
https://civinnovate.com/civil-engineering-notes/

Introduction to Computer

Notes on C

Lecture 1

All digital computers are basically electronic devices that can transmit, store and manipulate
information (data). The data may be numeric, character, graphic, and sound. So, a computer can be defined
as it is an electronic device which gets raw data as input, processes it and gives result as output, all under
instructions given to it.

To process a particular set of data, the computer must be given an appropriate set of instructions, called a
program. Such instructions are written using codes which computer can understand. Such set of codes is
known as language of computer.

Types of programming language
Many different languages can be used to program a computer. As we know that computer is

composed of millions of switches which acts like electric switch. Such a switch has two states, ON and OFF,
and can be represented with 1 and 0. So, a computer can understand only 0, and 1, which is known as BInary
digiTS, in short BITS. So, language which uses these binary codes to instruct a computer is known as
Machine language. Machine language is very rarely used to instruct a computer because it is very difficult
and machine dependent (different machine may need different machine codes).

Instructions written in high level language is more compatible with human languages. Hence, it is
easier to instruct computer using it, however it is necessary to be translated into machine codes using
translator such as compiler and interpreter. Such programs written in High level language, are portable (can
be used in any computer without or with some alteration).

A compiler or interpreter is itself a computer program that accepts a high level program as input and
generates a corresponding machine language program as output. The original high level program is called the
source program and the resulting machine language program is called the object program. Every high level
language must have its own compiler or interpreter for a particular computer.

Introduction to C
It is a high level programming language. Instructions consist of algebraic expressions, English keywords

such as if, else, for, do, while etc. In C, a program can be divided down into small modules. Hence, it is also
called as structured programming language.

• Flexible to use as system programming as well as application programming.
• Huge collection of operators and library functions.
• User can create own user defined functions.
• C compilers are commonly available for all types of computers and program developed in C, can be

executed in any computer without or with some alteration, hence it's portable.
• A program developed in C is compact and highly efficient.
• Because of modularity, it is easy to debug (to find error).

1
https://civinnovate.com/civil-engineering-notes/

• It can also be used as low level language.

History of C

Lecture 2

C was developed in the 1970's by Dennis Ritchie at Bell Lab. It was developed from earlier languages, called
BCPL and B which were also developed at Bell Lab. It was confined within Bell Lab till 1978. Dennis
Ritchie and Brian Kernighan further developed the language. By mid 80's, it became more popular. Later on,
it was standardized by ANSI (American National Standard Institute).

Structure of a C program
Every C program consists of one or more functions, one of which must be called main. The program always
begins by executing the main function however it contains other functions.
Each function must contain:
 A function heading, that consists function name and arguments enclosed in parenthesis.
 A pair of compound statement (curly braces).
 It may consist of number of input/output statements.
 Library file access
 Comments

Program 1:
/* A program to print Hello*/ Comment
#include<stdio.h> Library file access
main() Call of main function
{ Compound statement start
printf("\n Hello"); Output statement
} Compound statement end

program 2:
/* A Program to find sum of two integer numbers 12, & 17 */

#include<stdio.h>
void main()
{

int x=12, y= 17;
z= x + y;
printf(" sum is %d", z);

}

2
https://civinnovate.com/civil-engineering-notes/

C Fundamentals
The basic elements of C includes C character set, identifiers, keywords, data types, constants, variables,
arrays, declarations, expressions and statements.

The C character set
C uses uppercase A to Z, the lowercase letters
a to z, the digits 0 to 9 and certain special characters such as:
! ^ # % ^ & * () ~ _ -
= + \ | [] { } ; : '
" , < . > / ? (blank)

Most versions of C also allow using @ $.

It can be combination of certain characters such as \n, \t to represent non-printable characters new line,
horizontal tab respectively. Such character combination to print non printable character is known as
escape sequence.

Identifiers
Identifiers are the names given to various element of program such as variables, functions and arrays.
Identifiers consist of letters and digits. Rules are to be followed for identifiers:

 It may consist of character, digits but first character must be letter.
 It permits uppercase and lowercase but they not interchangeable.
 It may begin with underscore (_) too.
 Most of C allows 31 chars.
 Space and some special character are not allowed.

eg. x1, sum, _temp, Table etc.

