
Civinnovate

Discover, Learn, and Innovate in Civil Engineering

S.No.	Nanhttps://civinnovate.com/civil-engineering-n	otesbate	Page No.	Remarks/ Signature	
6.	TO DETERMINE THE SURFACE TENSION	09124		no-	
113	OF GUEN LIQUID AT LABORATORY		-	1.24	
	TEMPERATURE USING STALAGMOMETER			X0/ 102	
	AND COMPARE THE CLEANSING			004	
	POWER OF DETERMENTS 'C' and				
	Ч С				
		13.08			
		the state of the state			
21/10/		1 10 100			
	the second se	1.7. 1.4.			
		and and the			
		in the second			
		TAK !!			
			22 494		
-	States and the second		on all		
	Photo and a second second		c. a		
	https://civinnovate.com/civil-engineering-n				

Page No. 1

Date 08105
TO DETERMINE AND COMPARE THE ALKALINITY OF WATER SAMPLE 'A' AND'B' BY DOUBLE INDICATOR TITRATION METHOD.
APPARATUS REQUIRED:-
1) Burette
a) Pipette
3) Beakers
4) Lonical Flask
5) Stand with clamp
CHEMICALS REQUERED :-
1) Standard HCL(N150)
2) Water Samples
3) Phenolphthalein
4) Methyl Orange
THEORY :-
Alkalinity is a measure of the ability of water to
neutralize acids. The alkalinity of water is mainly due to the presence of :-
a) Soluble hydroxide only lottions)
b) Soluble bicarbonate only (H(03 ions)
() Soluble carbonate only (co32 ions)
d) A mixture of soluble carbonate and bicarbonate
LLO3 ² and HLO3 ions)
e) A mixture of soluble hydroxide and carbonate
LOH and co32 ions)
The presence of hydroxide (OH) and bicarbonate(H(03))
ions is not possible https://sivinforate.com/civil-engineering-notes bine together to
Form carbonate ((03 ²) ion.

Page No. https://civinnovate.com/civil-engineering-notes/ Name of the Experiment Date OH + H (03 -> (03 + H20 The types and extent of alkalinity present in water sample can be determined by titrating it against standard acid Using phenolphthalein and methyl orange as indicators. Hence this titration is known as double indicator titration. The chemical reactions involved can be represented by the Following equations. $OH^- + H^+ \longrightarrow H_2 O$ (1)(03 +H+ ---- +H(03 (2) $H(0_3^+H^+ \longrightarrow H_2 G_3 \rightleftharpoons aH^+ + (0_3^- - (3))$ A known volume of water sample is titrated against standard acid. The volume of acid used upto phenolph thalein end point (P) corresponds to reaction II and (2) only i.e. complete neutralization of options and half neutralization of costions. The volume of acid used up to methyl orange end point (M) corresponds to the reactions (1), (2) and (3) i.e. complete neutralization of OHT, cost and Hcost ions. The total amount of acid used From the beginning of experiment to methyl orange end point (M) corresponds to total alkalinity present in water sample. From the respective volume of acid used in phenolphthaking end point (P) and methyl orange end point (M), the respective concentration of various ions can be determined in terms of cacoz equivalents by using normality equation. The results may be summarized in the following table by which the amountipst//civinnovate.com/civil-engineering-indes, carbonates and bicarbonates can be calculated.

Flowchast For Alkalinity -

loom water sample in conical Flask us N/SO Hel in burette

1-2 gabbs brevolby marein

Pink colour. Titration with Hel.

Colourless (phenolphthalein end point)

1-2 drops methyl orange.

Vellow Colour

continue titration with HeI

Orange colour (methyl orange end point)

Repeat 3-4 times titration up to concurrent reading.

Name of the Experiment https://civinnovate.com/civil-engineering-notes/

SUMMARY OF RESULT

Conditions	Hydroxide ions	carbonate ions	Bicarbonate ions
	(OH-)	((03-)	(H(03)
If P=0	Nil	Nil	m
If P=M	m	Nil	Nil
If P=1/2M	Nil	2 P	Nil
Ifp<12m	Nil	. 2 P	M-2P
M CITE d JI	2P-M	2(m-p)	Nil.

Page No.

PROCEDURE

100 ml Of Water sample was pipette out into 250 ml conical flask. 1-2 drops of phenolphthalein was added to the sample. The burette was rinsed and filled with standard HCLINISO). The water sample was titrated against standard acid HCL From the burette till the pink colour just discharged or disappeared. The burette reading was noated as the phenophthalein end point (P). Now again 1-2 drops of methyl orange indicator was added to the same solution and process of titration was continued till the yellow colour changed to just orange which was noted as the methyl orange end point (M). The whole titrate value from the begining to the end was noted. The experiment was repeated to

get two concurrent readings.

https://civinnovate.com/civil-engineering-notes/

me of wate mpie 'A' 100		ette reading	9	
	Initial			Concurrent
100		Phenolphthaleinle	methyl orangerm	
	0	24.6	38.0	U
00	0	24.4	38.0	P= 24.4
00	0	24.4	38.0	M= 38.0
e, P>11.	m, th	e water co	ntains off and	co3- ions
alinity du	e to ot	Tions.		
				otions
20 1m00	water			
		ita	$x 24 \cdot 4 - 38) = 10$	8 ml
				to othe can
alculated	~	2	ty equation	
	V1	NI=V2N2		
		of acid con	id = N/50 (F=1)	
	ATTON F me of wi nolphthan hylotang mality of e, P>1/1 alinity dua volume o coml of normalit	ATEON FOR SAM me of water s nolphthalein re hyl orange red mality of stand ie, P> 1/2 m, th only. alinity due to oth volume of stan ooml of water normality of a	ATTON FOR SAMPLE 'A' me of water sample taken nolphthalein reading (P) = i hyl orange reading (M) = mality of standard acid the ie, P> 1/2 M, the water co- only. alinity due to ott ions. volume of standard acid u coml of water sample =(2) = ta normality of water sample	ATEON FOR SAMPLE 'A' me of water sample taken = 100 ml polphthalein reading (P) = 24.4 ml byl orange reading (M) = 38.0 ml mality of standard acid Hc1 = N (F=1 50 te, P> 1/2 m, the water contains OHT and only.

GOODLINEN Page No. Name of the Experiment https://civinnovate.com/civil-engineering-notes/ 10.8 × N/50 = 100 × N2 02, N2 = 10.8 × N/50 100 $N_2 = 0.00216 N$:. Concentration in gmls = Normality x eq. wt of on-= 0.00216 x 17 gmll (as 0H-) [Eq. wt of on=17, Eq wt of cacoz = 50] = 0.00216 × 17 × 50 gml (as (a(03) 17 = 0.108 ×103 mg1 litre = 108 PPM = 108 14.3 = 7.55° CLARK [14:3 ppm = 1° CLARK) Alkalinity due to coz ions The volume of standard acid with respect to cozions in Loomi of water sample = 2 (M-P) = 2(38-24.4) = 27.2 ml The normality of water sample with respect to cozions can be calculated by normality equation VINI = VIN2 08, 27.2 × N/SO = 100 × N2 :. N2 = 27.2 × NISD = 0.00544 N 100 : Concentration in gm1 litre = Normatify × eq. wr of Log-https://civinnovate.com/civil-engineering-notes/ = 0.00544 × 30 gm/l (as cog-)

EEq. wt of	(07 = 30	D, Equit of	$(a(o_2 = So_3))$	
	-		50 gm12 (as 30	(a(03)
	= 0.	272 × 103 mg	litre las ca	(03)
	= 27	tappm		
	= 2	72		
	10	1.30		
	= 1	9.02° CLATK		
RESULT FOR	SAMPLE	`A'		
The alka	linity of	water sam	pie 'A' due to	the
	D			
presence of	on and	(02 - ions.		
presence of The alkalin			= 7.55° clark	
The alkalin	nity due	to OH- ions .	= 7.55° clark	
The alkaling	nity due nity due	to OH- ions	= 19.02° CIQX	1<
The alkalin	nity due nity due alinity = (to OH^{-} ions T to (O_3^{-}) ions $T \cdot 55^{\circ} + 19$	= 19.02° (108 02°) (108K	
The alkaling	nity due nity due alinity = (to OH- ions	= 19.02° (108 02°) (108K	1<
The aikalin The aikali :. Total aika	nity due nity due alinity = (= 2	to OH^{-} ions to (O_{3}^{-}) ions $7 \cdot 55^{\circ} + 19$ $26 \cdot 57^{\circ}$ clark	$= 19.02^{\circ}$ (108 02°) (10815	1<
The aikalin The aikali :. Total aika	nity due nity due alinity = (= 2	to OH^{-} ions to (O_{3}^{-}) ions $7 \cdot 55^{\circ} + 19$ $26 \cdot 57^{\circ}$ clark	$= 19.02^{\circ}$ (108 02°) (10815	1<
The aikalin The aikali Total aika OBSERVATEO	nity due nity due Alinity = (= = N TABLE	to $0^{\text{H}^{-}}$ ions to $(0^{\text{J}^{-}})$ ions $7 \cdot 55^{\circ} + 19$. $26 \cdot 57^{\circ}$ clark For sample	= 19.02° (108 02°) (10815 5.	≺
The aikalin The aikalin The aikalin Total aika OBSERVATED M Volume of	nity due nity due Alinity = (= = N TABLE Buxe	to OH- ions to (03 ions T.55° + 19. 26.57° CLATH FOR SAMPLE HE reading	$= 19.02^{\circ}$ (108 02°) (10815 5. 'B' (B'	Loncurren
The aikalin The aikalin The aikalin :. Total aika OBSERVATED OBSERVATED M Volume of Water Sample	nity due nity due alinity = (= = N TABLE Buse B) Initial P	to OH-ions to (03-ions T.55°+19. 26.57° Clark FOR SAMPLE HE reading the reading	= 19.02° (198 02°) (1981 'B' 'B' P) methyl osangerm)	Loncurren
The aikalin The aikalin The aikalin :. Total aika OBSERVATIO OBSERVATIO M Volume of Water sample . LOD	nity due nity due alinity = (= = N TABLE Buse B) Initial P	to OH-ions to (03- ions 7.55°+19. 26.57° Clark FOR SAMPLE HE reading Phenolphthaleiol 14.8	= 19.02° (108 02°) (10815 (. 'B') (m L) P) methyl osange(m) 33.1	Loncurren
The aikalin The aikalin The aikalin The aikalin The aikalin Total aika OBSERVATED OBSERVATED (mt) N Volume of Water sample . 100 . 100	nity due nity due Alinity = 1 = 2 N TABLE BUXE B) Initial P O	to OH-ions to (03- ions T.55° + 19. 26.57° Clark FOR SAMPLE HE TEADING Phenoiphthalein(14.8 14.4	= 19.02° (108 02°) (10815 'B' 'B' pimethyl orangelm) 33.1 33.1	Loncuttent Teading (M1
The aikalin The aikalin The aikalin :. Total aika OBSERVATIO MUOLONE OF Water Sample . 100	nity due nity due alinity = (= = N TABLE Buse B) Initial P	to OH-ions to (03- ions 7.55°+19. 26.57° Clark FOR SAMPLE HE reading Phenolphthaleiol 14.8	= 19.02° (108 02°) (10815 (. 'B') (m L) P) methyl osange(m) 33.1	Loncurrent reading cms p=14.4
The aikalin The aikalin The aikalin :. Total aika OBSERVATIO N Volume of Water Sample . 100 . 100 . 100	nity due nity due alinity = 1 = = N TABLE Buxe B) Initial P O O	to $0H^{-}$ ions to $(03^{-}$ ions $7 \cdot 55^{\circ} + 19$. $26 \cdot 57^{\circ}$ clark For sample He reading the reading $14 \cdot 8$ $14 \cdot 4$ $14 \cdot 4$ $14 \cdot 4$	= 19.02° (108 02°) (10815 'B' 'B' pimethyl orangelm) 33.1 33.1	Loncurrent reading (M) P=14.4
The aikalin The aikalin The aikalin :. Total aika OBSERVATION Wolume of Water Sample . 100 . 100 . 100 . 100	nity due nity due alinity = 1 = = N TABLE Buse B) Initial P O O O O FOR SAM	to $0H^{-}$ ions to $(03^{-}$ ions $7 \cdot 55^{\circ} + 19$. $26 \cdot 57^{\circ}$ clark For sample He reading the reading $14 \cdot 8$ $14 \cdot 4$ $14 \cdot 4$ $14 \cdot 4$	$= 19.02^{\circ} (108)$ $(100) (1$	Loncurrent reading (M. P=14.4

