
A, = Area of hole = - 5026.5 mm? {-ve sign due to cut out portion}
x, = Distance of C.G. of hole from line AD = 60 mm
32000 x 80 - 5026.5 = 60
(32000 - 5026.5}

_ 2560000 - 301590 _ 83.73 mm.
26973.5
Hence the axis ¥-¥ will lie at a distance of 83,73 mm from the line AD or at & distance of
160 — 83.73 = 76.27 mm from line BC as shown in Fig. 9.15.
The load is unsymmetrical to X-X axis as well as ¥-Y axis.
Eccentricity of load about X-X axis,
¢, = b0 mm

x=
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Eccentricity of load about Y-Y axis,
e, = 83.73 - 60 = 23.73 mm
Moment of eccentric load about X-X axis,
M =Px e,
=100 x 10% x 50 = 5 x 105 Nmm W{£)
Moment of eccentric load about Y-Y axis,
My =P x 2,
=100 x 10° x 23.73
=2.373 x 108 Nmm i)
Now find the moment of inertia of the section about X-X axis and ¥-Y axis.
Let 1, = MLO.L of rectangle ABCD about X-X axis

= M.O.L of rectangle about its C.G. + Area of rectangle
(Distance of C.G. of ABCD from X-X axis)?

160 x 200°

12
= 1.066 x 10% mm*

I, = M.O.L of the hole about XX axis

+ 160 x 200 (0)

= 6—’; x 80% = 2.01 x 105 mm*

The moment of inertia of the section about X-X is given by

I, = Ixxl - Iﬂz
= 1.066 x 10% - 2.01 x 108
= 104.59 x 10° mm* . w(EEE}
Similarly, I,= T ()

where 1, =MOI of ABCD about ¥-Y axis
= M.O.L of ABCD about its C.G. + A, (Distance of C.G. of ABCD from Y-¥3

o033
- ?E’QM’i‘zi& +200 x 160 (83.73 - 80)?

6.826 x 107 + 4.45 x 10°

= 687.05 x 10° mm*

= M.O.L of hole about Y-Y axis

= M.O.L of hole about its C.G. + A, (Distance of its C.G. from Y-Y)?

and ! e

I

=51 * 80% + 5026.5 (83.73 - 602

=2.01 % 10% + 2.83 x 108

=4.84x 106 ,
Hence substituting these values in equation (iv), we get
= 687.05 x 10°% - 4.84 x 108
= 63.865 x 10° mm*

I)’)’
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The resultant stress at any point is obtained from equation (9.3).
p M, x M.
Resultant stress = 1t —;—— * —I"——y
¥ xx

are taken to be positive on the same side of X-X and Y-Y as the

The values of x and ¥
sitive. At point B, x and y are both _

- load. Here O is the origin. Hence at point D, x and y are po
negative, At point C, z is negative whereas ¥ is positive.
At point A, x is positive whereas y is negative.
(i) At point A, x = 83.73 mm and y = — 100 mm. Hence resultant stress at A,

P M,x8373 M, x(-100)
GA=X+ 7 + 7

¥y b

_ 100000  2.373x 10°x 8373 5x 10% x 100
T 269735 63.865x10° 104.56 x 10°
=3.707 + 8.111 - 4.781

= 2,037 N‘mm?. Ans.
(i) At point B, x = - 76.27 and y = — 100 mm. Hence resultant stress at B,

P M, x(-762D) M, x(-100)
GB=Z+T+ Ixx

¥y

100000 2.373x10° x 76.27 _5x 10°x 100
T 269735  63.865x10° 104.56 x 10°

=3.707 - 2.833 - 4.781
= —3.907 N/mm? Ans.
(iii} At point C, x = — 76.27 and y = 100 mm. Hence resultant stress at C,
P M, x(- 7627) M, x 100
GC = Z IJE_‘Y * III
=3.707 - 2.833 + 4,781
= 5.655 N/mm?2, Ans.
(fv) At point 12, x = 83.73 and y = 100 mm. Hence resultant stress at D,
o £+ My(83-73) . M, % 100
DT A I, I,
= 3.707 + 3.111 + 4.781
= 11.599 N/mm?2 Ans.

+

9.6.. MIDDLE THIRD RULE FOR RECTANGULAR SECTIONS [i.e., KERNEL OF
SECTION]

The cement concrete columns are weak in tension. Hence the load must be applied on
these columns in such a way that there is no tensile stress anywhere in the seetion. But when
an eccentric load is acting on a column, it produces direct stress as well as bending stress. The
resultant stress at any point in the section is the algebraic sum of the direct stress and bending

stress.
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Consider a rectangular section of width ‘4’ Y
and depth ‘d’ as shown in Fig. 9.16. Let this sec- |L4 +b ’E
tion is subjected to a load which is eccentric to |
the axis Y-Y. i

Let P = Eccentric load acting on the | s

column D A{—LI
o ._._,_._,% d d
e = Eccentricity of the load A : cta | Tx

A = Area of the section. b,'a.E:éa.b;a ¥
bi3—
vl

Then from equation (9.2), we have the
P 6xe .
— (1 - ] LD Fig. 9.16

|

minimum stress as
0'miﬂ, = A b

is —ve, then stress will be tensile. Butifo

nin

Ifo

min
no tensile stress along the width of the column:
Hence for no tensile stress along the width of the column,

is zero (or positive} then there will be

Upin 20
or %(1—628)20 ar (1—628)20
or laﬁze or gze
or es% _ (9.4}

The above result shows that the eccentricity ‘e’ must be less than or equal to -g Hence

- b
th is = ; i i
@ greatfast eccentricity of the load is G from the axis ¥.Y. Hence if the load is applied at any

: b
distance less than e from the axis, on any side of the axis Y-Y, the stresses are wholly
compressive. Hence the range within which the load can be applied so as not t d
tensile stress, is within the middle third of the base. v oo prodies a

. Similarly: if the load }}ad been eccentric with respect to the axis X-X, the condition that
tensile stress will not occur is when the eccentricity of the load with respect to this axis X-X

: d
does not exceed i Hence the range within which the load may be applied is within the middle

third of the depth.

] .If it is possiblle that the load is likely to be eccentric about both the axis X-X and Y-V, the
condition that tensile stress will not occur is when the load is applied anywhere within the

. b
rhombus ABCD whose diagonals are AC = 3 and BD = % as shown in Fig. 9.16. This figure

ABCD within whic_h the load may be applied anywhere so as not to produce tensile stress in
1:iny part of the er}tlre‘ rectangular section, is called the Core or Kernel of the section. Hence the
ernel of the section is the area within which the line of action of the eccentric load P must cut
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the cross-section if the stress is not to become tensile in any part of the entire rectangular
section.
Note. (i) If direct stress (¢,) is equal to bending stress (a,), then the tensile stress will be zero.
(i2) If the direct stress (o) is more than bending stress {(g,), then the stress throughout the
section will be compressive.
{ii1) If the direct stress (o) is less than bending stress (o;), then there will be tensile stress.
(iv) Hence for no tensile stress, o, = ¢,

9.7. MIDDLE QUARTER RULE FOR CIRCULAR SECTIONS [i.c., KERNEL OF
SECTION]

Consider a circular section of diameter ‘d’ as shown
in Fig. 9.17. Let this section is subjected to a load which is
eccentric to the axis ¥-Y. '

Let P = Eccentric load

e = Eccentricity of the load

A = Area of the section = %dz X
Now direct stress,
P P 4P
AR
od T
4

Moment, M=Pxe
Bending stress (o,) is given by,

M o Mxy
T 7 or o= —
Maximum bending stress will be when
d
yE£5

Maximum bending stress is given by,

4 —

Prexd
M[d)_ *€X3  82xPxe

Gb = —[—- x| x 5 El d4 J-[da
64
Now minimum stress is given by,
Cpain =0~ %
_ 4P 32F xe
el ad?
For no tensile stress, o, =0
4P 32Pxe 4pr 3d
or nd—2— 5 =0 or > [1—-d—]20
or 1—8xe?_0 or 128xe or es—cE ...(9.5)
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The above result shows that the eccentricity ‘e’ must be less than or equal to g It means

that the load can be eccentric, on any side of the centre of the circle, by an amount equal to %
Thus, if the line of action of the Ioad is within a circle of diameter equal to one-fourth of the

main circle as shown in Fig. 9.17, then the stress will be compressive throughout the circular
gection.

9.8. KERNEL OF HOLLOW CIRCULAR SECTION (OR VALUE OF ECCENTRICITY
FOR HOLLOW CIRCULAR SECTION) :
Let Dy = External diameter, and
D, = Internal diameter
P = Eccentric load
e = Eceentricity of the load
A = Area of section

v
=, [DE-D21

M = Moment due to eccentric load P=P xe
Z = Section modulus

L
.ym(DC
500 P ., Dy
e [ o)
L2
T
= ﬁ [D,* - DA
Now direct stress (o) is given hy
o = % D)
The direct stress is compressive and uniform throtghout the section.
Bending stress {o,) is given by ' o
M o,
Ty
g, = —nf—[- XY= -ni[-
0
Y
= ;nzé ['.' §= Z) (EL)

The bending stress may be tensile or compressive. The resultant stress at any point is
the algebraic sum of direct stress-amd bending stress. There will be no tensile stress at any
point if the bending stress is less than or equal to direct stress at that point.