Some invalid identifiers are
1x, "x", -temp, error flag etc.

3
https://civinnovate.com/civil-engineering-notes/

Keywords
There are certain reserved words in C, which are called as keywords and such words has predefined
meaning. These words can only be used for their intended purpose.

The standard keywords are:
auto extern sizeof break float
static case for struct char
goto switch const if typedef
int union Default long continue
signed unsigned Do register void
double return Volatile else short
while enum

Some compilers may also include:
ada far near asm fortran
pascal entry huge

Note: keywords must be in lowercase.

Constant
Constant is a basic element of C which doesn't change its value during execution of program. Four basic
types of constant in C are:

constant type example Illegal

integer 200, -5 12,200; 3.0; 10 20; 090; 1-2
floating-point 20.5; -2.5; 1.6e+8 1; 1,00.0; 2e+10.2
character 'a'; '3'; ' '; '\n' 3
string "anuj" 'st xavier's'

Variables
A variable is an identifier that is used to represent some specified type of information within a designated
portion of the program. A variable represents a single data item, that is, a numerical quantity, or a
character constant. Such data item can be accessed later in any portion of program by referring name of
variable.

4
https://civinnovate.com/civil-engineering-notes/

Array
An array is an identifier that refers to a collection of data items which all have the same name

with different subscript but they must be same data type (i.e. integer, floating point or character).
Individual data item in an array is known as array element.

e.g.

where,

int a=4, b=5, c=2, d= -5, e=0;
In terms of array, it can be expressed as follows:
int x[5] = {4, 5, 2, -5, 0};

x[0] = 4
x[1] = 5
x[2] = 2
x[3] = -5
x[4] = 0

Data types
C supports different types of data, each of which may be represented differently within the computer's
memory. But memory requirement for each data type may vary from one compiler to another.

Data type Description Memory in bytes

int integer quantity 2
char single character 1
float floating point number 4
double double precision floating point number 8

Declaration
All variables must be declared before they appear in a program in order to reserve memory space for each
data item. A declaration may consist of one or more variables of same data type. A declaration begins
with data type following with one or more variables and finally ends with a semicolon.
e.g.

int x=6, y=7, z;
float a=3.0, b=1.5e+5, c;
char section='a', name[20] = "Xavier";

\

5
https://civinnovate.com/civil-engineering-notes/

/* A Program to find sum of any two input integer numbers */

#include<stdio.h>
void main()
{

int x, y;
printf("\n Enter a number");
scanf(" %d",&x);
printf("\n Enter another number");
scanf("%d",&y);
z= x + y;
printf(" sum is %d", z);

}

Program 4:
/* A Program to find area of a circle for input radius */

#include<stdio.h>
void main()
{

float a, r;
printf("\n Enter radius");
scanf(" %d",&r);
a = 3.1415 * r * r;
printf(" \n area of circle is %f", a);

}

Expression
An expression represents a single data item, such as a number or a character. The expression may consist
of a single entity, such as a constant, a variable, an array element or a reference to a function. It may
consist of some combination of such entities interconnected by one or more operators.

a > b
c = a + b

Statement
A statement causes the computer to carry out some action. Three different types of statements are:

Expression statement :

An expression statement consist of an expression followed with a semicolon.
e.g.

c = a + b;

Compound statement :

6
https://civinnovate.com/civil-engineering-notes/

A compound statement consists of several individual statements enclosed within a pair of braces (
{ and }).

e.g.
{

int x=3;
printf ("%d", x);

}
Control statement :

A control statement is such a statement which controls execution of other statements.
e.g.

if(x>0)

printf(" x is positive");

Symbolic Constant
A symbolic constant is name that substitutes for a sequence of characters. The characters may be numeric,
character or string constant. It replaces in place of numeric, character or string constant in the program.
While compiling the program, each occurrence of a symbolic constant is replaced with its corresponding
character sequence.