GOODLINEK	Name of the Experimentitips://civinnovate.com/civil-engineering-notes/
	Since, P< 1/2M, the water sample contains (03 - and H co3 - ions only.
	Alkalinity due to co3 ions. The volume of standard acid with respect to co3 ions in form of water sample B = 2P = 2x14.4
	= 38.8 ml
	The normality of water sample with respect to coz - can be calculated by using normality equation. VINI = V2N2
	Here, VI = Volume of acid consumed NI = Strength of acid
	N2 = Strength of water sample 'B'
	07, 28.8 × N/50 = 100 × N2
	$N_2 = 28.8 \times N/S0 = 0.00576 N$
	$\frac{2}{30} = 0.00576 \times 30 \text{ gml}(45 \text{ ca(03)})$
	$\begin{bmatrix} Eq \ \omega \vdash of \ (o_3^{-1} = 30), Eq \ \omega \vdash of \ (a(o_3 = 50)] \\= 0.288 \ gm \ of \ (a(o_3) \ i) \vdash ve \\= 0.288 \ x + 0^3 \ mg \ of \ (a(o_3) \ i) \vdash ve \\= 288 \ mg \ of \ (a(o_3) \ i) \vdash ve \\\end{bmatrix}$
	$= 283$ https://civinnovale.com/civil-engineering-notes/ $= 20-13^{\circ} (103 \text{ K}.$

ame of the Experiment https://civinnovate.com/civil-engineering-notes/te	
Alkalinity due to Mc03 ions.	
The volume of standard acid with respect to coz ion	S
in Loomi of Water Sample. = (M-2P)	
= (33·1 - 2×14·4) = 4·3 ml	-
The normality of water sample with respect to neos	
ion can be calculated by normality equation	
$\Lambda^{T}N^{T} = \Lambda^{T}N^{T}$	
4.3 x N/50 = 100 x N2	
:. N2 = 4:3x N/SO = 0.00086 N	
601	
: concentration in gml litre = Normality xeq wt of heo	3
= 0.00086 × 61 gml (as HCO3-)	
$= 0.00086 \times 61 \times 50 \text{ gm} / 1 (95 (9(03)))$	
EEq wh of HCO3 = 61 and Eq wh of caco3 = 50]	
= 0.043 gm of cacoz litre	
= 0.043 x10 ³ mg of (aco31 litre	
= 43 mg of cacoziditre	
= 43 ppm	
= <u>43</u> 14.3	
= 3.006° CIGYIK.	_
RESULT FOR SAMPLE B'.	
The alkalinity of water sample 'B' is due to the presen	Dre
of Log and Hlog jons.	
The alkalinity due to co3 - ion = 20.13° clark	
The alkalinity due to Hog ions = 3.006° clark https://civinnovate.com/civil-engineering-notes/ 	
$= 23.136^{\circ} (107 \text{ K})$	

GOODLINCK Page No. Name of the Experiment Name of the Experiment Date COMPARISON OF ALKALENETY OF WATER SAMPLE 'A' and 'B' Water Sample 'A' Water sample 'B' - The alkalinity of water sample - The alkalinity of water 'A' is due to the presence of sample 'B' is due to presence of OH- and log ions. (03 - and M(03 - ions. - The alkalinity due to on - The alkalinity due to logions is 7.55° clark ions is 20.13° clark - The alkalinity due to loz-- The alkalinity due to HLOT 100 5 15 19.02° CLAOK ion is 3.000 clark ... TOTAL ALKALINITY = 26.57° (100K ... TOTAL ALKALINITY =73.136° CLARK. Conclusion:-Hence, in this way the ankalinity of water sample A' and 'B' can be determined by double indicator titzation. PRECAUTIONS :a) All the apparatus should be washed with distilled water b) The burette and pipette should be washed with respective liquids. () Indicator should not be in excess d) These should not be any red tinge in https://civinnovate.com/civil-engineering-notes/

GOODLINGK	Name of the Experiment 2://civinnovate.com/civil-engineering-notes/
	DETERMINE THE "HARDNESS OF WATER SAMPLE COMPLEXOMETRICALLY USING EDTA (MILOD)
	APPARATUS REQUIRED
	1) Burette
	2) Pipette
	3) (onical flask
	4) BEAKERS
	5) Stand with clamp
	CHEMICAL REQUIRED
	1) Standard M/100 EDTA
	a) Hard water or sample water
	3) EBT indicator
	4) NH3-NH4CI buffer (pH=10)
	THEORY
	Water which consumes considerable amount of soap to
	produce lather or form is known as hard water. Hardness.
	of water is caused by the presence of bicarbonates, chlorides.
	and sulphates of calcium and magnesium. On the basis
	of saits present in water, the hardness of water is
	classified as is remporary and (ii) Permanent hardness.
	i) Temporary hardness:
	It is due to the presence of bicarbonates of calcium and
	magnesium, which can be removed by boiling.
	$ca(H(0_3)_2 \xrightarrow{\Delta}) ca(0_3 \downarrow t (0_2 + h_2 0)$
	mg(H(03)2, mg(031 + (021+H20
	https://civinnovate.com/civil-engineering-notes/

Name of the Experimen https://civinnovate.com/civil-engineering-notes/ Date

ii) Permanent hardness:

It is due to the presence of sulphates and chlorides of calcium and magnesium which cannot be removed by Simple boiling. The total hardness (Temporary and permanent) can be determined by complexometric titration using EDTA, in presence of EBT as an indicator. Permanent hardness can be determined by removing temporary hardness (converting bicarbonates into insoluble carbonate) by boiling Followed by titration with EDTA. The difference in two titre values corresponds to temporary hardness of water.

Temporary hardness = Total hardness - Permanent hardness The hardness is expressed in terms of calog equivalent.

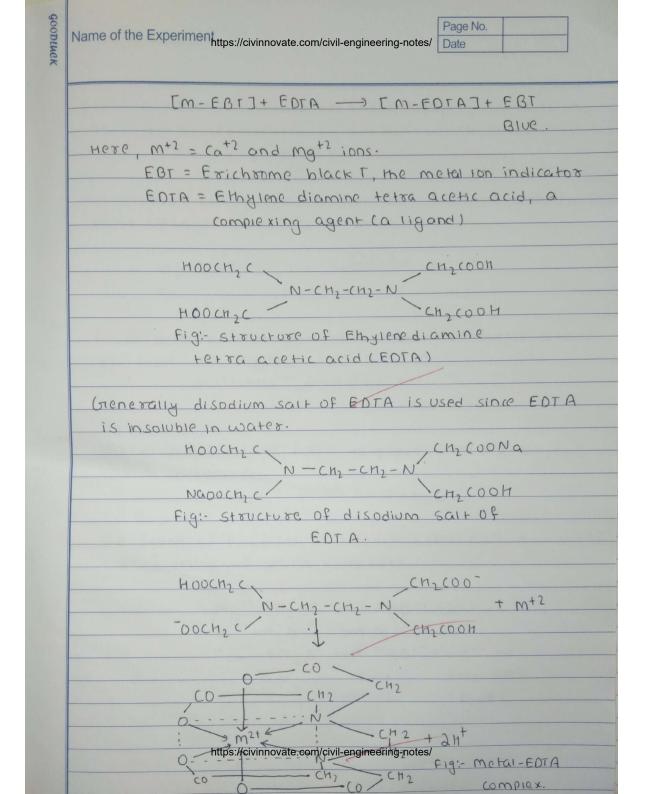
The determination of hardness (total and permanent) is based on the following principle!

i) The indicator Eriochrome black FLEBI) forms a wine red

Unstable complex with metal ions (cat2 and mg+2) present

in hard water in alkaline medium.

M+2 + EBT -> [M-EBT]


Unstable complex (Wine red)

Page No.

i) As this wine red solution is titrated against standard EDTA, the M⁺² ions (cat2 and mg⁺²) present in hard water form stable metal EDTA complex (cat2 and mg⁺²) mg⁺² + EDTA -> EM-EDTA J

Stable complex (colorless) When all the Ca⁺² and mg⁺² ions in water are complexed with EDTA, then EDTA replaces ca⁺² and mg⁺² ions from https://civinnovate.com/civil-engineering-notes/ the unstable complex, as a result EBT is set free and

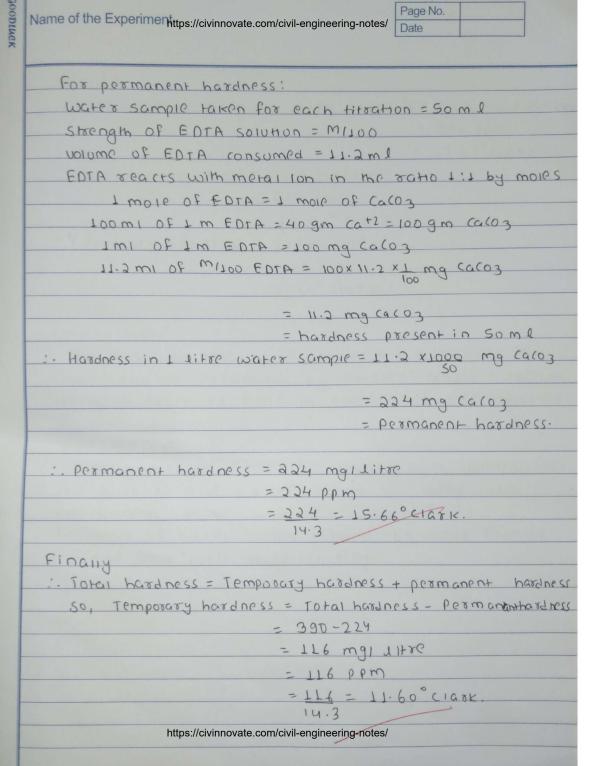
turns blue color at the end point in alkaline medium (PH=10)