STRENGTH OF MATERIALS
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Hence for no tensile stress,
Bending stress = Direct stress
or Ty & O . ‘ )
Substituting the values of o, and o, from equations (7} and (it}, we get.
M - P
Z A
Pxe P (- M=Pxe)
"Z A
.1 {cancelling P to both sides)
o Z°A
zZ
or es ...(9.6)
i 4 4
D,* - D,
_ 32D, (Do i
21D,* - 7
L 4n (D« DD, - D
TaD, (D - D)
(0.7

1o 2
= aD, (D, +D7)

The above result shows that the eccentricity ‘¢ must be less than or equal to
(D02 + Diz)/(SDO). It means that the load can be eccentric, on any side of the centre of the

circle, by an amount equal to {
a circle of diameter equal to (D,
D2+ D2

Diameter of kernel =
lameter o 1D,

D2+ D?’)/(SDO}. Thus, if the line of action of the load is within
8+ Dii)/(wo), then the stress will be compressive throughout.

9.9. KERNEL OF HOLLOW RECTANGULAR SECTION (OR VALUE OF ECCENT-

RICITY FOR HOLLOW RECTANGULAR SECTION}

Refer to Fig. 9.17 (a). Y| :
. jg——B - ]
Let B = Outer width of rectangular section ]

D = Outer depth

b = Internal width
d = Internal depth
A = Area of section I

b-—
f /////////////;{E///////////////

= B b4 D - b X d ;
BD®  bd? :

R TIET) /////////////AIV/////////////
_b - i
y max 2 Y!

Fig. 9.17 (&)

o]
g ———]

=l
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I

Zxx = X
yma.t
Dbt
12 7 12) Bp'_pd?
N D/2 B 6D
DB®  db® .
I 19 T 1o —_—
Similarly, z, = xw - 123/2 12 _DB GBdb

For no tensile stress at any section, the value of ¢ is given by equation (9.6).

Pl

—_ Z_'fx d
e = A ar Ex = A an ey =
(BD® - bd¥)
or e = 60 = (BD® - bd”)
= (BD - bd} 6D(BD - bd)
DB® _ dp®
6B DB . db*
and e = =
Y {(BD-bd) 6B(RD - bd)

..(9.8)

.[9.8 (AN

It means that the load can be eccentric on either side of the geometrical axis by an

DB® - di?
6B(BD - bd)

(BD? - bd®)
6D(BD - bd)

amount equal to

along x-axis and y-axis respectively.

Problem 9.18. Draw neat sketches of kernel of the following cross-sections :

(2) Rectangular section 200 mm x 300 mm

(ii) Hollow circular cylinder with external dia = 300 mm and thickness = 50 mm

(ifi) Square with 400 em?® Area.

Sol. Given :

(i) Rectangular Section
B =200 mm
D = 300 mm

Value of @ for no tensile stress along width is given by
equation (9.4) as

Hence take OA = 0C = 33.33 cm
The value of ‘¢’ for no tensile stress along the depth is
given hy,
esz =g = cm

Hence take OD = OB = 100 ¢cm.

/

8l

.

]
\“\%\:&d

i

i

|

(Bhavnagar University, Feb. 1992)

- 200 Mmoo

300 mm




" gircle is the kernel of the hollow circular section of ex-
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Now join 4 toB, B to C, Cto D and D to A. The figure ABCD represents the kernel of the

. given rectangular section as shown in Fig. 9.18.

(ii) Kernel for Hollow Circular Sgction

Given :
External dia., Dy=300m
Thickness, t = B0 mm

Internal dia., D;=D,-2x¢
=300-2x50=200mm

For hollow cylindﬁcal section, for no tensile
stress, the value of e is given by equation (9.7) as

1
= = 2 2
¢ gpp = Do’ + DY)

1
=
8x 300
1
- —
2400
- 130000
2400

Taking O as centre and radius equal to 54.16 mm
- (or dia. = 2 x 54.16 = 108.32 mm) draw a circle. This -

{3007 + 200%)

(90000 + 400007

= 54.16 mm

ternal dia. = 300 mm and internal dia. = 200 mn, as
shown in Fig. 9.18.

(zif) Kem:el for Square Section
Given :
Area = 400 cm?

One $ide of square = 400 =20 cm
For no tensile stress, the value of ‘¢’ for the square

" section is given by equation (9.4} as

s 20 20/3 cm
esSlde [BorD]s?s?).SScm R

P ¥
¥

Hence take DA =0C=0B=0D =333 cm K
Join ABCDA as shown in Fig. 9.20. Then ABCD is Fig. 9.20
the kernel of given square section.

Problem 9.14. Draw neat sketch of kernel of a hollow rectangulor section of ouler cross-

" section 300 mm x 200 mm cnd inner cross-section 150 mm x 100 mm.

Sol. Given :
Quter rectangular section, B = 300 mm, D = 200 mm
Inner rectangular section, & = 150 mm and d = 100 mm.

For no tensile stress the value of ‘¢’ along x-axis and aleng y-axis are given by equations
{9.8) and (9.8 A) respectively.
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Using equation (9.8), we get
. = (BD® - bd?)
¥ 8D(BD - bd) )
_ (300 x200° - 150 x 100*) _ 100° x (2400 - 150)
T 6% 2000300 x 200 — 150 x 100) 12 x 1003 x (6 - 1.5)

2250
= ""'“r w45 = 41.67 mm

Hence take OA = OC = 41.67 mm in Fig. 9.21
Using equation (9.8 A}, we get

. (DB? - db%)
¥ Y.
6B(BD ~ bd) 500
(200 % 300% - 100 x 150%) fe———-—150 mm ————»|
= Bx 300(300 x 200 — 150 x 100) Y Y,
_100°(5400 - 337.5) | 200 mm
6x3x10%6-1.5) e ..%_ —
X w0p] X
5062.5 mm
= =62.5 mm
18x45 i 4
Hence take OD = OB = 62.5 mm in I //Ii/ 7
Fig. 9.21. ‘ |
Now join A to B, BtoC,CtoDand D Y
to A. The figure ABCD represents the kernel of Fig. 9.21
the given hollow rectangular section.
HIGHLIGHTS

1. The axial toad produces direct stress (c,).

2. BEccentric load produces direct stress as well as bending stress (o, ).

3. The maximum and minimum stress at any point in a section which is subjected to a load which
is eccentric to Y-Y axis is given by,

- O, = Direct stress + Bending stress

- (1 + bx e} ...For a rectangular section
A &
and d,;, = Direct stress — Bending stress

= % [1 .5 ; e] » ...For a rectangular section

where P = Eccentric load
A = Area of secticn
e = Eccentricity
b = Width of the section.
4. If g, = 0, the tensile stress will be zero across the section.
5. Ifg;>0, there will be no tensile stress across the section.
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6. If o, < g, there will be tensile stress across the section.
7. The resultant stress at any point when a syminetrical column section is subjected to a load
which is eccentric to both the axis, is given by,

P M}’xx Mx-y

&‘H

P = Eccentrie load
A = Area of the section
M, = Moment of load about Y-Y axis
Iyy = Moment of inertia about Y-V axis
M, and I_, = Moment and moment of inertia about X-X axis respectively.
The values of x and ¥ are positive on the same side on which load is acting. )

8. For unsymmetrical sections, subjected to eccentric load, first of ali the C.G. of the section is
determined. Then moment of inertia of the section about an axis passing through the C.G. is
obtained. After that stresses are obtained.

9. For a rectangular section, there will be no tensﬂe stress if the load is on either axis within the
middle third of the section.

10. For a circular section of diameter ‘d’, there will be no tensile stress if the load lies in a circle of

where

. d : )
diameter 1 with centre O of the main circular section. This is known as ‘middle quarter rule for

circular sections’.

EE. For no tensile stress, the value of ecceniricity e is given by
d

es B ...For circular section

8

1
= —Sﬁ D2Z+D3 ...For hotlow circular section with I, as

external dia. and D, as internal dia.

b
g and % ...For rectangular section
One side of square )
s ..For square section
(BD* - bd®)

e = SDBD 5 ...For hollow rectangular section with B and I as outer
width and depth and b and & as inner width and depth

. {DB® - dp®)

v = 6B(BD - bd)’

EXERCISE 9

(A) Theoretical Questions
What do you mean by direct stress and bending stress ?
2. Prove that an eccentric load causes a direct stress as well as bending stress.

3. Find an expression for the maximum and minimum stresses when a rectangular column is
subjected to a load which is eccentric to Y-Y axis.

i
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4.

7.