A symbolic constant is defined by writing
define name text
e.g.
define PI 3.1415
#define NAME "Kathmandu"

Program 5:
/* A Program to find area and perimeter of a circle for input radius */

include <stdio.h>
define PI 3.1415

void main()
{

float a, r, p;
printf("\n Enter radius of circle");
scanf("%f",&r);
a = PI * r * r;
p = 2*PI*r;
printf(" \n area of circle is %f", a);
printf(" \n perimeter of circle is %f", p);

}

Problem 1: Write a program to find area of a triangle for input base and height.
Problem 2: Write a program to find Total Amount for input Rate and Quantity.
Problem 3: Write a program to convert length in cm to inch for input length.

7
https://civinnovate.com/civil-engineering-notes/

Problem 4: Write a program to convert temperature in Celsius to temperature in Fahrenheit for
input temperature.

8

https://civinnovate.com/civil-engineering-notes/

OPERATOR
Operator is a symbol that is used to combine data items such as constant, variable,
function reference and array element to form an expression. The data item that acts
upon is called Operand.
e.g.
c = a + b
in this expression, = and + are the operators which combines variables a, b and c.

There are 7 basic types of operators in C.

UNARY OPERATOR
Operator that acts upon a single operand is known as Unary Operator. Some unary
operators are -, ++, --, sizeof, type
e.g.

-x; i++; sizeof(a); (float) 5/3;

Program 1.
/* Program to differentiate use of unary operator as prefix and suffix */

#include<stdio.h>
void main()
{

int x=5;
printf("%d",x);
printf("%d",x++);
printf("%d",x);

printf("%d",++x);
printf("%d",x);

}

Program 2.
/* Program to illustrate use of sizeof and type operators */

#include<stdio.h>
void main()
{

int x=5,y=4;
float z;
printf("size of x is %d bytes",sizeof(x));
printf("%d",x/y);
printf("size of z is %d bytes",sizeof(z));
printf("%f",(float)x/y);

}

https://civinnovate.com/civil-engineering-notes/

ARITHMETIC OPERATOR
The operator which is used for general mathematical operations, is called Arithmetic
operator. The five arithmetic operators are +, -, *, /, %.
Here, % is known as modulus operator which returns reminder after integer division.

Program 3.
/* to differentiate /(division) and % (modulus operator)*/
void main()
{

int x=5,y=2, z1,z2;
z1=x/y;
z2=x%y;
printf("\n Quotient : %d",z1);
printf("\n Remainder : %d",z2);

}

RELATIONAL OPERATOR
Relational operators are used to compare two data items. There are four relational
operators, they are >, <, >=, <=.
e.g.

(x>y)

Program 4.

/* Program to check whether user can or cannot vote*/
main()
{

int age=25;
if(age>=18)

printf("\n You can vote.");
else

}

printf("\n You cannot vote.");

EQUALITY OPERATOR
Equality operator is also used to compare two data items whether they are equal or not.
There are two equality operators, ==, !=.

Program 5.
/* Program to show whether input number is positive, zero or negative*/

https://civinnovate.com/civil-engineering-notes/

void main()
{

int n;
if(n>0)

printf("\n %d is positive.",n);
else if(n==0)

printf("\n %d is zero.",n);
else

}

printf("\n The number %d is negative");

LOGICAL OPERATOR
The logical operator acts upon operands those are themselves logical expression. Such
logical expressions are combined together to form more complex expression. The two
logical operators are logical and (&&) and Logical or (||).

Program 6.
/* Program to find highest number among three input integer numbers */

void main()
{

int x,y,z;

printf("\n enter three integer numbers");
scanf("%d%d%d",&x,&y,&z);

if(x>y && x>z)

printf("%d is the highest number",x);
else if(y>x && y>z)

printf("%d is the highest number",y);
else

printf("%d is the highest number",z);

}
Program 7.
/* Program to check whether user can or cannot apply for DV */

#include<stdio.h>

void main()
{

int age;

printf("\n enter your age");

https://civinnovate.com/civil-engineering-notes/

scanf("%d",&age);

printf("\n enter your qualification (no. of years)");
scanf("%d",&qual);

printf("\n enter your experience (no. of years)");
scanf("%d",&exp);

if(age >= 18 && (qual >= 12 || exp >= 2)

printf(" You can apply");
else

printf("You cannot apply ");

}

CONDITIONAL OPERATOR
Simple conditional operator can be carried out with conditional operator (? :). It can be
written in place of if...else statement. It can be used in this form.
expression1 ? expression2 : expression3;
e.g.