Page No. JOODLINCK Name of the Experimentatps://civinnovate.com/civil-engineering-notes/ EBT is a metal ion indicator. For simplicity its sodium Salt can be represented by Nahzx which ionizes as Nah, x = Nat + H2 x-The anion of EBT acts as an acid-base indicator with two color changes at different medium. $H_2 X = \frac{p^{H_3}=6\cdot3}{11\cdot5} H_X = \frac{p^{H_3}=11\cdot5}{11\cdot5} X^{----}$ blue Yellow. Red At pt 8-10 the blue form of indicator thx - forms a wine red color with mg+2. $Mg^{+2} + Hx^{--} \rightarrow Mgx^{-} + Ht$ wine red. The disodium sait of EDTA is represented by Nath, D Which jonizes as, $N_{a,H}D = 2Nat + h_D D^{--}$ The anion of EDFA(M, D-) reacts with cat2 and mg+2 ions forming the stable complexes. $mg^{+2} + m_2 D^- \longrightarrow mg D^- + 2m^+$ $(a^{+2} + H_2 D^{--} \rightarrow (a D^{--} + 2H^{+})$ $H_2D^- + M_9X^- \rightarrow M_9D^- + HX^- + H^+$ Free EBT (BIUC) https://civinnovate.com/civil-engineering-notes/

Name of the Experiment https://civinnovate.com/civil-engineering-notes/ate

PROCEDURE

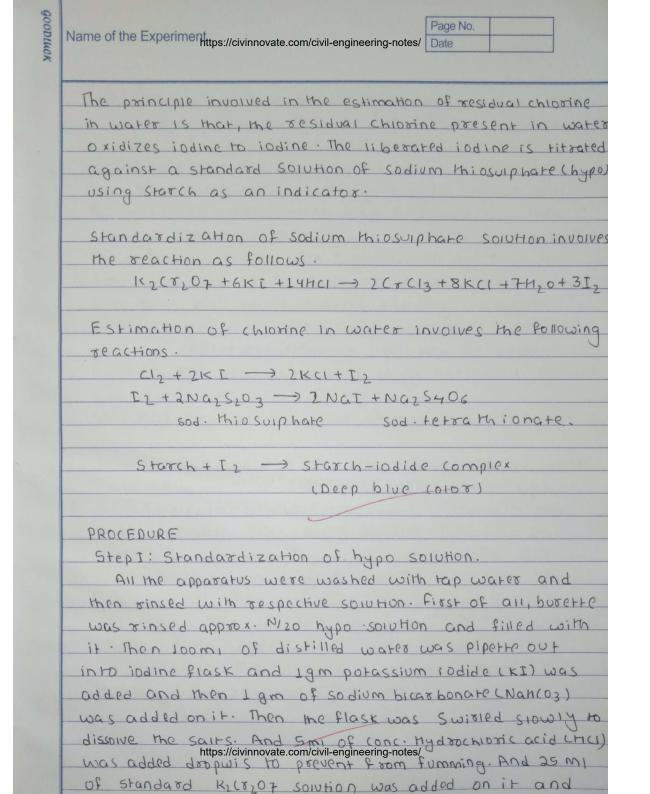
For determination of total hardness. First of all, all the apparatus required were taken and washed with water as well as rinsed with respective acid or sample water. Burette was rinsed using EDIA Solution where as pipette was rinsed using water sample. The two beakers were filled with water sample and EDTA solution respectively. So ml of water sample was pipette out into 250 ml conical FLASK Where 2ml of BUFFER (NHYOH -NHYCL) was added. Finally, 250 mt 2-3 drops of EBT indicator was added. The solution of water sample, buffer and indicator was titrated with EDFA solution till the wine red color changes into blue at the end point. Then, the reading was taken for brette and noted. The same process was continued for few more times to get the concurrent reading.


For determination of permanent hardness. 250 ml of water sample was taken in 250 ml volumetric Flask and then it was transferred into 500 ml beaker. The beaker was boiled (heated) for half an hour till the volume reduced to 100 ml. The 500 ml beaker was then kept to cool and then it was filter through whatman 40 filter paper in 250 ml volumetric flask. The water in volumetric flask was then made exactly 250 ml by adding distilled water and was shaked well to make it homogeneous. So ml of this water sample was pipette out from the volumetric flask into 250 ml https://civingovate.com/civil-engineering-notes/ conical flask. Then aml buffer and 2-3 drops of EBT was added in the conical flask. finally the sample was

Name of the	Experiment	https://civinnovate	e.com/civil-engined	Page No. ering-not <u>es/</u> e	
the u the o the o	vine red c	S taken f	continued	on from bu ear blue a rite and w For 300	t end point . as noted .
OBSE	RVATION	TABLE			
For	total har	dness			
			each tita	ation = 50 mJ	L
				$m_{100}(f=1)$	
	icator used				
	atton medi				
	point : Win				
NO. OF	Burette	reading	EDTA)	(oncur rent	
obs	IniHallm1)	Finalme	Differencelme	Trading (m1)	
1	0	20.2		2	
2	0	19.5	19.5	19.5	
3	0	19.5	19.5		
			/		
For	permanent	hardness			
				toation = 50	ha
	DIUHON Hake				
	ndicator us				
	itration m		IKaline		
	nd point =			LUP	
	- Form -	white vid	GRAIT		
		https://civinnovate	e.com/civil-engine	ering-notes/	

T https://civinnovate.com/civil-engineering-notes/ 0 -1 cu ag T 20 0 char. depte 0 0 to wate + 2 -T 30 ha d d コアワナ ssoupe hordno Sam pre 250 3 rod 3 1 dro 3 mates WOINP Clear CIP 05 1 Col 20 Pur 2 Tit action 0 2 -PICSK 610 6100 R Tibation Boiled 20100 g 3 5 dition Pody old 0 P 80,0107 T 2) Man an 101002. PF 1n 1 0 3 S 0 Read 书 SIL m with ø 350 Oup 01 CU F 2 0 11 100 S NHY P 0 T T D OT m I 5 63 5 5 2 5 0 2 0 m Z Po 11 MA JUPR 0 1700 D Br -100 + 3 D Z KOZ 0 7 -2 -1 × 2 Z SKE 0 0 5 30 Z 40 pro https://civinnovate.com/civil-engineering-notes/

ame of the	e Experiment	https://civinnovat	e.com/civil-engi	Page No.	
			Ū	Date	
NO.08	Burett	e reading (EDTA)	Concurrent	
Obs	Initian(me)	Fingl(me)	Difference	me) reading(me)	
1	0	11.7		3	
2	0	11.2	11.2	11.2.	
3	0	11.2	11.2	1 marca in the	
CALC	ULATION .			Called States	
For	total have	Iness		Alex I am make the	Kenne and Aller
wa	ater sampl	e taken fo	or each	titoation = 50	nl
	rength of				
	ume of E				Suid and
ED	TA reacts	with meta	1 ion in 1	he ratio of 1!	1 by mores
	mole of				5
		·		catt = 100 gm (a (03
				((03	,
				(19.5 mg (alo	3
			/	100 9	
			= 19.5	mg Caloz	
			= Hardn	ess present in	50 mi wate
			Samp	ę .	
: Har	dness pres	ent in 1	litoe wa	ter sample =19	5 × 1000 So
			1.1.111.11		mg (q(0
				= 390 1	mgCaloz
				= Total	hardness
· - Ī	otal hardne	55 = 390 m	gilitre	1 P. 77 1	
		= 390 1	pm		
		- 3 90 https://civinnovat	-27.270	LIGOK.	
		https://civinnovat	e.com/civii-engli	ieening-notes/	



Name of the Experiment https://civinnovate.com/civil-engineering-notes/e
RESULT
Total hardness of given water sample = 3 90 mg/ l of calo
= 390 ppm
= 27.27° CIGTK.
Permanent hardness = 224 mg/litre
= 224 ppm
= 15.66° CIGOK
remporary hardness = 116 mg/ sitre
= 116 ppm
= 11.60° (108K.
(ONCLUSION:
Using of standard EDIA in presence of EBr indicator.
PRECAUTEON
- All the appartatus Should be washed with distilled water - The bureffe and pipette Should be rinsed with
corresponding solution
- The colour of water sample should be clear blue at the end point with no voilet tinge.
How 10
https://civinnovate.com/civil-engineering-notes/

Name of t	Page No. 7, https://civinnovate.com/civil-engineering-notes/ Date 08/19.
TO EST	IIMATE THE AMOUNT OF RESIDUAL CHLORINE IN
WATE	ER BY IODOMETRIC TITRATION.
APP	ARATUS REQUIRED
0)B	uzette
b) p	ipette
C) B	BEAKETS
d) 2	50 ml Todine flask with stopper.
CHE	MICAL REQUIRED
a) P	otassium i odide
b)	Sodium bicarbonate
c) S	sodium thiosulphate
d)	Potassium dichoomate
6) (onc. hydrochlooic acid
P) 9	starch solution.
THE	ORY
C	nlozination is addition of chlozine compounds to wated
for	disinfection. It is the most common and effective
met	hod to disinfect drinking water suppries. Chlorine
is c	idded to water in the form of bleaching powder,
	orine either in aqueous solution or chlorine
0	, chloromines etc. when chlorine is added to water
	h of these produces free residual chloring that
	troys pathogenic (disease - causing) micro-organism.
	e residual chlorine is chlorine present in the form
	dissouved chionine gas, hypochiorous acid and
hy	pochlorite ions. The presence of free residual chlorine https://civinnovate.com/civil-engineering-notes/ drinking water is correlated with the absence of
	eases causing organisms and thus is a measure of

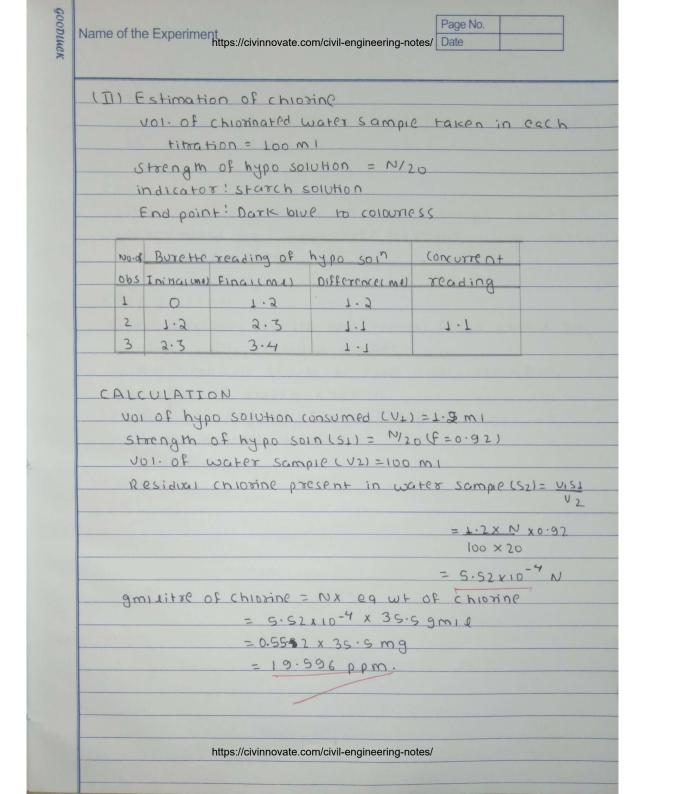
GOODING

Page No. Name of the Experiment https://civinnovate.com/civil-engineering-notes/ the potability of water. when chlonine leither gas or that released from bleaching powder) is dissolved in water, it decomposes rapidly into hypochlozous (HO(1) acid and hydrochlozic (HCI) acid. $CaO(1_2 + H_2 O \longrightarrow (a(OH)_2 + Cl_2)$ Bleaching powder (12+H20 ---- HOLI+H++CI Hypochloodus acid is more reactive so it dissociates into hydrogen and hypochlorite ions. HOCI = Ht + CI OCI The hypochiovite ion is responsible for killing germs. Similarly When chloramine is used, it forms hypochlorous acid along with ammonia NH2CI+H20 -> NH3+HOLL Hypochiorous acid is the most effective form of free residual i.e. Chlorine available for disinfection. The excess of overdose of chiovine imparts an unpleasant taste to water and also injurious to health mence the amount of residual chiorine in water needs to be estimated. The residual chibring in water is determined by iodometorically. Iodometry refers to the titration of iddine librated by oxidation of iddine against standard solution of reducing agent like thiosupphate. https://civinnovate.com/civil-engineering-notes/

https://civinnovate.com/civil-engineering-notes/ 1) FIOWCHGET FOR Stonderdizetion of Narson (bypo) Solution Juan of distilled water in conical fask Lam NGHLO3t 1 gm & E + 5 ml conc her dropwise + 25 m1 Stand. K2 (1207 501) lid closed and kept in deak after 5 mins. Rinse inner wall of flask and cork with distilled water , titration with hypo soin I mi starch soin 1 Again titration with hypodropwise light blue colour (End point) 2) Flow chart for estimation of residual Chippine in water lomillog,) KJ, Soin in constal flask 100mi pt water sample: Rinse inner wan of flask and cork with distilled water (Stoow yenow colour) I I M OF Starch soin dark hure colour I Titration with hypo son sample (plouness LEnd point) https://civinnovate.com/civil-engineering-notes/