®

Prove that for rectangular section subjected to eccentric load, the maximum and minimum stresses
are given by :

Gmux:g(l-'-%g) and Omin = %(1—%8')
where P = Eccentric load,
A = Area of the system,
b = Width of section,
and e = Eccentricity.
How will you find the maximum and minimum stresses at the base of a symmeirical column,
when it is subjected to load which is eccentric to both axis ?
Find and expression for the maximum and minimum stresses at the base of an unsymmetrical
column which is subjected to an eccentric load.
What do you mean by the following terms :
(i) Middle third rule for rectangular sections, and
(i7) Middle quarter rule for circular sections.
Prove that for no tension at the base of a short column :
(i) of rectangular section, the iine of action of the load should be within the middle third, and
(ii) of circular section, the line of action of the load should be within the middle quarter.
Draw a neat sketches of Kernel of the following cross-sections :
(i) Rectangular 200 mm x 300 mm |
(i) Hollow circular cylinder with external dia. = 300 mm, thickness = 50 mm.
(iii} Square with 400 cm? area.’ (Bhavnagar University, Feb. 1992)

(B) Numerical Problems

A rectangular column of width 120 mm and of thickness 100 mm carries a point load of 120 kN
at an eccentricity of 10 mm. Determine the maximum and minimum stresses at the base of the
column. [Ans. 15 N/imm?2, 5 Nimm2}

If in the above problem, the minimum stress at the base of the section is given as zero then find
the eecentricity of the point load of 120 kN acting on the rectangular section. Also ealculate the
corresponding maximum stress on the section. [Ans. 20 mm, 20 N/mm?2]
Ifin Q. 1, the eccentricity is given as 30 mum, then find the maximum and minimum stress on the
section. Also plot these stress along the width of the section. [Ans. - 5 N/mm?, 25 N/mm?)
In a tension specimen 13 mm in a diameter the line of pull is parallel to the axis of the specimen
but is displaced from it. Determine the distance of the line of pull from the axis, when the maxi-
mum stress is 15% greater than the mean stress on a section normal to the axis.

[Ans. 0.25 mm]

A hollow rectangular column is having external and internal dimensions as 120 cm deep x 80 cm
wide and 90 cm deep x 50 em wide respectively. A vertical load of 200 kN is transmitted in the
vertical plane bisecting 120 cm side and at an eccentricity of 10 cm from the geometric axis of the
section. Calculate the maximum and minimum stresses in the section.

[Ans. 0.61 N/mm? and 0.17 N/mm?]
A short column of diameter 40 cm carries an eccentric load of 80 kN. Find the greatest eccentricity
which the [oad can have without producing tension on the cross-section. [Ans. 5 cm]
A short column of external diameter 50 ¢m and internal diameter 30 em carries an eccentric load

of 100 kN. Find the greatest eccentricity which the load ean have without producing tension on
the cross-section. [Ans. 8.5 cm]



408 STRENGTH OF MATERIALS

8. A hollow circular column of 25 cm external and 20 em internal diameter rt‘zspectivel_y ca'rries an
axial load of 200 kN. It also carries a load of 100 kN on a bracket whose line of action is 20_cm
from the axis of the column. Determine the maximum and minimum stress at the base section.

[Ans. 3¢ N/mm? (comp.}, 5.13 N/mm? (tension)}]

9. A column section 30 cm external diameter and 15 em internal diameter supports an axial load of

2.6 MN and an eccentric load of PN at an eccentricity of 40 cm. If the compress_ive and tensile
stresses are not to exceed 140 N/mm?® and 60 N/mm? respectively, find the magnitude of load P.
{Ans. 766.8 kN]

10. A rectangular pier-of 1.5m x 1.0 m is subjected to a compressive load of 450 kN as shown in
Fig. 9.18. Find the stresses on all four corners of the pier. .
[Ans. o, = 0.45 N/mm?, gp = + 0.15 N/mm?, o, = 1.05 N/mm?, op = 0.45.mem 1

M|
D ; C
T
|0.25m Lo:actl
A—¥ - poin
[
| ok
.. m
on I S
X E X N
|
!
|
A | B
DR PR
¥l
Fig. 9.22
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Dams and Retaining Walls

10.1. INTRODUCTION

A large quantity of water is required for irrigation and power generation throughout
the year. A dam is constructed to store the water. A retaining wall is constructed to retain the
earth in hilly areas. The water stored in a dam, exerts pressure force on the face of the dam in
contact with water. Similarly, the earth, retained by a retaining wall, exerts pressure on the
retaining wall. In this chapter, we shall study the different types of dams, stresses across the
section of a dam, stability of a dam and minimum bottom width required for a dam section.

10.2. TYPES OF DAMS

" There are many types of dams, but the following types of dams are mare important :
1. Rectangular dams
2. Trapezoidal dams having
{a) Water face vertical, and
(b) Water face inclined.

A trapezoidal dam as compared to rectangular dam is economical and easier to con-
struct. Hence these days trapezoidal dams are mostly constructed.

10.3. RECTANGULAR DAMS

Fig. 10.1 shows a rectangular dam having water on one of its sides.
Let A = Height of water
F = Force exerted by water on the side of the dam
W = Weight of dam per metre length of dam
H = Height of dam
b = Width of dam
w, = Weight density of dam.
Consider one metre length of the dam.
The forces acting on the dam are
(t} The force F due o water in contact with the side of the dam.
The force F* is given by

F=wAh

*The derivation for F can bhe seen in any standard book of Fluid Mechanics.

409
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h N -k
=wx(hx1)x—2~ ( A=hx1andh-5)
_wx h
==
o]
vy
Free surface of water
e e B — o ——— o — s —— e
H
h
F
h/3
¥ l x
N MR
]
Fig. 10.1
The force F will be acting horizontally at a height of 3 ahove the base as shown in
Fig. 10.1.

(i#) The weight W of the dam. The weight of the dam is given by
W = Weight density of dam % Volume of dam
=w, x [Area of dam] x 1 [+ Length of dam = 1 m]
=Wy xbxH

The weight W will be acting downwards through the C.G. of the dam as shown in
Fig. 10.1.

These are only two forces acting on the dam. The resultant force may be determined by
the method of paraliclogram of forces as shown in Fig. 10.1. The force F'is produced to intersect
the line of action of the W at. 0. Take OC = F and OB = W to some scale, Complete the rectangle
OBDC. Then the diagonal 0D will represent the resultant R to the same scale.

Resultant R=JF2.+w? L(10.1)
And the angle made by the resultant with vertical is given by
BD F '
=== ..(10.2
tan 0 OB "W (;O )

10.3.1. The Horizontal Distance between the Line of Action of W and the Point
through which the Resultant Cuis the Base. In Fig. 10.1 the diagonal OD represents the
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resultant of F and W. Let the diagonal OD is extend so that it cuts the base of the dam at point
M. Also extend the line OB so that it cuts the base at point N. Then the distance MN is the
horizontal distance between the line of action of W and the point through the resultant cuts

the base.

Let x = Distance MN

The distance x is obtained from similar triangles OBD and ONM as given below
. NM BD
ie., ON " 0B

x F -
or 3 W {~= Distance ON = 4/3, BD =0C = F and OB = W)
x = £ % fb— (10.3)
w3 ..(10.

The distance x can also be calculated by taking moments of all forces (here the forces F
and W) about the peint M.

Fx%:Wxx

Problem 10.1. A masonry dam of rectangulur

10
section, 20 m high and 10 m wide, has water upto a —rom—™ =
height of 16 m on its one side. Find :

(i) Pressure force due to water on one metre :f

length of the dam,
(it) Position of centre of pressure, and
(iif) The point at which the resultant cuts the

wozg

buase.

-n
Al

b4

and of water = 8.81 kN/m?.
Sol. Given :
Height of dam, H=20m w¥
Width of dam, b=10m —+ x
Height of water, h=16m Fig. 10.2
Weight density of masonry,
wy = 19.62 kN/m® = 19620 N/m®

E
©
Take the weight density of masonry = 19.62 kNIm?, l
4

T2

For water,

w =9.81 kN/m® = 9.81 x 1000 N/m?
(i) Pressure force due to water on one metre length of dam
Let F = Pressure force due to water

Then F=wAk

=9,81 x 1000x(hx1)x%
(~  w for water = 9.81 kKN/m® = 9.81 x 1000 N/m?)

1
=9.81 x 1000 x (16 x 1) x _é@ = 1255680 N. Ans.
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(ii) Position of centre of pressure
The point, at which the force F is acting, is known as centre of pressure. The force F is

: R{. 16
acting horizontally at a height of 3 g 533 m | above the base.

Position of centre of pressure from base

=5.33 m. Ans.
(iii) The point at which the resultant cuts the base
Let x = Horizontal distance between the line of action of W and the point through

which the resultant cuts the base
W = Weight of dam per metre length of dam
= Weight density of masonry x (Area of dam) » 1
:woxbeX1:19620x10x20x1=3924000N

Using equation (10.3),

80 16
F ﬁ_@.‘i__x*w_-l.’mﬁm, Ans.

“T W3 T 3924000 3
Problem 10.2. A masonry dam of rectangular cross-section 10 m high and 5 m wide has
water upto the top on its one side. If the weight density of masonry is 21.582 kN/m?. Find :
{f) Pressure force due to water per metre length of the dam
(ii) Resultant force and the point at which it cuts the base of the dam.