(age>=18) ? printf("can vote") : printf("cannot vote");

/* Program to check whether user can or cannot vote using conditional operator*/

ASSIGNMENT OPERATOR
This type of operator assigns some value to left of operator after executing expression
to its right. Some assignment operators are =, +=, -=, *=, /=, %=.

e.g.

x+=2 equivalent to x=x+2
x-=3 equivalent to x=x-3
x*=2 equivalent to x=x*2
x/=2 equivalent to x=x/2
x%=2 equivalent to x=x%2

Operator precedence

Precedence is the hierarchical order of operators. Operation with higher
precedence group is carried out before lower precedence group.

Another important consideration is the order in which consecutive operations
within the same precedence group is carried out. This is known as associativity.

https://civinnovate.com/civil-engineering-notes/

Type Operators Associativity
Unary -, ++, --, sizeof, type R L
Arithmetic *, /, % L R

 +, - L R
Relational <, <=, >, >= L R
Equality ==, != L R
Logical && L R

 | | L R
Conditional ? : R L
Assignment =, +=, -=, *=, /=, %= R L

e.g. a – b/c * d
First, it evaluates b/c then multiplies with d and finally result is subtracted from a.

c+= (a>0 && a<=10) ? ++a : a/b;
if a, b & c have values 1, 2 & 3 respectively, then result will be c=5;
if a, b & c have values 50, 10 & 20 respectively, then result will be c=25;

Library Functions
Library functions are pre-defined module in header files which can easily be accessed
anywhere in the program by including its respective header file. Library function is the
one of the important feature of C language. Because of huge collection of library
function, it makes very easy to programmers for programming.

Library functions are defined for
 commonly used operations such as sqrt to find square root, pow to find

power of any base etc.
 machine dependent standard input/output operations.

A library function is accessed simply by writing the function name, followed with list of
arguments that represent information being passed to the function. The arguments must
be enclosed in parentheses and separated by commas. The argument can be constant,
or variable. But the parentheses must be present, even if there is no argument.

Some commonly used library functions:
abs(i) - returns absolute value of i
clrscr() - to clear screen
getch() - to input a character without echo
getche() - to input a character with echo
tolower(c) – to convert a letter to lowercase
toupper(c) – to convert a letter to uppercase
sin(d) - return sine of d
cos(d) - return cosine of d
tan(d) - return tangent of d

https://civinnovate.com/civil-engineering-notes/

sqrt(d) - return square root of d
pow(d1,d2) - return d1 raised to power d2
log(d) - return natural logarithm to d
exp(d) - return e raise to power d

Program 8.
/*To convert an input char to capital letter*/

#include<stdio.h>
#include<ctype.h>
#include<conio.h>
void main()
{

char c;
c=getche();
putch(toupper(c));

}

https://civinnovate.com/civil-engineering-notes/

Program 9.
/*To find value of sine of angle 30 degree*/
#include<stdio.h>
#include<conio.h>
#include<math.h>
#define PI 3.141593

void main()
{

float x=30;
clrscr();
printf("%f",sin(x*(PI/180)));
getch();

}

Program 10.
/*To find value of antilog of log of specified no.*/
#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{

float x=1;
clrscr();
printf("%f",log(x));

printf("%f",exp(log(x)));
getch();

}

Some more about Escape Sequence:

Character Escape Sequence
bell \a
backspace \b
horizontal tab \t
new line \n
form feed \f
quotation mark (") \"
apostrophe (') \'
question mark \?
backslash \\
null \0

https://civinnovate.com/civil-engineering-notes/

Input data using Scanf Function
This function can be used to enter any combination of numerical values, single
characters and strings. The function returns the number of data items that have been
entered successfully.

scanf(control string, arg1,arg2,...argn)

where control string refers to a string containing certain required formatting
information. arg1, arg2, ... argn represents the individual input data items.