	Page No.	_
Name of the Experiment https://civinnovate.com/civil-engineering-notes/	Date	

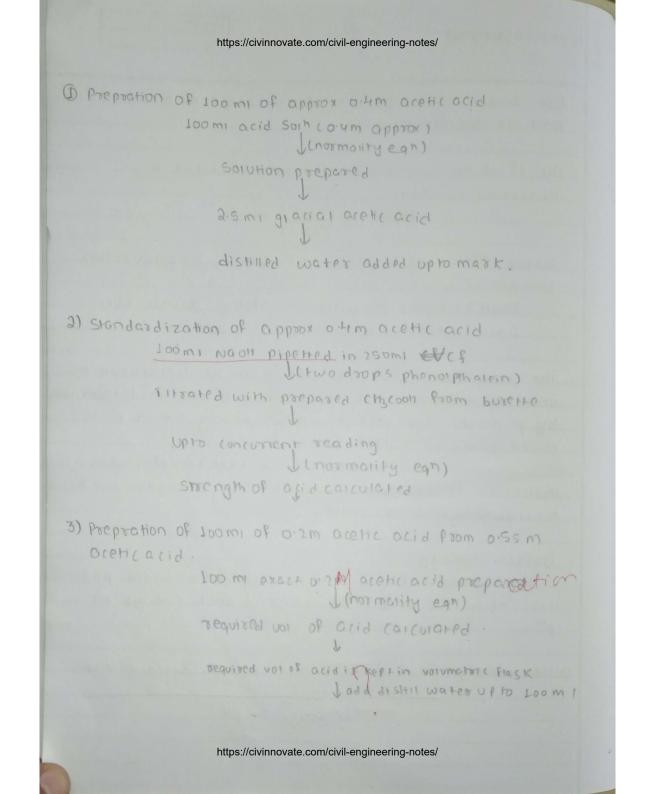
GOODLINEN


then immediately it was closed by lead and was kept in dark for about 5 minutes. Then after 5 minutes, stopper(lead) was opened and rinsed with dis tilled water and also the inner walls of the conical flast. Then, the solution was titrated with hypo solution until the greenish yellow colour was a preared and then I mi of starch-iodide complex was added in it and again, it was titrate with hypo solution but that time dropewise and at the endpoint solution but that time dropewise and at the endpoint solution colour changed into sky blue colour, Burette reading was noted and titration was repeated two or more times to get two concurrent reading and then the strength of hypo solution was calculated using normality equation.

Step II: Estimation of residual chlorine in water sample.

10 millo://) KI solution was pipette out into the jodine flask and loomi of chlorinated water sample was added and immediately mouth was closed with lead and plasted in dark for 5 minutes. Then lead and inner wall of conical flask was rinsed with distilled water and the colour of solution turned into straw yellow colour. Then I mill of starch solution was added and titration was continued with hypo solution drop wise till the end poind where solution turned into colourless. The process was repeated until like two concurrent reading was noted.

https://civinnovate.com/civil-engineering-notes/


Name of the Exp	periment https://d	civinnovate.com/civ	ril-engineering-notes	ige No. A e
OBSERVA	TION			
(I) Stan	dardization	of sodium	n thiosulph	ate (Hypolsolution.
Volum	e of potass	ium dicha	omate Soluti	on taken in
each	titoation =	25 ml		
Streng	th of stand	lard potass	ium dichto	mate son = N(F = 1.01)
Indic	ator = star	ch solution)	20
End	point = Dar	K blue to	sky blue.	
No. of	BUJEFFE	reading of	hypo soin	Concurrent
obs	Initiai(m1)	Final(me)	Differenceune) reading (me)
L	0	27.5	27.5	
2			27.4	27.4.
3	0	27.4	27.4	
Streng Vol Of Using	ATTON K2(T2O7 SC M OF K2(T2 NG2S203 (NG2S203 (NG2S20) (NG2S203 (NG2S20) (NG2S20) (NG2S20 (NG2S20) (NG2S20) (NG2S20) (NG2S20) (NG2S20) (NG2S2) (of (SL) = hypo) (on equation 203 (hypo)	N/20 (f=1 sumpd (V2)	= 27.9 $= 27.9$ $= 27.9$
	https://d	civinnovate.com/civ	il-engineering-notes	1

Name of th	Page No. https://civinnovate.com/civil-engineering-notes/
RESU	
Th	e amount of residual chlorine in water sample
	19.596 PP M
CONC	LUSTON
Th	e residual chlorine in water sample can be
de	termined by iodometric titration using starch
PRE	ECRUTION
a) Th	ne burette, pipette and conical flask should be
	shed with distilled water.
	he titration should be done drope-wise after Ldition of starch solution.
C)	The content of flask shoud be kept in
	Lark before titration.
Houra	26

Name of the Experiment :-41 Page No. https://civinnovate.com/civil-engineering-notes/ Date 0812	6
TO PREPARE THE STANDARD BUFFER SOLUTIONS USING	ACETEC
ACID AND SODIUM ACETATE AND MEASURE THE APPI	ROXIMATE
PH OF THE GIVEN UNKNOWN SOLUTIONS BY UNIVER	SAL
INDICATOR METHOD.	
APPARATUS REQUIRED'-	
a) loome volumetoic flasks	
b) Test tubes and test tube stand	
c) Beakers	
d) Pipette	
e) Conical Flask	
F) Funnel and dropper	
CHEMICALS REQUIRED :-	
a) Griacial acetic acid	
b) Standard Nabh	
c) Pure AR sodium acetate	
d) U Diversal indicators	
e) Phenolphthalein.	
THEORY	
A buffer is an aqueous solution which has	G
constant p" value, and resists the change in p	11 on
addition of small amount of acid and base	
$CH_{3}COON + H_{2}O CH_{3}COO^{-} + H_{3}O^{+}$	
CH2COONG CH2COOT + NGT	
https://civinnovate.com/civil-engineering-notes/	

GOODLINGN Page No. Name of the Experiment https://civinnovate.com/civil-engineering-notes/ The acidic buffer consists of a mixture of a weak acid and its soluble ionic salt The ph of the acid buffer can be calculated by Henderson equation. $p^{h} = pKa + log [salt] - (l)$ [acid] Where pira = - log ka of the weak acid, ka = ionization constant of weak acid [sait] = molar concentration of the soluble sait [acid]= molar concentration of weak acid The approximate p" of the solution can be determined by universal indicator, but the accurate pt can be determined by ph meter. The buffer solution having known ph is called standard huffer. Universal indicator is a mixture of several indicators. It can show several colour changes over a wide range of ph values. Buffer Capacity:-The numbers of moles of acid or base added per litre of buffer require to cause a unit change in DH Buffer capacity = NO OF moles of acid or base added to the huffer solution Change in ph https://civinnovate.com/civil-engineering-notes/

N	lame of the Experiment https://civinnovate.com/civil-engineering-notes/ Date
	https://civiiniovate.com/civii-engineering-notes/coace
-	For the prepartion of standard acidic buffer solutions
_	Following steps are carried out.
_	i) Preprotion of 100mi of approx 0.4 m acetic acid
	i) standardization of the prepared acetic acid with standard woot
	iii) Prepration of Loom of exact or 2m acetic acid from
	the above standard a cetic acid
	iv) prepartion of 100ml of 0.2m sodium acetate
-	v) Prepration of standard acidic buffer solutions by
	mixing 0.2 m acetic acid and 0.2 m sodium acetate
	in different proportions by volume in gitest tube
	PROCEDURE:-
	The process involves the following steps:-
	Step I ! Prepration of Loome approx. o.4 M acetic aci
	loome of an acetic acid solution of 0.4m was
	prepared by calculating the required volume of
	acetic acid using normality equation. estrength of
	glacial acetic acid = 16m)
	VI=100ml V2=?
-	$S_1 = 0.4 M(approx)$ $S_2 = 16M$
	Using
-	$V_{1}S_{1} = V_{2}S_{2}$
-	Or, V2 = VISL
	52
	16

https://civinnovate.com/civil-engineering-notes/ 4) Prepration of Loomi of exact 0.2m sod acetate soin. wt of sod a cetate calculated FOODSPEODED INTO V.S. distilled water added upto mark 5) Prepartion of Standard acidic buffer solutions by mixing oim acetic Goid and 0.2M sod acetate soin 12 test tubes nomed as 11213, -- 3, AI, AZ and A3 Universal indicator 5-5 drops in each 12 testubes Luci in each be lome Diff vol of Chalvon and Chalvong added in JAI, AL OND AZ & UNKNOWN buffer Soin taken Color mached of AL, AL and A3 with 1, ..., 9, restubes p" calculated using honderson's https://civinnovate.com/civil-engineering-notes/