Sol. Given: ) 5m
Height of dam, H=10m ==

Width of dam, b=Bm ===

Height of water, h=10m

Weight density of masonty
w, = 21.582 EN/m3

[} [ ]
= 21582 kN/m?, =)
{i) Pressure force due to water is given by E -
_ 10
F=wAh =981 x 1000 x (10 x l)x_E 103
= 490500 N. Ans. l MW
h 4
{ii) Resultant force is given by equation {(10.1). 7 WL *E‘R
X

. R= F"+w? L) Fig. 10.3
where W = Weight of masonry dam
= Weight density of masonry x Area of dam x 1
=w, x bx Hx1=21582 x (10 x 5} x 1 = 1079100 N.
Substituting the values of F and W in equation (i), we get

R = {490500% + 1079100°
= 1185048 N = 1.185 MN. Ans.

The point at which the resultant cuts the base
Let x = Horizental distance between the line of action of W and the point through which
the resultant cuts the base.
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Using equation {10.3),
F A 480500 10

H o ) m m m T _
x WXS 1079100x 3 =151 m. Ans.

10.4. STRESSES ACROSS THE SECTION OF A RECTANGULAR DAM

Fig. 10.4 shows a rectangular dam of height H and width 5.
The dam is having water upto a depth of 2. The forces acting on dam are
(i) The force F due to water at a height e b-—

»l
Ll

h
of 3 above the base of the dam,

(it} The weight W of the dam at the C.G.
of the dam.

_ . The resultant foree R is cutting the hase h et H
of the dam at the point M as shown in Fig. 10.4. £ E
Let x = The horizontal distance between ¥ ° i
the line of action of W and the h3
point through which the result- ! W,
ant (B) cuts the hase {ie, dis- 77 T TR I‘\: MB B *
tance MN in Fig. 10.4). This dis- o b e x
tance is given by equation (10.3). - 2 dA—_:'
_F A Fig. 10.4
W 3

d = The distance between A and the point M, where the resultant B cuts the base
= Distance AM = AN + NM '

5 F kR .
= —+ =X = (*+ Distance AN = Half the width of dam)

2 W 3

The resultant E meets the base of the dam at point e e —)
M. This resultant force R acting at M may be resglved "
into vertical and horizontal components. The vertical com-
ponent will be equal to W whereas the horizontal compo-
nent will be equal to F as shown in Fig. 10.4 (g). The ver-

tical component W acting at point M on the base of the

dam is an eccentric load as it is not acting at the middle of
the base. The point N in Fig. 10.4 for a rectangular dam is
the middle point of the base. g
But an eccentric load produces direct stress and
bending stress as mentioned in chapter 9. " oW
¥
Eccentricity of the vertical component W is
equal to distance NA which is equal to x in this case. A N FMB
— 2 st x
Fig. 10.4 {a)

*y can also be obtained by taking moments of all forces (i.e., force F and W) about the point M.

10 F10 490500 10
Fx—=Wxx or x=35%~ = - =
3 W8 T loveloo * 3 151 m.
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Eccentricity, e = Distance x (or Distance NM) .‘.(10.4.})
=AM—AN=d—% .(10.5)

Due to the eccentricity, there will be a moment on the base of the dam. This moment will
cause some hending stresses at the base section of the dam.
Now the moment on the base section

= W x Eccentricity KAXiS
=We ———— b

Moment, M=We

M.2 )
We know that 7 ¥ S0
where M = Moment
I = Moment of inertia
3
= 1xb (See Fig. 10.5) Base section
12 of dam
_b _ Fig. 10.5
12

o, = Bending stress at a distance y from the centre of gravity of the base section
y = Distance between the C.C. of the base section and extreme edge of the abse {which

b
is equal to = 77 in this case).

T2
Substituting the values in equation (£), we get
W.e Gy,

B9 (=b2)

R Gb#xW.eZ b_3Hﬁ7/5T
The bending stress across base at point B (see Fig. 10.4)
6W.e
And the bending stress across base at point A
6W.e
= b2 .

But the direct stress on the base section due to direct load is given by
Weight of dam W
% = Avea of base “bx1l
Total stress across the base at B

o*‘l'é'

RAMS (b it

A ..(10.8)

w 6W.e W[ 6.2)
5 8 b

Crnax = G T O, =

and total stress across the base at A,
O ;= 0p+ Bending stress at point A
W 6W.e

b b
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—E(l-ﬁﬁ) (10.7
=% b 10T

If the value of o, is negative, this means that at the point A the stress iz tensile.
Problem 10.3. For the Problem 10.1, find the maximum and minimum stress infensities
at the base of the dam.
Sol. The data given for Problem 10.1 is
H=2m,b=10m, h=16m, w,= 19620 N/m°?
The force calculated are .
F=12556680 N, W =23924000 N

And distance, x = 1.706 m.

From equation (10.4), we know

Eccentricity, e = Distance x .
=1.706 m (v x=L1706m)’

Maximum stress at the base of the dam (ien Oppy)
Using equation {10.6), we have

. ¥ (1+E] _ 3924000 [1+ 6x1.706]
mas b b/ 10 10

= 392400 (1 + 1.0236)
= 794060.64 N/m? = 0.794 N/mm? (compressive). Ans.
Minimum stress at the base of the dam (.e., g.;,)
Using equation (10.7), we get
w ( 6.e] 3924000[ 6 x 1.706]
G, = — 1-—|= 1-
b 10 10

min b

= 392400 (1 - 1.0236) = — 9260.64 N/m?
= 0.00926 N/mm? (Tensile). Ans.
Problem 10.4. For the Problem 10.2, find the maximum and minimun stress intensities
at the base of the dam.
Sol. The data given for Problem 10.2 is
H-h=10m,b=>5mand w, = 21582 N/m®
Calculated values are
F = 490500 N, W = 1079100 N, x = 1.51 m.
From equation (10.4), we know
Eccetricity, e=x=151m.
Maximuam stress at the base of the dam (i.e., Gpyusd
Using equation (10.7), we have
O pror = "Vg(l + 6—;') = —————-1072100 (1+ G—X-S—l—ﬁl = 215820 (1 + 1.812)
- 606885.84 N/m? (compressive). Ans.
Minimum stress at the base of the dam {(i.e., 0 win)
Using equation (10.7), we have :
w (1 gg] 1079100 ( 6 x 1.51)
g . = - = 1*‘
min b b 5 5
= 215820 (2 — 1.812) = — 175245.84 N/m?2
= 175245 N/m? (tensile). Ans.
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10.4.1. Trapezoidal Dam having Water Face Vertical. Fig. 10.6 shows a trapezoidal
dam having water face vertical. Consider one metre length of the dam.

Let H = Height of dam
h = Height of water,
a = Top width of dam,
b = Bottom width of dam,
w, = Weight density of dam masonry,
w = Weight density of water = p x g = 1000 x 9.81 N/m*
= 9.81 kN/m? = 9810 N/m3
F = Force exerted by water
W = Weight of dam per metre length of dam.
Now the forces acting on the dam are

(1) F = Force exerted by water
o 9

— h
=waxh=wx{hx1}x§=wx?.

The force I will be acting horizontally at a height of /3 above the base.

(i) W = Weight of dam per metre length of dam
= Weight density of dam x {Area of cross-section) x 1

2
b
(a; ) <
The weight W will be acting downwards through the C.G. of the dam.

(i) The distance of the C.G. of the trapezoidal section {shown in ¥ig. 1_0.6) from !:he
vertical face AC is obtained by splitting the dam section into a rectangle and a triangle, taking
the moments of their areas about line AC and equating the same with the moment of the total
area of the trapezoidal section about the line AC.

=y (a . b] xHx1 { Area= (Sumofparallelsides) x Height

:wux

DAMS AND RETAINING WALLS . 417

ie., Area of rectangle x Distance of C.G. of rectangle from AC + Area of triangle )

x Distance of C.G. of triangle from AC = Total area of trapezoidal x Distance AN

b - H b b
e g b e o

From the above equation distance AN can be calculated.
(if) The distance AN can also be calculated by using the relation given below.

)xHxAN

a?+ab+ B
3(a + &) ~108)
Now let x* = Horizontal distance between the line of action of weight of dam and the
point where the resultant cuts the base
= Distance MN and it is given by equation (10.3)

F h
oo
W 3

d = Distance between A and the point M where the resultant cots the base
(i.e., distance AM)
=AN + NM : ..(10.9)
The distances AN and NM can be calculated and hence the distance ‘d’ wilt be known.

Now the eccentricity, e = d — half the hase width of the dam

b
= d — §

Then the total stress across the base of the dam at point B, ]

14 B.e
O = {1 F 5 .{10.10)

and the total stress, acros the base at A,

w G.e

Onin= 3 | 1”5 .{10.11)

Problem 10.5. A trapezoidal masonry dam is of 18 m height. The dam is having water
upto a depth of 15 m on its vertical side. The top and bottom width of the dam are 4 m and 8 m
respectively. The weight density of the masonry is given as 19.62 kN/m>. Determine
(i} The resultant force on the dam per metre length.
(i1) The point where the resultant cuts the base, and
(ii) The maximum and minimum siress intensities at the base.