Within the control string comprises individual groups of characters, with one character
group of each input data item. Each character group must begin with a percent sign (%)
followed with a conversion character which indicates the type of the corresponding
data items.

Conversion
character Meaning
c data item is a single character
d data item is an integer without decimal
e data item is a floating point value in exponent form
f data item is a floating point value
g data item is a floating point value without trailing zeros.
h data item is a short integer
i data item is a signed integer number
o data item is an octal integer
s data item is a string followed by a whitespace character
u data item is unsigned integer
[...] data item is a string which may include white space

https://civinnovate.com/civil-engineering-notes/

/* To print a line of input text without white
space */

#include<stdio.h>
#include<conio.h>

void main()
{

char x[20];

printf("\n Enter a string");
scanf("%s",x);

printf("%s",x);

getch();
}

/* To print a line of input text with white space
*/

#include<stdio.h>
#include<conio.h>

void main()
{

char x[20];

printf("\n Enter a string");
scanf("%[^\n]",x);

printf("%s",x);

getch();
}

/*displaying a floating point number with diff format*/

#include<stdio.h>
#include<conio.h>
void main()
{
float x=123.456;
printf("%f %.2f ",x,x);
printf("%e %.2e",x,x);
printf("%g %.2g",x,x);

getch();
}

Output:
123.456000 123.46
1.234560e+02 1.23e+02
123.456 1.23e+02

Program 11.
/* To convert an integer number into hexadecimal number */
#include<stdio.h>
#include<conio.h>
void main()

https://civinnovate.com/civil-engineering-notes/

{
int x=65;
clrscr();
printf("%x",x);
printf("%o",x);

}

Program 12.
/* To print unsigned integer and long integer number */
#include<stdio.h>
#include<conio.h>
void main()
{

unsigned int x=65535;
long int y=2000000000;

printf("\n%u",x);
printf("\n%ld",y);

getch();
}
Program 13.
/* To print long integer number */
#include<stdio.h>
#include<conio.h>
void main()
{

long int x=2000000000;
printf("\n%ld",x);

getch();
}

https://civinnovate.com/civil-engineering-notes/

Control Statement
There may be a statement in a program which controls the execution of other statements, such type of
statement is known as Control Statement. It controls the sequence of execution of program.

Some logical test may be carried out at particular point of program. Then one action will be carried out
depending upon the outcome of logical test which is known as conditional execution. It may execute a
group of statements among several available groups of statements, which is known as selection.

Some control statements are if...else, for, while, do...while, switch...case, break, continue, goto.

Many programs require that a group of instructions can be executed repeatedly, until some logical
condition is satisfied. This is known as looping.

if...else statement
It carries out a logical test and then takes one of two possible actions, depending upon the outcome of
test. But the else portion is optional.

if<expression>
{

}
else
{

}

Statement1; Statement2; ... Statement n;

Statement1; Statement2; ... Statement n;

If the expression is TRUE, it executes the group statements following if statement, otherwise executes
the group of statements following else statement.

/* To check whether input character is capital or small letter */
#include<stdio.h>
#include<conio.h>
void main()
{
char x;
clrscr();
printf("Press any alphabet key");
x=getch();
if(x>='A'&&x<='Z')

printf("\nIt's capital letter");
else

printf("\nIt's small letter");
getch();
}

if...else if ... else statement
It carries out logical tests and then executes one of number of possible actions, depending upon the
outcome of test.
if<expression1>

https://civinnovate.com/civil-engineering-notes/

{
S1; S2; ... Sn;

}
else if <expression2>
{

S1; S2; ... Sn;
}
....
else if <expression n>
{

}

else
{

}

S1; S2; ... Sn;

S1; S2; ... Sn;

/* To check whether input character is capital, small, digit or other character */
#include<stdio.h>
#include<conio.h>
void main()
{
char x;
clrscr();
printf("Press any alphabet key");
x=getch();
if(x>='A'&&x<='Z')

printf("\nIt's capital letter");
else if(x>='a'&&x<='z')

printf("\nIt's small letter");
else if(x>='0'&&x<='9')

printf("\nIt's digit");
else

printf("\nIt's other character");
getch();
}

https://civinnovate.com/civil-engineering-notes/

goto statement
The goto statement is used to alter normal sequence of program execution by transferring its control
to some other part of program.
syntax:

goto label;
where, label is an identifier to which the control is to be transferred. Label should be

given at any part of program where the control is to be transferred, followed with a colon(:).