2.	5 ml of	glacial ace	tic acid w	as taken in	to
VO	lumetoric	flask and	distilled wi	the water wa	s added
up	to the ma	ark and s	haked well	Then the w	hole
SI	olution wo	s poured in	to burette	UPTO ZE 30	mark
St	ep IL' Sta	nda od i zatio	n of the ap	prox 0.4 m c	acetic
	aci				
	10 mi of	standard No	anh was pir	petted out in	250 m l
				phenolphalei	
				pared acetic	
				INF (COLOTIESS	
				ading occured	
	1				
10.0f	V01 0 f	Bu	rette readin	19	concorrent
				Difference(me)	
				0	
<u>0 bs</u> 1	Nach(m1)	IniHailma) 0 1.9	finaleme	Difference(me) 1-9	
obs	Nach(m1)	Initiailma)	final(MA) 1-9	Difference(me) 1-9 1-8	reading
0 bs 1 2 3	Nach(m1) 10 10 10	IniHai(Ma) 0 1.9 3.7	final(M4) 1.9 3.7 5.5	Difference(me) 1 - 9 1 - 8 1 - 8	reading 1.8.
0 bs 1 2 3	Nach(m1) 10 10 10	IniHai(Ma) 0 1.9 3.7	final(M4) 1.9 3.7 5.5	Difference(me) 1-9 1-8	reading 1.8.
0 bs 1 2 3	Nach(m1) 10 10 10 e stoengt	Initiai(ma) O J.9 3.7 Of acid i VASA = VB	final(M1) 1.9 3.7 5.5 S Calculate SB	Difference(me) 1 - 9 1 - 8 1 - 8	reading
0 bs 1 2 3	Nach(m1) 10 10 10 e stoengt	Initial(M_{1}) 0 1.9 3.7 0f acid 1 VASA = VB A = 1.8	$\frac{1.9}{3.7}$ $\frac{5.5}{5.5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$	Difference(me) 1-9 1-8 1-8 1-8 d by norma	reading
0 bs 1 2 3	Nach(m1) 10 10 10 e stoengt	Initial(M_{1}) 0 1.9 3.7 0f acid 1 VASA = VB A = 1.8	$\frac{1.9}{3.7}$ $\frac{5.5}{5.5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$	Difference(me) 1-9 1-8 1-8 1-8 d by norma	reading
0 bs 1 2 3	Nach(m1) 10 10 10 e stoengt	Initiai(ma) O J.9 3.7 Of acid i VASA = VB	$\frac{1.9}{3.7}$ $\frac{5.5}{5.5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$	Difference(me) 1-9 1-8 1-8 1-8 d by norma	reading
0 bs 1 2 3	Nach(m1) 10 10 10 10 e stoengther V V	Initial(M_{A}) 0 1.9 3.7 0 of acid (VASA = VB A = 1.8 B = 10 mi	$\frac{1.9}{3.7}$ $\frac{5.5}{5.5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$	Difference(me) 1.9 1.8 1.8 d by normal ous	reading
0 bs 1 2 3	Nach(m1) 10 10 10 10 e stoengther V V	Initial(M_{A}) 0 1.9 3.7 0 of acid (VASA = VB A = 1.8 B = 10 mi	$\frac{1.9}{3.7}$ $\frac{3.7}{5.5}$ $\frac{5.5}{5.5}$ $\frac{5.5}{5.5}$ $\frac{5.5}{5.5} = 7.5$ $\frac{5.5}{5.5} = \frac{7.5}{5.5}$	Difference(me) 1.9 1.8 1.8 d by normal ous	reading
0 bs 1 2 3	Nach(m1) 10 10 10 10 e stoengther V V	Initial(M) 0 1.9 3.7 0f acid (VASA = VB A = 1.8 B = 10m1 $A = 10 \times 0.12$	$\frac{1.9}{3.7}$ $\frac{3.7}{5.5}$ $\frac{5.5}{5.5}$ $\frac{5.5}{5.5}$ $\frac{5.5}{5.5} = 7.5$ $\frac{5.5}{5.5} = \frac{7.5}{5.5}$	Difference(me) 1.9 1.8 1.8 d by normal ous	reading
0 bs 1 2 3	Nach(m1) 10 10 10 10 e stoengther V V	Initial(M) 0 1.9 3.7 0f acid (VASA = VB A = 1.8 B = 10m1 $A = 10 \times 0.12$	$\frac{1.9}{3.7}$ $\frac{3.7}{5.5}$ $\frac{5.5}{5.5}$ $\frac{5.5}{5.5}$ $\frac{5.5}{5.5} = 7.5$ $\frac{5.5}{5.5} = \frac{7.5}{5.5}$	Difference(me) 1.9 1.8 1.8 d by normal ous	reading

Page No. Name of the Experiment https://civinnovate.com/civil-engineering-notes/ Step: II: - Prepration of loome of 0.2 M acetic acid from 0.5583 m acetic acid. LOOMI OF exact 0.2 m acetic acid was prepared from the above standard acetic acid solution. By diluting the required volume of acid was calculated Using normality equation. VISI = VISI VJ=100ml VJ>7 $S_{1} = 0.2 M$ $S_{2} = 0.5 S_{3}$ 01, V2 = 100 × 0.2 0.55 1. V2 = 36.36 ml 36.36 MIOF acetic acid (0.55 m) from the burethe was taken into loom, volumetric flask and the volume was adjusted by adding distilled water up to the mark Step! TV! Prepaction of Loom of 0.2 M sodium acetate solution 100ml of exact 0.2m sodium acetate solution was prepared by dissolving the calculated amount of pure dry AR sodium a cetare. Molecular weight of sod acetate = 82.03 We, ve w = mxVml 1000 mol.wt W = 0.2 × 100 = 1 . 64 gm. https://civinnovate.com/civil-engineering-notes/ 82.03

 Page No.

 Name of the Experiment
 https://civinnovate.com/civil-engineering-notes/ate

Exactly 1.64 gm of sodium acetate was weighed and transferred into loome volumetric flash. Distilled water was added the little bit first it was shaked well and then distilled water was added up to the mark.

Step VI- Prepration of standard acidic buffer Solution by mixing 0.2 m acetic acid and 0'2 m Sodium acetate solutions.

First of all twelve test tubes were lok taken and each of them was washed with clean tap water. Nine of the twelve test tubes were marked as 1,2, ..., 9 and remaining three were marked as AJ, Az and Az. Five drops of universal indicator was added in each 12 clean test tubes. Then different volumes of 0.2m acetic acid was added into test tubes marked as 1,21 -- 9 followed by 0.2 m Sodium acetate solution for the same test tubes marked as 1, 2, ..., 9. Total volume in each grest rubes is some Again some of unknows buffer solutions was taken into clean test tubes marked as AJ, AZ, A3. P" of first nine standard buffer solutions was calculated by Handerson equation and p" of unknown buffer solutions (A1, A2, A3) was calculated using color against standard buffer solutions.

Name of the Experiment http	s://civi	nnova	ite.con	n/civil-	engine	ering-		e No.			
Vanio					5	5	Duit		-		
The ratios in which	ch c	2.21	m	acet	n'c (acid	1 01	nd	0.2 m	sodiu	n
acetate should be	as	ta	1< Pr) Ì	5 5	shou	DO	in	tab	10!-	
Later	_				_		-	-			
Test tube number	T	2	3	4		6		8	9		
VOI- OF ACEHIC ACId (m. 1)	.9	.8	7	G		4	3				
valof sod acetateme)	1	2	3	4	5	6	7	8	9		
CALCULATIONS!											
calculation of p	1 OF	di	Ffe	ren	t S	Fan	dard	+ b	UFFE	T SOINHO	- <u>'2 מנ</u>
P" OF Standard bu	FFE	5	SOLU	Hio	n i	n:					
a) rest tube no.											
PH = 4.74+	109	1/	10 × 1	0.21	M						
pH= 4.74+		9	10)	(0.2	M						
= 3.78											
								_		A CARLER AND	
b) Test tube no.	2										
pH = 4.74 +		21	Lo X	0.5	-						
	0	8	110,	x 0 · 2	1						
= 4:13											
								_			
OTEST FUBE NO.	3										
$P^{11} = 4.74t$	109	31	10 X	0.2							
	9	7/1	oxt	. 2					_		-
= 4.37						_					
d) Test tube no.	4										
pH = 4.74+ 109		OXO	.2								
1 123		IOXO									
- 4 . 56											

GOODLINEK	Name of the Experiment https://civinnovate.com/civil-engineering-notes/ate
	e) Testube no.5
	$p^{m} = 4.74 + 109 \frac{510 \times 0.2}{510 \times 0.2}$
	= 4.74
	f) Test tube no .6
	pH = 4.74 t log G/10 x 0.2 4/10 x 0.2
	4/10×0·2
	= 4.91
	8) Test tubeno.7
	$p^{H} = 4.74 + 109 \frac{7}{10 \times 0.2}$
	3/10×0'2
	= 5.10
	h)jest tube no. 8
	pM = 4.74 + 109 8/10×0'2
	2/10 × 0.2
	- = 5.34
	i) Test tube no.9
	pH = 4.74+ log 9/10 x 0'2
	1/10×0.5
	= 5.69.
	https://civinnovate.com/civil-engineering-notes/

Lube	101 0f 0.2 m	voi of a con sod.	p" = PKq+109[Sait]	PHUP UNKNOWN
umber	Gretic acid(ml)	acetate (ml)	p ^H = PKq+ 10g [Sait] Bacid J	buffer soin
	9	1	3.78	AJ=
1	8	2	4.13	
2 3	7	3	4.37	
4	6	4	4.56	
5	5	5	4.74	
6	4	6	4.91	A2=
7	3	7	5.10	
8	2	8	5.34	
9	1	9	5.69	A3=
The pt		buffer solution	5.69 respec	tively.
CONCL I detern	he p ^h of un	Known buffer tching color (solutions co	n be
	SOLUHONS -			
00000	UTJONS!-	of drops of	Universal in	dicatoz
i)The	id be added			

Jame of the Experiment Abort 5	vate.com/civil-engineering-notes/ 09-11-
MONTUM CHLORIDE AND MER	SOLUTIONS USING AMMONIA AND ASURE THE APPROXIMATE PHOETHE USING UNIVERSAL INDICATOR METHOD
APPARATUS REQUERED	
a) Loomi volumetric flasks b) Test tubes and test tube s c) Beakers d) Pipette	e) Buzette Stand f) Conical Flask g) Funnel h) Dzoppez.
CHEMICALS REQUIRED:- Q)Ammonia. b) Standard Hct: c) Pure AR ammonium chlor	d) Universal indicator. e) Methyl orange. ride.
pt value, and resists the ch amount of acids and bases	of a mixture of a weak base t. The pt of basic buffers can
$p^{OH} = p^{Kb} + 10$	g [salt] (1) [base]

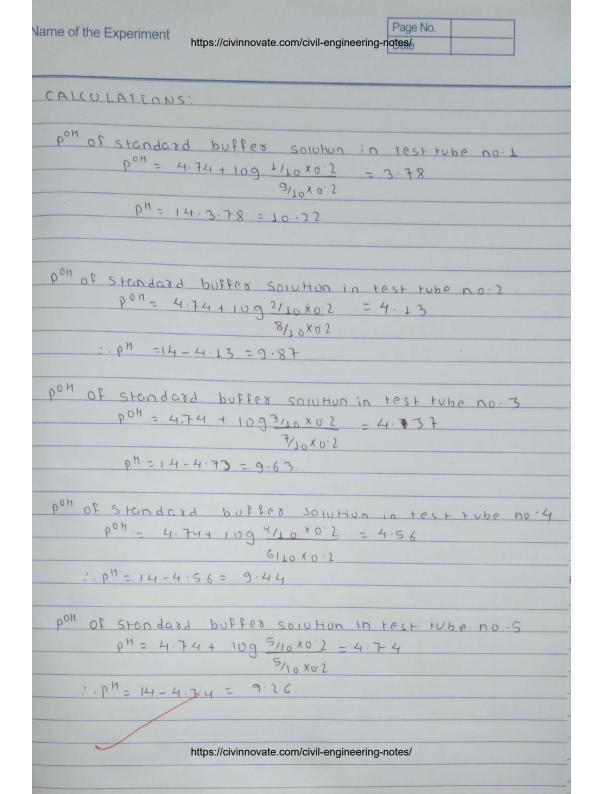
https://civinnovate.com/civil-engineering-notes/

NH404 =>

Buffer Cafacity.