Sol. Given :
Height of dam, H=18m
Depth of water, h=15m

Top width of dam, g=4m
Bottom width of dam, 6 =8 m
Weight density of masonry,
1w, = 19.62 KN/m?® = 19620 N/m?

* The distance x can also be calculated by taking moments of all forces about the point M.
h F oh '
Fx3=W><x AR
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(i) Resultant force on dam —«gi 4m |<D—
Let us find first the force F and weight of the q
dam. :
Force F=wxAxh -
h
=9810x(hx 1) x
2 3
15 : 3
= 9810 % 15 x - = 1103625 N £
: T F o
h. —>
And it is acting at a distance of 3 ie.,
) 5m
1 = 5.0 m above the base. I Al w
3 WIIIIIIIIIIIIIIIIIIIII
Now weight of dam is given by W R
j x -+

W = Weight density of masonry

j— d—|
» Area of dam x 1 am
b .
=w0x("’2' )xHxl Fig. 10.7
4+8
=19620x[ ) }xlelN

= 19620 x 6 x 18 = 2118960 N.

The distance of the line of action of W from the line AC is obtained by splifting the dam

into rectangle and triangle, taking the moments of their areas about the line AC and equating
to the moment of the area of the trapezoidal about the line AC.

1 4+8
or 4x18x2+4x218x(4+§><4]=[ 5 JxleAN
or 144 + 36 [5.33] = 108 x AN
144 + 36 x 5,33
o 144 36X055 g4y,
Al 108

AN ecan also be caleulated as given by equation (10.8)

2 2 2 2
o’ +abrd 4——+—M (- a=4mandb=8m)

= B+ | 3(4+8)
16+32+64 112
- = =55 =3m.

The resultant force R is given by

R= 7"+ W2= 1103625 + 2118960°
= 238025.5 N = 2.389 MN. Amns.
(ii} The point where the resultant cuts the base

Let x = The horizontal distance between the line of action of W and the point at which
the resultant cuts the base. .
Using equation (10.3), we get
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The distance x can also be caleulated by taking moments of all forces about the point M.
: Fx5=Wxx ’
F 1103625

x=Wx :.211896_0 x 5=2.604 m

From Fig. 10.6, the distance AM =d.
- d=AN + NM

=311l+x=311+2604=5714m

. b
Now eccentricity, e=d-— 3

=5.714 - g =5.714-4.0=1714 m.

(iii) The maximum and minimum stress intensiiies
Let O, = Maximum stress, and

G, = Minimum stress

Using equation (10.10), we get _
\id 6.
o = __[“_e] _ 2118960 {u s><1.714]

max = b b 8 8
= 264870 (1 + 1.2855) = 605360 N/m2  Ans.
Using equation (10.11), we get
o = _V[[l_ sxe] _ 2118960 [1_ 6x 1.714]
min = | b 8 8
= 964870 (1 — 1.2855) = - 75620 N/m*®.  Ans.
~ ve sign shows that stress is tensile.

Problem 10.6. A masonry trapezoidal dam 4 m high, I m wide at ifs top and 3 m width
at its bottom retuins water on its vertical face. Determine the maximum and minimum stresses
at the base :

() when the reservoir is full, and
(1) when the reservoir is empty. Take the weight density of masonry as 19.62 ENimS,
SolL. Given : -1 m -
Height of dam, H=4m
Top width of dam, a=1m e
Bottom width of dam, 6=3m.
Depth of water, h=4m
Weight density of masonry,

w, = 19.62 KN/m® = 19620 N/m? 4"
Consider one metre length of dam.
(i) Where reservotr if full of water

The force exerted by water on the vertical face
of the dam per metre length is given by,

¢

[
>

- 43 m T

F:waxE=9810x(4x1)x[%J

(v w = 9810 N/m? for water)
=T8480 N
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The weight of dam per metre length is given by
W = Weight density of masonry dam x Area of trapezoidal x 1

axb
:wox[ ]xH

2

5 ) x 4 = 156960 N.

Now let us find the position of the C.G. of the dam section. This is done by splitting the
trapezoidal into rectangle and triangle, taking the moments of their areas about the line AC
and equating to the moment of the area of the trapezoidal about the line AC.

1 4x2 1 1+3
(4x1x§]+[ ; x(1+§x2J]=( ; )x4xAN

1+3
= 19620 x(

or 2+4x167=8xAN
24668 868
AN=—+—§-——=T =1.08m

AN can also be calculated from equation (10.8}, as

a® +ab+ b2
3{a + b)
1*+1x3+3% 1+43+9 13

31+3) iz jp -108m

The horizontal distance x, between the line of action of W and the point at which the
resultant cuts the base, is obtained by using equation (10.3),

_F h
Tws
78480 4
= Ts6060 <3 - 067m
Horizontal distance AM from Fig. 10.7 is given by
d=AN +x
=108 +0.67=175m
.. . b
Eccentricity, e=d - 9

=1.76- g =1.75 - 1.50 = 0.25 m.

Now let O,y = Maximum stress at the base of the dam, and
5]

min

Using equation (10.10), we get
w ( 6(1)
g =-—!1l+—

= Minimum stress.

156960 ( 6 x 0.25
= 1+
3 3

) = 78480 N/m2. Ans.
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Using equation (10.11}, we get

s
Ooin = b b

156960 (1 _6x025
T3 3

(ii) When the reservoir is empty ja-1 m

When the reservoir is empty, the force F exerted by water __ €
will be zero as there is no water retained by the dam. Hence only T
the weight of the dam will be acting as shown in Fig. 10.9.

The weight of dam, W = 156960 N as before. The position
of the C.G. of the dam will also remain the same.

Distance AN = 1.08 m as hefore.

Now the resultant force on the dam is equal to the weight
of the dam, as force F is zero. Hence the horizontal distance at
the base of dam between A and the point at which the resultant

) = 26163 N/m2. Ans.

(i.e., force W in this case) cuts the base is equal to distance AN. W
A d = AN = 1.08 m. Y B
P‘ss ;Vlg not acting at the middle of the base, this load is an ’ am

eccentric load. e d ]
Now eccentricity, e=d- 9 Fig. 10.9

=1.08 - g =1.08-1.5=-042m.

(Minus sign only indicates that stress at A will be more than at B).
Now using equation {10.10), we get

w 1 G.e
Gmasz +.—b—

156960 ( 6x 0.42}
= 1+
3 3
= 96265 N/m?®. Ans.
Using equation (10.11), we get

W G.e
- — | 1--""
Conin = b ( b J

156960 (1 _Bx 0.42}

(Numerically e = 0.42)

-3 3
= 8367.93 N'm% Ans.
Problem 10.7. A masonry dam, trapezoidal in cross-section, 4 m high, 1 m wide at its
top and 3 m wide at its bottom, reteins water on its verticul face to a maximum height of 3.5 m
from its base. Determine the maximum and minimum stresses at the base (i) When the reservoir
is empty, and (ii) When the reservoir is full. Take the unit weight of masonry as 19.62 EN/m3.
(AMIE, Summer 1988}

Sol. Given :
H=4m,a=1m,b6=3m
h=385m,w,=19.62 kN/m? = 19620 N/m?
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» a=1impe

3!
*l

Wi =

NN

----- 1A ¥ M \B «
TTITT TP TTT I TPITTIZTTF 77 777

in X o]
4 d ——
M— b= 3m—»

Fig. 10.9 (a)

Weight density of water, w = 9810 N/m?
Consider 1 m length of the dam.
The force F exerted by water is given by

o | &

FowxAxh =9810x(hx1)x

= 9810 x (8.5 x 1) x % =9.81 x 6125 N = 60086 N

This force acts at a height of % = % = 1.167 m above the ground.

The weight W of the dam per metre length is given by
a+b
W =10, x 3 )X Hx1

1+3
=19620x(

9 )x4x1=156960N

The distance of C.G. of the dam section from point A [i.e., distance AN of Fig. 10.9 (a)] is
given by equation (10.8) as

AN = a® +ab + b _ 12 +1x3+32
3a+b) 31+ 3
1+3+9 13
=—1‘§"—‘=E =1.08m

The horizontal distance %', between the line of action of W and the point at which the
resultant cuts the base, is obtained by using equation (10.3) as

F h 60086 35

W3~ 156960 3
(i) Maximum and Minimum stresses at the base when the reservoir is empty.

When the reservoir is empty {i.e., there is no water), the only force acting on the dam
will be its own weight i.e., 156960 N. The position of C.G. of the dam section will remain same.
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Hence distance AN = 1.08 m. Also the resultant force here wiil be W oniy The distance of the
point where resultant cuts the base from A will be
d=AN=108m

Hence eccentricity ‘¢’ is given by

b
e=d—-§

=1.08--=-042m

po | eo

{Minus sign only indicates that stress at A will be more than that of at B)
The stresses are given by equation (10.10} as

W (1+ 6er= 156960 {1+ B x (- 0.42)]

b b 3 3

_ 156960 ( 1, 8% 0.42) = 52320 (1 = 0.84)
3 3
Maximum stress =a,,,

= 52320 (1 + 0.84) = 52320 {1.84) N/m?
= 96268.8 N/m2  Ans.
and Minimum stress =3,
=52320 (1 — 0.84) = 52320 (0.186)
= 8371.2 N/m?, Ans.