/* To print integer numbers from 1 to 10 */
#include<stdio.h>
main()
{

start:

int i=1;

if(i<=10)
{

printf("\n %d",i);
i++;
goto start;

}
}
Assignment

1. WAP to find highest number among 3 input integer numbers.
2. WAP to display whether an input integer number is even or odd.
3. WAP to find total, percentage, result (Pass/Fail) and division of a student for input marks of

ENG, PHY, CHEM.
4. To print series 1,3,5,7,9 using goto.
5. To print 1,1,2,3,5,8,13,21 using goto.

for statement
The for statement is the most commonly used as looping statement. It includes 3 expressions in
which first expression initializes index (counter), second expression determines whether the loop is to
be continued or not and third expression modifies index (counter) value. So, third expression is
generally unary or assignment expression is used.

The general form of for statement is as follows:
for(expression 1; expression 2; expression 3)

When for loop is executed, first it initializes counter as specified in expression 1, then evaluates the
expression 2 whether the loop is to be continued or not. If the expression 2 is satisfied (TRUE or 1)
then only the group of statements within the loop is executed. And finally, only the expression 3 is
executed by modifying the counter. So, the loop is continued until expression 2 is FALSE or 0.

/* To display a message 10 times */
#include<stdio.h>
main()
{

https://civinnovate.com/civil-engineering-notes/

int i;
for(i=0; i<10; i++)
{

printf("\n Good Morning");
}

}

/* To print 10 consecutive integer numbers */
#include<stdio.h>
main()
{

int i;
for(i=1; i<=10; i++)
{

printf("\n %d", i);
}

}

/* To print odd integer numbers between 1 to 50 */
#include<stdio.h>
main()
{

int i;
for(i=1; i<=50; i+=2)
{

printf("\n %d", i);
}

}

Assignment 2
6. WAP to print numbers 100, 81, 64 ... 1.
7. WAP to print numbers 1, 2, 4, 8 512
8. WAP to print 0.1,0.01,0.001. 0.0000001
9. To print as 0.3, 0.33,0.333 0.3333333
10. To check whether input no. is prime or composite.

Infinite For loop
Infinite loop occurs when the expression 2 in the For loop is TRUE for infinite times.
e.g.

But,

for(i=0;i<10;)

for(i=0;i<10;i--)
is not infinite loop.

Null Loop
It executes without any embedded statements.
for(i=0;i<10;i++);

This loop executes 10 times without executing any other statements. But final value of counter
will be 11 after completion of loop.

https://civinnovate.com/civil-engineering-notes/

While Statement
The While loop is also used to carry out looping operations. Generally it is used for prior unknown steps of loops
to be executed whereas the For loop is used for prior known steps of loops to be executed.
The general form of While statement is :

while(expression)
The while loop is executed repeatedly till the expression is TRUE (not zero). So, it is used for unknown loops till
some condition is not satisfied within the While loop.

Counter is initialized before the loop and modified within the loop, if necessary.

/* To print 10 consecutive integer numbers using while loop */
#include<stdio.h>
main()
{

int i=1;
while(i<=10)
{

printf("\n %d", i);
i++;

}
}

/* To find sum of positive integer numbers until negative number is entered */

#include<stdio.h>
#include<conio.h>

void main()
{

int x=0,sum=0;

while(x>=0)
{

sum+=x;
scanf("%d",&x);

}
printf("\n%d",sum);
getch();

}

do... while statement

https://civinnovate.com/civil-engineering-notes/

When a loop is written using while or for statements, the condition is checked at the beginning of each pass.
Whereas, it may require to write such a loop in which condition is to be checked at end of each pass whether the
loop is to be continued or not. So, such a loop can be achieved by means of do... while statement.