Universal indicator;

Name of the Experiment https://civinnovate.com/civil-engineering-notes/ate
[Salt] = molar concentration of the soluble salt
Ebase] = molar concentration of the weak base
From the value of pot of the basic buffer, it's pt can
be calculated by the relation.
$p^{H} + p^{0H} = 14$
$p^{H} = 14 - p^{0H}$
For the prepration of standard basic buffer solutions, following steps are beinvolved,
i) Prepration of Looms of approx 0.4 M ammonium hydroxide
ii) Standardization of the prepared appmonium hydroxide with standard her
iii) Prepration of looms of exact or 2 m annonium hydroxide
from the standard ammonium hydroxide.
iv) Prepration of soont of 0.2M ammonium chloride.
PROCEDURE:-
The process involves the following steps:-
Stepl: Prepration of Looml of approx 0.4M ammonia Solution
Loome of ammonium hydroxide solution of approx 0.4M
was prepared by calculating the required volume of
ammonium hydroxide using normality equation. (strength
Of ammonia solution = 12m)
VISI = V2S2, VI=100 MQ SI=0.4M (approx)
$V_2 = ?$ $S_2 = 12M$
$\frac{1}{1} V_2 = V_1 S_1 = 3.3 \text{ ML}$
52


https://civinnovate.com/civil-engineering-notes/ 1) Prepration of 100 mi of approx 0.4m ammonic soin (xango 24.0) rioz simonia 20 mool I normality ean Solution prepared 3.3 mi of ammonia soin distilled water added up to mark and shaked well. 2) Standardization of 0.2 m lapprox) ammonia Soit 100 m of approx (0.4 m) ammonia pipetted out in 250 C.F Jone drop methyl orchop ritoated with prepared will the from burette UPTO concurrent reading I normality eah storigh of base conculated 3) proportion of 0.2m annonium hydroxide from 0.45m NGOD. LOOMI OF Exactly 0.2 ammonia solution was prepared from strammonium soin by diluting I homality an reg vol of acid carculated https://civinnovate.com/civil-engineering-notes/

Name	Name of the Experiment https://civinnovate.com/civil-engineering-notes/ Date Date Date Date Date Date Date Date									
VOI										
Ste	p:2: Star Solut		n of the (opprox o.21	n ammonia					
ad	ded . Then	it was tim burctted	nd 1 door	th standar	etted out into 1 orang was d N/10 Hcl into light					
	7 0 1011	Burett	e reading.		concurrent					
NO. OF				Difference (m.1)						
ob S 1			45.9							
2	10			45.6	45.6					
3	10	0	45.6	45.6						
	From nor VASA =		JA = 45.6 m	L, SA=NI	10					
			VB=10ml	, SB = 7.						
	SB = VASA = 0.45 M VB									
	olution is		Strength	of the pre-	pored amponia					
		https://civinnovate	e.com/civil-enginee	ring-notes/						

https://civinnovate.com/civil-engineering-notes/ GOODLINCH Nam 4) prepartion of 0.2m ammunium chiesde solution WE OF NHULL Was calculated and exactly weighet toonsferred into C.V. distilled water was added initially just to dissolve the compound then added to make and made homogeneous 5) Propration of standard basic buffer solution by mixing 0.2m Nyuli and 0.2m Nyun son 12 test tube were named as 1,2,3,1 -- 9 and Bilb2, B3 Lunivorsai Indicator 5-5 doop in each 12 test tubesdifferent volumes of NHYON and NHUCI was added in T.T.S J. 2.31 ... 9 Juol in each TT belom! UNKNOWN buffer soin falcen J B1, B2, B3 COLOT MOTCHED OBSERVER FOR 8 J. B. B. B. with 1,6,9 ph carculated using hendroson egn https://civinnovate.com/civil-engineering-notes/

GOODLINGN Name of the Experiment https://civinnovate.com/civil-engineering-notes/ Date Page No. Step: 3: Preprotion of 0.2M ammonium hydroxide from 0.45 m ammonium hydroxide Loom OF exactly 0.2m ammonic solution from the Standard ammunium Solution by diluting the required volume of acid Solution was propared VISI= U2S2 VI= JOOME, SI=0.2M $V_2 = ?$ $S_2 = 0.45$ So, V2 = 100 x0.2 = 43.85 mg 045 43.85 MI OF ammonium hydroxide (0.45m) was taken into Loomi volumetric Flask. Distilled water was added up to the mask and shaked well. Step: 4! Prepration of 0.2m ammonium chippide solution. LOOMI OF exactly or ammonium chlodide solution was prepared by dissolving the calculated amount of pure dry AR ammonium Molecular weight of ammonium chloride = 53.5 Groom molecular weight of ammonium chimide is=53.5 gm 100 MI OF IM NHYCI = 53.59 100 ml OF 0.2m = 53.5 x 0.2 x 100 gm = 1.07 gm. 1000 Exactly 1.07gm of NHyer was weighed and tourspeared added upto mtps://civinnovate.com/civil-engineering-notes/

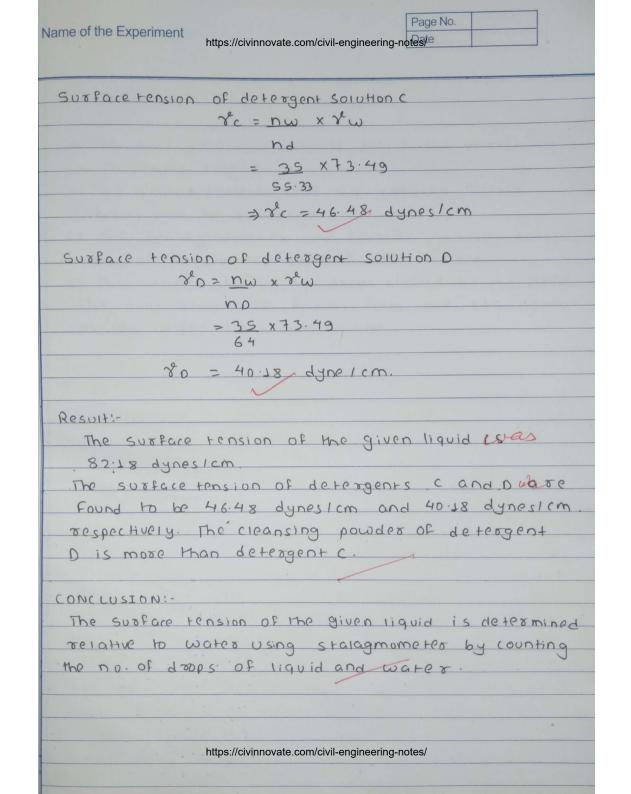
Name of the Experiment ht	tps://c	ivinno	vate.c	com/civ	/il-eng	lineeri	ing-not	Page	No.	
step: 5: Prepaction	ام	s s	tan	dav	t b	asi	ck	suf!	fer	SOLU HUD S
by mixi	ng	0.2	m	an	mor	nur	$n \mid$	hyc	XONY	ide and
0.2 m am										
First of all, all	Itc	Delv	6	tes	+ + 1	ube	SU	000	CFC	alken and
washed with ci	ear	ta	pu	pate.	<u>8 .</u> t	vin	c of	FH	le 1	2 test tube
were named a	S I	+ 2+	3, -		9	ar	1d 1	180	e re	st tubes
WERE MARKED AS	s r	31,	B2	an	dſ	33.	Fil	C	9202	ps of
Upiversal indicat	80	wa	5	add	ed	in	to e	ac	hI	-2 test FUDE
Then, different 1	JOU	ime	sc	2F	0.20	0 (2000	noni	UM	bydroxide
into Test tubes	ma	TKF	do	15	1,2	, 3,		, 9	FOI	Howed by
nuicommo mc.o	ch	100	de	So	UH	ons	Fo	δ	me	Same
Test tubes. Total	U	nun	6	in	00	ch	p	i h	ete	st tube
(1,2,13) was	10	mI	. F	1gai	n	10	m	OF	UY	NKOWA
huffer solutions	wo	is	tak	PD	int	70-	CIE	an	tes	ttubes
matised as B1+	B2	GD	d	33_	. pr	1 OF	F	185	tr	line standa
DUPPER Solutions	wa	S (Calc	ulat	ed	Ь.	1 h	60	ders	on equato
and ph of UNKA	aug	-6)ff(50	SOI) tiu	ns	LB	L, B	2 and B3)
was calculated 1	JSin	9	(01	68	ago	ins	t s	itan	dar	d buffer
SOLUTIONS.		J			U					
The ration in wh	ich	0.	210	NI	140	a	nd	0.2	4 M	Myon was
taken as shown d										
Janu Us			_				-			
Test tube number	1	2	3	4	5	6	7	8	9	
VOLOF ammonium	9	8	7	6	5	4	3	2	1	
hydroxide(ml)				-	-					
Voi of ammonium	1	2	3	4	5	6	7	8	9	
Chioride(ml)	/									
ht	tps://c	ivinno	vate	com/civ	/il-eng	lineeri	ing-noi	tes/		

Jame	of the Experiment	https://civinnovate.c	om/civil-engineering-n	Page No.	
Po	OF SIGNAGO	d buffer 5. 1 + 10g6/10			n v. 6
	p ⁿ = 14- P	0H=14-4.	and the state of the second		
po	DOH of standa	rd buffer	Solution in Flip xu'2 -	test tube	no.7
		74 + 109	3/10 × 0'2	5	
		-5.10 = 8.9			
		2 + 0 - 0 9			
P		4-5-34 = 8.	8/10×0.2 =		00.8
	P = 1	4-5.34 = 8.	6.6		
pol	n of stander pon =	4.74+10			<u>0 · J</u>
		4-5.69 = 8			
		<u> </u>			
7. т	vol of o.2m	VOLOF 0.2 M	pon pky IUg (sait)	pH = 14-poH	ph of
NO	NHYOH(m1)		[bqse]		common huffer
1	9	1	3.78	10.22	B1 = 10.22
2	8	2	4.13	9.87	
3	7	3	4.37	9-63	
4	6	4	4.56	944	
5	5	5	4.74	9.26	
6	4	6	4.91	9.09	B2=9.09
7	3	7	5.10	8.9	
B	2	https://civinnovate.c	om/civil-engineering-n	otes/ 8.66	
9	L	9	5.69	8.31	B3 = 8.31

ame of the Experiment	Page No.
https://civinnov	vate.com/civil-engineering-notes/e
RESULT!	
The ph of unknown	buffer solution B1, B2 and B3
are found to be the sa,	, 10.22, 9.09 and 8.31 Tespective
CONCLUSION :	
The PM OF UNKNOWN	buffer solution can be determined
	o with mot of standard
buffer solutions.	
PRECAUTIONS!	
i) The same no of di	TOPS of universal indicator
should be added	
	ine any drop of water in all
test tubes	3
ii) The distilled wat	-er should be used in the
prepretion of soluti	ions .
	24
	\$ -24 -09-24 -09-24
	126
	0-1
	vate.com/civil-engineering-notes/