(it} Maximum and minimum stresses when reservoir is full.

In this case, two forces i.e., ¥ and W are acting on the dam. The resultant {R} of these
two forees cuts the base at the point M. The distance AM is given by,

d=AM =AN +x
=1.08 + (}.446 = 1.526 m
Now eccentricity is obtained as

b
e=d-—§ =1.526-—~g:1.526-1.5=0.026m

Maximum stress is given by,

E[l_'_ﬁer
Gmax_ b b

156960 [ 6 x 0.026
= 1+
3 3
= 55040.64 N/m2. Ans.
W 6Gxe
and o_. = ? (1 - "—"J

min &

; 156960 [1 _ 6x0026
-3 3
= 52320 % 0.948 = 49599.36 N/m?.  Ans.

J = 52320 (1 + 0.052)

) = 52320 (1 - 0.052)
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- 10.5. TRAPEZOIDAL DAM HAVING WATER FACE INCLINED

Tig. 10.10 shows a trapezoidal dam section having its water face inclined.

2]
c D

Let H = Height of dam,
h = Height of water,
a = Top width of dam,
b = Bottom width of dam,
w, = Weight density of dam masonry,
w = Weight density of water
= 9810 N/m3
8 = Inclination of face AC with vertical,
F = Force exerted by water on face AC,
F_ = Component of ¥ in z-direction
=Fcos 0,
F, = Component of F' in vertically downward direction
=Fgin 6,
W = Weight of dam per metre length of dam

a+b
=WeX | Ty x H

L = Length of sloping side AF which is suhjected to water pressure.
Consider one metre length of the dam.
Now in triangle AEF,
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L= p—s L2
The force acting on the dam are
(£} The force exerted by water on face AE is given by,
F=wAh
where A = Area of face AE
=AEx1 (- Length of dam perpendicular to plane of paper = 1 m)
_.h v AE=L -2
cos @ cos B
— A
h=—
2
Fe h h_wx A2
_#w * cos @ * 27 2cos®

The force F acts perpendicular to the face AE as shown in Fig. 10.10 at a height % above
the base.
Now, F.=Fxcos )
wx h? L gL X hE
= 2cosp <080 ' 2cos@
_wx n?

2 .
= Force exerted by water on vertical face AF

and Fy =Fsin @

wx h? 8 . F_wxh2
= Zcosp R ' 2cosB

2
=th x tan 6
2

2
wxh” EF ( In AAEF, tanB:E)
2 AF AF

2
=“”‘2h x% (- AF =h)
hx EF
2

= w x Area of triangle AEF

=W X

( Area of triangle AEF = EF; h)

= 1 x Area of triangle AEF x 1 _
= Weight of water in the wedge AEF.
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Hence the force F, acting on inclined face AE is equivalent to force F, acting on the
vertical face AF and force Fy which is equal to the weight of water in the wedge AEF.

h
The force F, acts at a height 3 above the base whereas the force F, acts through the

C.G. of the triangle AEF.
(if) Weight of dam per metre length of the dam and it is given by

a+b
W= 9 x H x wy,

The weight W will be acting through the C.G. of the trapezoidal section of the dam, The
distance of the C.G- of the trapezoidal section shown in Fig. 10.10 from the point A is obtained
by splitting the dam section into triangles and rectangle, taking the moments of their areas
about the point A and equating the same with the moment of thHe total area of the trapezoidal
section about the point A. By doing so the distance AN will be known.

(iif) The force R, which is the resultant of the forces F and W, cuts the base of the dam at
point M. The distance AM can be caleulated by taking moments of all forces (i.e., forces F,F,
and W) about the point M. But the distance AM =d.

Now the eccentricity, e=d~ %

Then the total stress across t}ie base of the dam at point B,

) \4 1 6.e
Oz = + e ..(10.12)
and the total stress across the base of the dam at point 4,
v 6.e
Cpin = 1- > ...(10.13)
whereV = Sum of the vertical forees acting on the dam

=F +W.

Proinem 10.8. A masonry dam of trapezoidal section is 10 m high. It has top width of
1 m and bottom width 7 m. The face exposed to water has a slope of 1 horizontal to 10 vertical.
Calculate the maximium and minimum stresses on the buse, when the water level coincides
with the top of the dam. Take weight density of masonry as 19.62 kN/m?.

Sol. Given :

Height of dam, H=10m

Top width of dam, a=1m

Bottom width of dam, b=7m

Slope of face exposed to water = 1 hor. to 10 vertical

Length of EC in Fig. 10.11 =1 m

Depth of water, hA=10m

Weight density of masonry, w, = 19.62 kN/m?® = 19620 N/m?

Consider one metre length of the dam.

Let the weight of dam (W) cut the base at N whereas the resultant R cuts the base at M.

The force F due to water acting on the face AC s resolved into two components F, and F,
as shown in Fig. 10.11. .

But F_=Force due to water on vertical face AE

—wxAxh
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10m

A { M
T T2 ré7T T 77 LA A
\R
A

Fig. 10.11

' 1
=9810x(10x1)x§q (- Area, A=AEx 1)
=490500 N

10
The force F, will act at a height of zm above the base of the dam.
F, = Weight of water in wedge AEC

=w x Arca of AEC x 1 (++ Length of dam =1 m)
= 9810 x 102" L 1= 49050 N,

The force F, will act downward through the C.G. of the triangle AEC i.e. at a distance
1 x1=3 mfrom AO.

a+b 1+7
Weight of dam, W=w,x (TJ x H = 19620 x ( 9 ] x 10 = 784800 N.
The weight W will be acting through the C.G. of the dam.
The position of C.G. of the dam (i.e., distance AN) is obtained by splitting the trapezoidal
into triangles and rectangle, taking the moments of their areas about A and equating to the
moment of area of the trapezoidal about the point A.

(102"1X§J+(10x1x1.5)+102"5><{2+§}=(—“;—”)xgxm
1+7
or 3.33+15+91.67=( 5 ]xleAN=40xAN
110
AN = —416"—2.751'11

The resultant force B cuts the base at M. To find the distance of M from A (i.e., distance
AM), take the moments of all forces about the point M.
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1
Fxx?O—Fyx(AM—O.S?:)—WxNM:O

or 490500 x %0 — 49050 x (AM — 0.33) - 784800 x {AM - AN} =0
(- NM =AM — AN)

or 2907000 490500 AM + 16350 - 784500 AM + 784800 x 2.75 = 0
(- AN=275)
or 4903500 + 16350 + 784800 x 2.75 = 784800 AM + 49050 AM
or 3809550 = 833850 AM
3809550
. AM = 833850 = 4.568
or d =4.568 G AM=d)
’ |

Now the eccentricity, e=d - 5

= 4.568 — % =4.568 - 3.5 = 1.068 m.

Maximum and Minimum stresses on the base
Let o, = Maximum stress on the base,
a,.;. = Minimum stress on the base.

Using equation (10.12), we get
1 6.¢
O = G (1 * TJ
where V = Total vertical forces on the dam
=W Fy = 784800 + 49050 = 833850 N

833850 [ 6+ 1.068}
= 1+

(a3

= 228167 N/'m2%. Ans.
Using equation (10.13), we get

\4 6.e
LA
Umin“b( b)

833850 (1_ 6 x 1.068)
7 6
= 10077.8 N/m2. Ans.
Problem 10.9. A masonry dam of trapezoidal section is 10 m high. It has top width of
1 m and bottom width 6 m. The face exposed to water has slope of 1 horizontal to 10 vertical.

Calculate the meaximum and minimum stresses on the base when the water level coin-
cides with the top of the dam. Take weight density of masonry as 22.563 kN/m?.

Sol. Given :
Height of dam, H=10m
Height of water, h=10m

Top width of dam, a=1m
Bottom width of dam, 6 =6 m
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Slope of the face AC which is exposed to —1 mh—
water = 1 hor. to 10 vertical. E C

- EC=1m (- AE=10m) |
Weight density of masonry,
Wy = 22.563 kN/m3
= 22563 N/m?
Consider one metre length of dam.

Now the force F due to water acting on the 10m
face AC is resolved into two components F, and F3 as
shown in Fig. 10.12. E

Force, F, =Force due to water acting on
vertical face AE

=wxAxh

r N B
Ti7I7 77777777 77 TI 77777777

=9810><(10><1)x~1§q Ki——d
_ 10 —»i1 m1 mid——4 m—>
[ b= ?) ——— B m————»
‘ = 490500 N Fig’. 10.12
and Force, Fy = Weight of water in the wedge AEC
= w x Area of triangle AEC x 1

EC x AE
=w><————2—-x1

1x 10

= 9810 x x 1=49050 N

Weight of dam,

a+b 1+6
W=w,x| | x H=22563 x P) x 10

2
= 789705 N.

The position of the C.G. of the dam {i.e., distance AN).is cbtained by splitting the
trapezoidal into triangles and rectangle, taking the moments of their areas about A, and equating
to the moment of the area of the trapezoidal about point A.

10x1Y) 2 1 10x4 1 a+b
X 10 x1x{l+ )+ 5% 1+1+§X4 = x H x AN

2 %3 2 P)
or 3.33+15+20xi3q=(1;6)x10xAN
85 = 35 x AN
85 17
anv=32_1" _o43m
37 "

Now let the resultant B of forces F' and W cut the base at M.
Taking the moments of all forces (i.e., force F,, F, Y and W) about the point M, we get

10 1
Fxx?szNM+Fyx(AM“§><1)

i
490500 x 139 = 789705 x (AM — AN) + 49050 [AM - g}



STRENGTH OF MATERIALS
430

49050
4905000 _ 7¢q705 x AM — 789705 x AN + 49050 x AM ~ — =

17 49050 ( av W2 J

= AM x (789705 + 49050) — TBIT05 x = = —7— =
49050
= AM x 838755 - 1917855 - ——
' 49050
AM x 838755 = @%@ + 1917855 + = = 3569203
' 3569205
o PRI 4 955
g3gTsp T neesm
b (+ AM=d)

- Eccentricity, =~ e=AM-

= 4.255 - 3.0 = 1256 m.

Mo

= 4,255 —

Maximum sfiess on the base
Using equation {10.12}, we get

v 6.e
Q, —-7[1+—b—)

max b
- where V = Total vertical forces on the dam

=W+ Fy = 789705 + 45050 = 838755 N
838755 (1 . 6+ 1255

o= ] = 315232 N/m2 Ans.

6
Using equation (10.13), we get

v 6.e
e 1————
O-mm b[ b J

_ 838755 [1- 6+ 2255] = 35647 N/m?. Ans.

6

10.6, STABILITY OF A DAM
A dar should be stable under all conditions. But the dam may fail :
1. By sliding on the soil on which it rests,
2. By overturning,
3. Due to tensile stresses developed, and
4. Due to excessive compressive stresses.

16.6.1. Condition to Prevent the Sliding of the Dam. Fig. 10.13 shows' a dam of
trapezoidal section of height H and having water upte a depth of A. The forces acting on the

dam are :
. h
(i} Force due to water pressure F acting horizontally at a height of 3 above the base.

(ii) Weight of the dam W acting vertically downwards through the C.G. of the dam. _

The resultant & of the forces F and W is passing through the point M. ’!‘he d.am \'Vlll be in
equilibrinm if a force B* equal to R is applied at the point M in the opposite direction of E.
Here B* is.the reaction of the dam. The reaction R¥ can be resolved into two components. The
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vertical component of B* will be equal to W whereas the horizontal comi)onent will be equal to
frictional force at the base of the dam.

H
h
f
h/3 R
Y l Al wY M _ \B ¥
L A A B I B A A A I A O R *
N H\
e X Fracti |
" ractional
d force = yW

Fig. 10.13

Let p = Co-efficient of friction between the base of the dam and the soil.

Then maximum force of friction is given by,

F .=uxW L{10.14) -

If the foree of friction i.e., F,, is more than the force due to water pressure (i.e., F), the
dam will be safe against sliding.

10.6.2. Condition to Prevent the Overturning of the Dam. If the resultant R of the
weight W of the dam and the horizontal F' due to water pressure, strikes the base within its
width i.e., the point M lies within the base AB of Fig. 10.13, there will be no overturning of the
dam. This is proved as :

For the dam shown in Fig. 10.13, taking moments about M.

Moment due to horizontal force F about point M

=Fx —g (3]
Moment due to weigth W about point M
=Wxx LI}

The moment, due to horizontal force F, tends to overturn the dam about the point B ;
whereas the moment due to weight W tends to restore the dam. If the moment due to weight W
is more than the moment due to force F, there will be no overturning of the dam. For the
equilibrium of the dam, the two moments should be equal.

A
Fx E =Wx x ...(iii)

Since overturning can take place about point B, hence restoring moment about the

point B
=WxNB
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But overturning moment due to force F about point B

=Fx % =Wxx ( from equation (iii)Fx%=Wxx]

There will be no overturning about point B, if restoring moment about B is more than
the overturning moment about B i.e,

if WxNB>Wxx
or ) NB >x
> NM (v x=NM)

This means that there will be no overturning of the dam if point M lies between N and B
or between A and B.

10.6.3. Condition to Avoid Tension in the Masonry of the Dam at its Base. The
masonry of the dam is weak in tension and hence the tension in the masonry of the dam should
be avoided. The maximum and minimum stresses across the base of the dam are given by
equations (10.10) and (10.11). The maximum stress is always compressive but the minimum

G.e N
stress given by equation (10.11) will be tensile if the term [1 - T) is negative. In the limiting

case, there will be no tensile stress at the base of dam

. G.e

f 1-—=0

i 5 =

or b-6.e=0 or b=6.e

or 6.esb or es% ...(10.158)

where e = Eccentricity and b = Base width of dam.

b
This means that the eccentricity of the resultant can be equal to s the either side of

the middle point of the base section. Hence the resultant must lie within the middle third of
the base width, in order to avoid tension. Refer to Fig. 10.13.

If d* = Maximum distance between A and the point through which resultant force R
meets the base.

Then e =d* - % (8

But 0 avoid tension at the base of the dam, maximum value of eccentricity,
b

es — ..{1i)

6
From equations {i) and (i), we have

g% — [ < [

2 6
gre b b br3b 40 2, .(10.16)

6 2 b 5 3
Hence if the maximum distance between A and the point through which resultant force
R meets the base (i.e., distance d*) is equal to or less than two third of the base width, there
will be no tension at the base of dam. '

10.6.4. Condition to Avoid the Excessive Compressive Stresses at the Base of

the Dam. The maximum and minimum stresses across the base of the dam are given by
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equations {10.10} a.nd (10.11). The condition to avoid the excessive compressive stresses in the
masonry of the dam is that the p,, . i.e,, maximum stress in the masonry should be less than
the permissible stress in the masonry.

Problem 10.10. 4 trapezoidal masenry dam having 4 m top width, 8 m bottom width
and 12 m high, is retaining water upto e height of 10 m as shown in Fig. 10.14. The density of
masonry is 2000 kg/m?® and coefficient of friction between the dam and soil is 0.55. The allow-
able compressive stress is 343350 N/m2, Check the stability of dam.

Sol, Given: :
Top width of dam, a=4m
Bottom width of dam, b =8 m
Height of dam, H=12m
Depth of water, hA=10m
Density of masonry, p, = 2000 kg/m®

Weight dengity of masonry,

w, = 2000 x 9.81 N/m?

Co-efficient of friction,

u = 0.55
f— 4 m—>
x
12m
10m
F
10/3 m
|
M
!‘rVIIfl!_IT_IIIIIIIAIIIllfIIIulrlIIIlfrrr T 17 E x
Wy ’\‘R
——X——n]
-———— - —p|
[ e - L e |
Fig. 10.14

Allowable compressive stress
] = 343350 N/m?
Consider on metre length of dam.
The horizontal force F exerted by water on the vertical side of dam is given by

F==wxAxh

=1000x9.81)'<(10x1)x—12E '
= 490500 N
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i

10
The force F will be acting at a height of zm above the base.

Weight of the dam per metre length is given by,
w = Weight density of masonry x Area of trapezoidal section x 1

4+8

=wox[a;b)xHx1z2000x9.81x( )x‘lel
' = 1412640 N.
The wieght W will be acting at the C.G. of the dam. The C.G. of the dam is obta'ined by
splitting the trapezoidal section into rectangle and triangle, taking the moments of their areas
about the point A and equating to the moment of the area of the trapezoidal about A.

4+8
4x12x2+4"12x[4+é]=[ ; }x12><AN

2 3
1
or 96+24><—3§=72><AN
or . 96 + 128 = 72 x AN
96+ 128 224
=2 - o =31lm.
AN 75 73 31ilm
Taking the moments of the forces acting on the dam about the point M.
Fx ? =Wxx
or x=£x—1—9:£§95—02xﬂ=1.157m
w3 1412640 3
Distance AM =AN +x

=3.11 + 1.157 = 4.267T m.
(i) Check for the tension in the masonry of the dam
Now from equation (10.15), we have

d*s%xbs% % 8.0
< 5.33 m.

2 . .
As the distance AM is less then d* or 3% b (i.e., 5.33 m), the dam is safe against the

tension in its masonry at the base. Ans.
(ii) Check for overturning
The resultant is passing through the base AB of the dam and hence there will be no
overturning.
(iii) Check for sliding of the dam
From equation (10.14), the maximum foree of friction is obtained as,
Frac=px W
.= 0.55 x 1412640 = 776952 N.
Since foree of friction is more than the horizontal force due to water (i.e., F = 490500),
the dam is safe against sliding.
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{iv) Check for excessive compressive stress at the base of the dam
From equation {10.10}, the maximum stress at the base of the dam is given by

4] =E(1+g)

maxh b
b. b :
where eﬁd—‘é:AM——E . (v d=AM)
o :
= 4,267 - 3= 0.267 m
W=1412640 N

Gma:c = 1412640 (1+ 6= %267] = 211940 me2.