Name of the Experiment ! C	Page No.		
Name of the Experiment :- 6	Date	09124.	
https://civinnovate.com/civil-engineering-r	notes/		
TO DETERMINE THE SURFACE TENSION OF WIL	EN ITO	TA OTU	
LABORATORY I EMPERATURE USING STALAGIMO			0006
			PARL
THE CLEANSING POWER OF DEFERMENTS C	and D		
REQUIREMENTS			
a) Stalagmometer b) Beaker			
c) stand			
d) Two detergent samples			
e) Specific gravity bottle			
f) Provided Unknown liquid.			
THEORY :-			
Surface tension is defined as the	FOTO	a Hog a	ight
Angle to the surface along one unit let tension of the given liquid is determine			
water at laboratory temperature u			
by counting the number of drops for			
volume of liquid and water Hence			
also known as doop count method. The			
on capillary action.			
when the liquid Flows	HODUGH	Q Cani	11924
tube, a doop is formed at the diower	0		0
The size of drop decre increases to			
man Fails off. hence, the size of			
upon the radius of the capillary			
surface tension of the liquid.			
The determination of the	SUTFACE	tension	o of
liquid is based on the fact that whe			
Force due to the weight			
upward force of the surface tension,			

fails down from the lower end of the capillary tube. https://civinnovate.com/civil-engineering-notes/ DOWNWARD FORCE = Upward Force i.e W=mg=25288 - (i) where w' is weight of drop, 'm' is the mass of the drop, q is acceleration due to gravity, 2520 is the circumference of the capillary tube with radius r, & is the surface tension. comparing the surface rension of two liquids, $m_1 g = 2527 \mathcal{F}_1 - (2)$ $m_{29} = 2 \pi \sigma \beta_{2} - (3)$ where my and my be the masses of two liquids (1) and (3) The cleansing power of detergent depends upon the capacity to reduce the surface rension of Water. Detergent is a chemical substance in me Form of powder or liquid to remove dirt from cloths, dishes Ctc. by reducing surface tension of Water. Detergents even at very low concentration lowers the surface tension of water to a great extent. The detergents decreases the inter facial tension between water and dirt or dust hence increases the cleansing activity. The cleansing power of detergents can be determined by the reduction they cause in the surface tension of water. Gireater the reduction in surface tension, the greater will be the cleansing power of the detergent. The surface tension of the detergent can https://civingovate.com/civil-engineering-notes/ Stalag mometers by Counting the number of drops of distilled water and


GOODLINGN Page No. Name of the Experiment https://civinnovate.com/civil-engineering-notes/ Date detergent solution using the Foomula. To = Nwxdd x Yw ndxdw where rd, dd, nd are the surface tension, density and number of doops of detergent rew, dw and nw are the surface tension, density and number of drops of water respectively. The detergent solutions are very dilute so the densities of water and detergent Solutions will be all most some hence. Surface tension (2) x 1 Temperature SUTFACE LENSION (8) X no. of doops Surface tension (2°) & size of drops. Surface tension (2) & cleansing powder. https://civinnovate.com/civil-engineering-notes/

GOODLINEN Flowchart' Stalagmometer and SP. growity bottle was washed with distilled water. weight of empty sp gravity bottle was measurpol (WI) Lower and of stargemometer was dipped In a beaker containing unknown liquid UNKNOWN liquid was sucked up to point higher then A and the count was started from point A winhill it reached to point B. Same process was repeated For at least unknown liquid was transferred into SP. gravity bottle up to Fall and it's weight is measured (w2) & surface tension equation. S.F OF liquid was cateurated same process was repeated for distilled water, detergent and detergent Y we of distilled water in spigravity bottle carculated (W3) s. T of detergent 'X' and detergent 'Y was calculated using subface tension egn. https://civinnovate.com/civil-engineering-notes/

1	Name of the Experiment https://civinnovate.com/civil-engineering-notes/ Date
	PROCEDURE :-
	First of all, stalagmometer and specific gravity
	bottle was washed with distilled water. The lower end
	of the stalagnometer was dipped in a small beaker
	containing unknown ilquid and sucked till it rises about
	the mark'A'. Then the liquid was let to Flow and
	brought to the level of mark 'A'. The numbers of
	doops was counted while the liquid Flowed From
	Mark A and reached upto mark B. The process
	was repeated upto three times and the mean was
	taken. Again, The stalagmometer was cleaned and
	the whole process was repeated for distilled water.
	The weight of empty specific gravity bothe and
	the weight of Sp. gravity bother was again taken
	with fully filled Unknown liquid Later the number
	of drops and the whole process is again carried
	For two detergent solutions 'c' and 'd' respectivel
	The weight of those two detergents were same
	therefore their weight inside sp. gravity bottle
	was not measured.
	https://civinnovate.com/civil-engineering-notes/

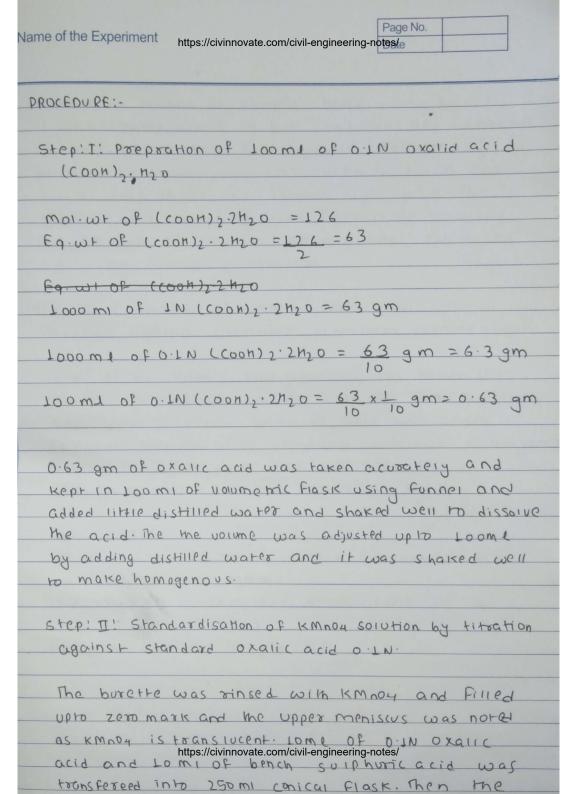
	ERVATIONS :-			
NO. OF ODS	Liguid	NO. OF doops	mean	SUBFACE tension
1		34		
2	UNKNOWN liquid	33	33	X1 = 82.18
3		32		
1		34		
2	Distilled water	35	35	$\gamma_{w} = 73.49$
3		36		
T		54		
2	Detergent 'C'	55	55.33	8c = 46.48
3		57		
1		62		
2	Detergent 'D'	64	64	80 = 40.18
3		66		
	à to by tempe			ar 15° = 73.49 dynplom.
	CULATION :-			
We	eight of empty		-	$= W_1 gm = 24.24g$ $pates = W_2 gm$ = 49.94gm
we	ight of empty	gravity bott	e with u	0

Name of the Experiment https://civinnovate.com/civil-engineering-notes/ Page No. weight of two detergents sample c and D $W_c = W_D = 60.9m$ The relative density of liquid = due = W3-W1 dw w2-w1 Or, de = 27.1 dw 25.7 :- dl = 1.054 dw Density = mass E: voi of water and liquid are some] VOLUME on 21 = nwxdy = 35x27.1 Tw N1xdw 33x25.7 LI-L = L& :, TO 3 m => x1=1.11 × 8w = 1.11×73.49 : 822 82.18 dyneslem. Where of , ds and no are the surface tension, density and number of drops of given liquid respectively. Two, dw and now are the surface tension, density and no. of drops of distilled water respectively. By putting the respective values, the surface tension of the liquid can be found out. SI = DWXdJ X SW nexdw Again', https://civinnovate.com/civil-engineering-notes/

			https://civi	nnovate.c	om/civil-ei	ngineering-	Page N	0.	_
me of th	ne Experi	ment					Date		
PRE	CAUTI	DNS:							
a) Th	e sta	Lagmi	more	s sh	ou w	100 F	i Hed	Verti	cally
			and the second					botti	
-) 11	-0 51	01000	omet	10 0	nd s	pecifi	C 97	wity_	bottle
		10 C	PODEI		10 04	and the second second			
1) 17	10 51	ste chou	IF FO	e fo	1 00	600	me	Stal	agmo-
me	Her U	nder	meix	own	heis	tht.			
9	1/2 ,								
210	0								
1	-								
			https://civi						

GOODLING Page No. Name of the Experiment https://civinnovate.com/civil-engineering-notes/ Date PRECAUTTONS: a) The stalagmomoter should be fitted vertically with same height. b) the stalagmometer and sp. gravity bottle should not be exchanged . c) The stalagmometer and specific gravity bottle should be cleaned with distilled water. d) The rate of Falling drops should be adjusted. The doop should be failen from the stal agmometter under their own height. https://civinnovate.com/civil-engineering-notes/

	https://civinnovate.com/civil-engineering-notes/
	ame of the Experiment
I	O STANDARDISE POTASSIUM PERMANGANATE SOLUTION AND USE IT TO ESTIMATE THE A MOUNT OF IRON AND DETERMIN THE PERCENTAGE PURITY IN THE SAMPLE OF FERROUS SALT SOLUTION.
	APPARATUS REQUIRED:-
	O) BUTEFFC
	b) Conical Flask
	C) Pipette
	d) Beakers.
	CHEMICALS REQUIRED:-
	a) KMADY SOLUTION b) Standard OXALIC ACID NID (FEL)
	b) Standard Oxalle actua
-	c) Moha's salt solution
-	d) Bench sulphuric acid.
	The estimation of amount of iton in mohit's
-	salt by titration against standard KMnay 15 an example of redox titration (Reduction - oxide tion
	Hitration). In redax titration, a reducing agent
	is titoated against on oxidizing agent or vice versa. The oxidation and reduction are
	complementary to one another and takes place
	Simultaneously. Potassium permanganate is not primary
	Stondard substance. So it should be standardized by titration
	against standard oxalic acid in acidic medium and reaction
	https://civinnovate.com/civil-engineering-notes/


Name of the Experim	enthttps://civinnovate.com/civil-engineering-notes/
USE IT TO E	E POTASSEUM PERMANGANATE SOLUTION AND ESTIMATE THE A MOUNT OF IRON AND DETERMINE AGTE PURITY IN THE SAMPLE OF FERROUS N.
APPARATUS R a) Burette b) Conical Flag c) Pipette d) Beakers.	
b) Standard (c) Mohr's so	EQUIRED:- NHON DXGIIC ACID NHO (F=1) AIF Solution NIPHUDIC ACID.
salt by t an example titration?	imation of amount of iton in mohe's iteration against standard KMnoy is of redox titeration (Reduction - oxidation In redox titeration, a reducing agent
vice versa complemente Simultanea Stondard Su against Stand involved is a	Against an oxidizing agent or The oxidation and reduction are any to one another and takes place busy. Potassium permanganate is not primary ubstance. So it should be standardized by titration dard oxalic acid in acidic medium and reaction represented as (2 4 + 3H2SO4 - R2SO4 + 2Min SO4 +10 co2 + 8H2O