Since the maximum stress is less than the allowable stress, hence the masonry of the
dam is safe against excessive compressive stress. Ans.

Problem 10.11. A trapezoidal masonry dam having top width I m and height 8 m, is
retaining water upte ¢ height of 7.5 m. The water face of the dam is vertical. The density of
masonry is 2240 kg/m? and co-efficient of friction between the dam and soil is 0.6. Find the
minimum botiom width of the dam required.

Sol. Given :
Top width, a=10m 1 mie- -
Height of dam, H=80m  —g—————— T
Depth of water, E=75m Tz
Density of masonry, p, = 2240 kg/m? T
Weight density of masenry,
Wy = Pg X & = 2240 x 9.81 N/m?  75m “ 8 m
Co-efficient of friction, u = 0.60 F L, _© A
Let & = Width of dam at the base. Con- T
sider one metre run of the dam. Horizontal force 25m
F exerted by water is given by, ¥ l Al __N M _\B y
F=wxAx§k Wy M
b X —
= 1000 x 9.81 x (7.5 x 1} x 12—53 RPN
(- wforwater=pxg Fig. 10.15
= 9810 N/m?3}
= 275906.25 N.
The weight of dam per metre run is given by,
W =w, [CHb) xHx1
1+6
= 2240 x 9.81 ( 9 ] x8x1=87897.6(+1)N.

The weight W will be acting through the C.G. of the dam. The distance of the C.G. of the
dam from A is given by equation (10.8). ’
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a? +ab+ b2
AN = 3a+bd)
P 4lxbeb® 1+b40°
1+  301+d)

_ The horizontal distance x, between the line of action of W and the point at which the
resultant force R cuts the base, is obtained by using equation (10.3).

L _F R
TTw3
27690625 15 _ 7847

TRIBTEG+l 3 (B+D
Dristance d=AM=AN + NM = AN +x

1+b+5%  7.847

31+  (B+D -4
(i) There will be no tension in the dam at the base if d < % b
L. 2
Hence for the limiting case d = 3 b
1+b+0% 7847 2 . o
or T 1+ + 3213 b [Substituting the value of d from equation (£)]
1+b+85%2+3%x7487=2b(b+1)
or 1+b6+5%+22461=20%+28
or b% 4+ b-23.461 =0.
The above equation is a quadratic equation. Its solution is
po olE J1? +4x 123461  —1+9.7387
a 2 - 2
-1+9.7387
= m—+—2—8 (Neglecting negative value)
=437m Aid)
(if) There will be no sliding of the dam if
uWe=F
or 0.6 x 87897.6 (b + 1) > 275906.25
275806.25
or bG+1)> ——~0.6 < 878976 > 5.23
or b>4.23 ..(ii)

Hence the minimurm bottom width of the dam, so that there is no tension at the base of
the dam and also there is no sliding of the dam, should be greater of the two values given by
equations (f) and (i),

Minimum bottom width = 4.837 m. Ans.

Problem 10.12. A masonry gravity dam is vertical at the water foce and has o height of
8.5 m chove its base. It is 1.2 m wide at the top. It retains water upto o height of 8 m above the
base. The density of masonry is 2300 kg / m?, Determine the minimum bottom width required to
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satisfy “no fension” condition in the section and also to ensure that there is no sliding at the
base. The co-efficient of friction between the dam and foundation is 0.5.

1.2 m—»|

— d ———#|
M—————b——

Fig. 10.15 {(a}

Sol. Given :

Height of dam, H=85m
Width at top, a=12m
Depth of water, h=8m

Density of masonry, py = 2300 kg/m®
Weight density of masonry,
W, = Py X £ = 2300 x 9.81 N/m?
Weight density of water,
w = 1000 x 9.81 N/m3 = 9810 N/m?
Coefficient of friction, p = 0.5
Let b = Bottom width at the base
Consider 1 m length of the dam
The force F exerted by water is given by

_ h
FzwxAxh =9810x{hx1)x~§

8
=9810><(8><l)><§

= 313920 N . ) (D)
The weight of dam is given by

W:wox(a+b}xﬂxl

b) 86x1
.9 X oo X
=95892.75 (1.2 + &) 7))

12+
= (2300 x 9.81) x (
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The horizontal distance x, between the line of action of W and the point M at which the
resultant force R cuts the base, is given by equation (10.3) as

_F R
W3
313920 & _ 2619

T 9589275 (12+b) 3 B(L2+b)
The weight W will be acting through the C.G. of the dam. The horizontal distance of the
C.G. of the dam section from point A is given by equation (10.8) as

a?+aba b

3(a + b}
122+ 1.26+5% 144+ 1.25+ 5%
T a2+l 8(12+b)
Now distance, d=AM = AN + NM = AN + x

_144+126+0° , 2619
1.2+ b) 3(1.2+8)

_ 144+12b+5% +26.19
3(1.2+56)

2763 +1.2b+ b7
Y S
(e) Width at the base for no fension at the base
There will be no tension in the dam at the base if

2
=b
d53

-(Ei)

2763 +1.2b+b% 2
or ———=_b
3(1.2 + b} 3
or 2763 +1.26+b2<26(1.2 + )
= 2.4b + 252
or 0=2.4b+26%2-27.63 - 1.2b- b2
or 0s5%+1.2b-27.63
or . B+ 126-29763=20
For limiting case, b2+ 1.25-27.63=0.
The above equation is a quadratic equation. Hence its roots are given by

po 212t 12% +4x1x2763 -12x 1058
- 2x1 - 2 _
=469 m (Neglecting —ve root which is not possible)
Hence there will be no tension at the base, if width b is more than 4.69 m.
(b) Width of dam fbr no sliding of dam at the base
There will be no sliding of the dam at the base if pW = F.
Substituting the values of W from equation (ii) and of F from equation (i), we get
ux 95892.75 (1.2 + b} = 313920
or 0.5 x 95892.75 (1.2 + ) = 313920
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313920 .

or 12+ 8= 5 9589275 = 004
or b=(6.54-1.2)=534m.

{c) Width of dam for no tension condition and also for no sliding at the base

For no tension, we have 5=2469m

For no sliding at the base b=534m

To satisfy both the conditions, & = 5.34 m

Minimum bottom width =534 m. Ans.

Problem 10.13. A masonry dam of trapezoidal section is 12 m high with o top width of
2 m. The water face has o better of 1 in 12. Find the minimuwm bottom width necessary so that -
tensile stresses are not induced on the base section. Assume density of masonry = 2300 kg/m?, .
that of water = 1000 kg/m?* and no free board. (AMIE, Summer 1984)

Sol. Given :
Height of dam, H=12m
Top width, a=2m
Slope of water face =1in 12
1 CD CD
or tan @ = 12 = aD 13
Length Ch=1m

Density of masonry, p, = 2300 kg/m?
Weight of density of masonry,
wy = 2300 x 9.81 N/m?
Density of water, p = 1000 kg/m?
Weight density of water,
w = 1000 x 9.81 N/m?.

No free board means the depth of water is equal

to the height of dam.
Depth of water, A =12m

Consider one metre length of the dam.

The forces acting on the dam are :

The force F due to water acting on the face AC
is perpendicular to the face AC. This force F is resolved
into two components F, and Fy as shown in Fig. 10.18.

(i) Force F, = Force due to water acting on

vertical face AD
=wxAx}

——— B ——————p
Fig. 10.16

! 2
=1000x9.81x(12x1)x1?-
= 72000 x 9.81 N.

12
The force F_ acts at a height of 5 = 4 m above the base of the dam i.e., from pomt A.

(i) The force F, = Weight of water in the wedge ADC
=w x Area of triangle ADC x 1
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12x1

=1000 x 9.81 x x1=6000x9.81N.

1
The line of action of Fy is at a distance of zm from line AD.

(iii} Weight of dam, W = w, x Area of trapezoidal x 1

a+b

2

=2300x9.81><( JxHxl

245
= 2300 x 9,81 x 5 x12x1

= 13800 x 9.81(2 + b) N.

The weight of the dam (W) is acting at the C.G. of the dam. The position of C.G. of the
dam (i.e., distance AN in Fig. 10.16} is obtained by splitting the trapezoidal into triangles and
rectangle, taking the moments of their areas about A and equating to the moment of area of
the trapezoidal about the point A.

_ b
{—1~22Xle§+l2x2x(1+1)+Mx[3+%x(b—3)]=(a+ ]xHxAN

\ 2 2
or 4+48+6(b—3)x{3+b_3J=(2+b]><12xAN
3
or 52+6(b—3)(b;6J=6(2+b)xAN
o A 156+6( 36 +6)

Ixb6x2+H)
The resultant B cuts the base at M. To find the distance of M from A (i.e., distance AM or
d), take the moments of all forces about 