GOODING

COMPILINE	Name of the Experiment https://civinnovate.com/civil-engineering-notes/ Date
	In ionic Form
	$2M004 + 5(204^{-2} + 16H^{+} -)2M0^{+2} + 10(02 + 8H20)$
	Hydrated Ferrous ammonium supporte EFesoy (NH4)2504.6420] is commonly known as Mohr's salt in which active species
	is Fesoy. it is a double salt and is more stable than Fesoy so generally used in qualitative analysis as
	reducing agent. The estimation of IDDN in Moho's salt can be determined by titoation against standard KM noy solution in acidic Medium. During redox titration fet2 ions of Moho's salt are oxidized to Fet3 ions by
	KMN04 and itself reduces to coloriess manganous suppare. The reaction involved is represented by Following
	$\frac{equation}{2KMn04 + 10Feso_4 + 8H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O_4}{K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O_4}$
	$\frac{\text{Ionically}}{\text{Mo04}^{-} + 8 \text{H}^{+} + 5 \text{e}^{-} \longrightarrow \text{Mo}^{+2} + 4 \text{H}_2 \text{OJ} \times 2}$ $2 \text{Fe}^{++} - 2 \text{e}^{-} \longrightarrow 2 \text{Fe}^{+3} \text{J} \times 5$
	$2Mn04 + 16H^{\dagger} + 10Fe^{+2} \longrightarrow 2Md^{2} + 10Fe^{+3} + 8H_{20}$
	In this titration, KMnO4, the oxidizing agent is the self indicator as it is Strongly (olored (purple) and decaporizes after reduction. Potassium Permanganate is purple in its Oxidized Form (MnO4) but coloriess in its reduced form (Mn+2)
	$m_n O_4^{-} + 8h^{+} + 5e^{-} \longrightarrow m_n^{2+} + 4h_2 D$
	(purple) (color less)
	https://civinnovate.com/civil-engineering-notes/

Page No. Name of the Experiment https://civinnovate.com/civil-engineering-notes/ Date As the titration proceeds, the Mnoy will be reduced to mn+2 and simultaneously Fetz will be oxidized to Fet3. When whok of the reducing agent (Fet2) Will be consumed, the oxidizing agent (Mn 04-) cannot be reduced, then the addition of even one drop of KMnoy solution gives light pink color to the Solution. The light pink indicates the end point of the HITTGHOD. The equivalent weight of an oxidizing and reducing agent can be obtained by dividing molecular weight of the compound by the total number of electrons that are gained or lost in a reaction per molecule of the substance. Mnoy + 8ht + 50 - mo+2 +44,0 Equivalent weight of KMn04 = molecular weight change in oxidation state = Molecular weight Simidarly, For the oxidation OF Fet2 -> Fet3 Fet2 - e- -) Fe+3 Therefore, equivalent weight of Ferrous sait ?? = Molecular weight Change in oxd State = molecular weight https://civinnovate.com/civil-engineering-notes/

GOODLINGK Name of Step: 1: prepration of soom of O'SN oxalic acid PRO weight of dry oxalic acid calculated enormality eqn) S Step 2'- Standardisation of KM no4 Solution by titoction against caused Gxalic acid o's N Burette rinsed with Kning and filled up to zero mark (Upper mini scus) some of osn oxalic acid pipetile and transferred Into 2 Some Conical Flasis 1 to my bench h2504 60-70°C heated below BP. Titocoded in bot condition and end point (right pink) was noted Repeated upto concustant reading normality egh Step: 3'- Estimation of iron in mohol's sait solution by titration against standard potassium permanganate 10 mi of six mohe's soit pipetted out in 250 mi conica FIGSK V somi bench h2504 ritacted with KMnoy up to end point J Normality egn strength calculated.

Page No. Name of the Experiment https://civinnovate.com/civil-engineering-notes/ solution was heated at 60-70°C (below boiling point). It was titrated while in hot condition and continuous shaked but slowly. The doopwise addition of potassium permanganate was continued till a last single doop made the Solution light pink. The tibation was continued upto concurrent reading. The strength of solution (KMnoy) was calculated by Using normality equation. Step! IL: Estimation of iton in Mohr's sait solution by titration against standard potassium permanganate to me of SV. Mobi's salt solution was taken into 250 mi conical Flask with the help of 10 ml pipette and tomi of brach sulphusic acid was added. It was titrated with standard potassium promanganate. Solution Hill light pink color presisted. The process was excepted upto two concurrent readings. OBSERVATION: VOI OF OXALL acid taken in each titration = 10 ml VOI OF bench M2 SO4=10 Ml Indicator ! No indicator used, KMnoy itself as an indicator End point: colorless to light pink. https://civinnovate.com/civil-engineering-notes/

	the Experiment	Page No.					
	h	ttps://civinnovate.co	m/civil-engineering-notes/	Date			
I) Stundardization of KMD04							
		OD OF KM	N04				
NO OF	Bute	HEP Dave		1			
obs	Initial(m1)	FIE Read	ing	CONCUTTENT	_		
T	0	10.2	Difference (m.L)	Reading	-		
2	10.2	20.4	10.2		-		
3	20.4	30.6		10.2			
CAL	CULATION :						
V	01 07 0x0	alic acid	(+)=+0ml				
e	torngth of	Oxalic acia	$((N_{1}) = N)$				
Strength of oxalic acid (NI) = N 10							
VOI. OF KMO04 (V2) = 10.2 Ml							
Storngth OF IKMDO4(N2)= ?.							
NOW')							
UT NTSNJNJ							
01,	N2 = V.	INI = 10	xo·l				
		V2 10	0.2				
N	2 = 0.098	N					
8 -	1. D' Estimation of iton in Moha's sait						
				Moho's s	alt		
		olution					
VOI. OF MONT'S Salt Solution in each titration = 10 Me							
11 11 Bench H2SO4=10 ml							
Indicator: NO indicator used, KMn04 itself acts as							
			o light pink.				
F		010010 33 F	o light pint.				
E	- p		v				
E	- p		· ·				

NO. OF	https://civin	(oncurrent						
observation	IniHai(md)	FINALLML	differnce un w	reading (ml				
1	0	11.6	77.6					
- 2	77.6	23.2	11.6	11-6				
3	23.2	34.8	11.6					
				restard and				
Calculat	ton of the	strength Of	mohols sait					
		actical value						
V01 · 0	F KMDO4 LU.	(1) = 11.6						
0	$h \circ f K M n O y = 0 \cdot 0 g g N$ $F M O h r's Salt = to m l$							
0	$gh of mohr's sait = ?(N_2)$							
Now'	INJ=VLSL							
3)	$\frac{N_{2} = \sqrt{N_{1}}}{V_{2}} = 106x \ 0.093$							
,								
	2= 0.1136N							
Again			Ca it o	P Matris cal				
gram.	libre: Streng	grin in Nooma	lity x Eq. wt o	1 1101 2 SQ1				
	= 0 · 1	136 × 392 = (14.20 911					
				1700				
392.gm	of mohr's sait contains 56 gm of 1000							
			LATWTOF	F6>56J				
44.56 g	mofili	1 11	<u>56x44.56</u> 392					
		2	6.36 gm of it	00				
			ring-notes/					

https://civinnovate.com/civil-engineering-notes/ Page No. Name of the Experiment Date Calculation of Theoretical value E Griven Sy. mohr's sait w/v] and percentage puttity of the sait. Joomi of mohi's sait solution contains 5gm of mont's salt 11 <u>SX1000 = SO gm Of</u> 1000 m 1 0F 11 11 11 100 moha's sait. 11 S6 gm of 1000 392 9 OF 11 11 11 11 56×50 gm 392 50907 11 11 11 = 7-14 gm of iton percentage purity of mohils Sait solution = practical value x100 Theore Hical value = <u>6.36 x100</u> 7.14 = 89.16 V. Ansk RESULT! The conch of KMn04 is found to be 0.098N and The amount of ioon present in given sample OF moho's salt is found to be 0.1136 N Percentage publity of me mohr's salt is found to be 89.164. https://civinnovate.com/civil-engineering-notes/

CONCLUSION :-The amount of ionn in guen mobo's sait solution can be estimated by redox titoation using standard potassium permanganate soil and percentage purity of the salt can also be determined by permanganomebic titation. PRECAUTIONS :i) Freshly preparel KMnoy should be used ii) M2 Soy Should be added in excess otherwise brown precipitare of Mnoz May appear. (ii) The titration with oxalic should be done in hot condition IV) KMADY shoud be added slowly during the Hibation Otherwise brown turbidity of Mnoz will be Formed.

PREPRATION OF INORGANIC COMPLEX

https://civinnovate.com/civil-engineering-notes/

नकपुरधाग

APPARATUS REQUIRED :-

a) Beakers

b) Stidter (Galass Tod)

C) Funnel

d) Test tube

CHEMICAL REQUIRED:

a) Nisoy(NH4)2 SO4.6H20

b) Ammonia solution

C) Dimethylgly oxime (17. in etheno)

d) Barrun chloride solution.

THEORY :-

Dimethyl glyoxime is a bidentate ligend. The dimethyl glyoximato ion (dmg or pmG) is obtained when one on group attached with N-atom in DMG molecules loses a proton

CH3-C=NOH CH3-C=N-OH +HT CH3-C=N-OH +HT CH3-C=N-OT

DMG DMG-ion

Two molecules of drig or DMG ions react with Nitzion in ammoniacal solution and forms the highly insoluble neutral red chelate of bis-ldimety gigoximate) Ni(I) which has two 5-membered and two.6-membered rings. The red precipitate of Ni-DMG COMPIEX IS https://civinnovate.com/civil-engineering-notes/

110-120° and wright https://civinnovate.com/civil-engineering-notes/ $CH_3 - C = N$ $CH_3 - C = N$ Bis- (dimethyl giy oximab) DICKPI(I) PROCEDURE Loo mi of Ly. DMG was prepared in emanol. 25 mi of nicker ammonium sulphate was taken in 250 mi beakor and it was diluted by adding 100 mi distilled water . The Solution was heated to to-80°C and some of 12. pma was added Slowly with constant Stidning till scalet precipitate of Ni-DMG complex was formed Then dilute ammonia solution doopwise was added with constant Stiving the the precipitate was aikaline (checked with red litous paper). A few doops of dimethyl gigoximeter was added to Check the completeness of precipitation. The precipitate was heated on water bath for about 30 minutes and filtered. Then the precipitate was washed with hot water till the precipitate was free from soy itest with barrow chioride solution). The precipitere at 110-120° (https://civinnovate.com/civil-engineering-hotes/ was dried and cool. Then, the weight of the precipitate was

delearnined and the weight of niciker in the complex was carculated. https://civinnovate.com/civil-engineering-notes/ OBSERVATION: Weight of Filter paper = wam = 1.51 gm weight of Filter paper with precipitate= Wigm=1.739m प्रदे Weight of precipitate = W1 - W = W29M = 0.229m CALCULATION 288.91 gm of Ni - DMG complex contains 56.65 gm Ni 0:22 gm of Ni-DMG complex contains = 56.59 x0.22 288.51 = 0.3394 gm of N! Amount of Ni in Ni-DMG complex = 0.3394 gm 1. of Nicker in the complex = 0:3394 ×100 = 33.94 > RESULT :-The amount of Nith Ni-DMG is found to be 0.3394 gm and the percentage of Ni in complex is Found to be 33.94%. Conclusion: The Ni-DMG complex is prepared form micka salt and the amount of nicker in the complex can be deresmined battps: Minnovate.com/civil-engineering-notes/

PRECAUTIONS https://civinnovate.com/civil-engineering-notes/ a) There should be no water during the prepartion of DMG Solution. b) Excess of DMG solution should be added during the prepaction OF Ni-BMG COMPIEX. c) The precipitate should be made slightly alkaline. more allealine solution make the precipitete deposited on the way of the beaker. d) NIGKER ammonium supporte should not be boiled. https://civinnovate.com/civil-engineering-notes/