The general form of do...while statement is:
do{

statements;
}while(expression);

The statements within the loop will be executed as long as the expression is TRUE. The statements will be
executed at least once however the expression is never satisfied.

It is better to test the condition before the continuation of loop. So, for & while statements are frequently used
with comparing to do...while statement.

It can be initialized & modified the counter as in while statement.

/* To print 1 to 10 consecutive integer numbers */
#include<stdio.h>
#include<conio.h>

void main()
{

int i=1;
do{

printf("\n %d",i);
i++;

}while(i<=10);
getch();

}

/* To convert a line of input lowercase text to uppercase */
#include<stdio.h>
#include<conio.h>
#include<ctype.h>

void main()
{

char x[80];
int i= -1,k;
clrscr();

do {
i++;

} while((x[i]=getchar())!='\n');

k=i;
i=0;
while(i<k)
{

putchar(toupper(x[i]));
i++;

}
getch();

}

https://civinnovate.com/civil-engineering-notes/

1
23
345
4567
56789
678901
7890123

Nested loops
One loop can be embedded within another loop without overlapping each other, is known as Nested loops. It may
consist of different control statements as inner loop and outer loop, but index (counter) must be different for
different loop.

/* To print multiplication tables of 1 to 10 */
#include<stdio.h>
#include<conio.h>

void main()
{

int i,k;
for(k=1;k<=10;k++)
{

i=1;
while(i<=10)
{

}
getch();
}

}

printf("\n %d x %d = %d",k,i,i*k);
i++;

Assignment 3:
1. Write a program to find individual average of 5 lists of input numbers.
2. Write a program to print prime numbers among 1 to 100.
3. WAP to print

a) b)

Switch Statement
The switch statement is used to execute particular group of statement among available groups of
statements. The selection depends upon the current value of expression following switch statement.

The general form of switch statement is:

switch (expression)
{

case label1:
{

statements;
break;

}
case label2:

*
**

https://civinnovate.com/civil-engineering-notes/

{
statements;
break;

}
.......................
.......................
case labeln:
{

statements;
break;

}
default:
{

statements;
}

where, expression may be int or char type.

Switch statement is similar to if...else if...else statement, but switch statement executes faster with
comparing to if...else if...else because it directly executes the matching group of statement from the
available groups of statements. But, the case label (case prefix) must be unique for each group.

/* To find sum, difference, product or quotient of any two input integer numbers using integer type
expression*/

#include<stdio.h>
#include<conio.h>
#include<ctype.h>

void main()
{

int n,m,r=0;
int c;
clrscr();

start:

printf("enter 2 no.");
scanf("%d%d",&n,&m);

printf("\n1. sum");
printf("\n2. diff");
printf("\n3. product");
printf("\n4. quotient");
printf("\n Select numbers (1-4)");
scanf("%d",&c);

switch(c)
{

case 1:
{

}

case 2:
{

printf("\nsum is %d",n+m);
break;

https://civinnovate.com/civil-engineering-notes/

}
case 3:
{

}
case 4:
{

}

printf("\n Difference is %d",n-m);
break ;

printf("\n Product is %d",n*m);
break;

printf("\n Quotient is %f",(float)n/m);
break;

default:
{

}
getch();
}

printf("\n wrong selection");
goto start;

}

/* To find sum, difference, product or quotient of any two input integer numbers using char type
expression*/

#include<stdio.h>
#include<conio.h>
#include<ctype.h>

void main()
{

start:

clrscr();
int n,m,r=0;
char c;
printf("enter 2 no.");
scanf("%d%d",&n,&m);

printf("\n1. sum");
printf("\n2. diff");
printf("\n3. product");
printf("\n4. quotient");
printf("\n Select numbers (1-4) or first char(s,d,p or q)");

c=getch();

switch(toupper(c))
{

case 'S':
case '1':
{

printf("\nsum is %d",n+m);
break;

}

https://civinnovate.com/civil-engineering-notes/

case 'D':
case '2':
{

printf("\nsum is %d",n-m);
break ;

}

case 'P':
case '3':
{

printf("\nsum is %d",n*m);
break;

}
case 'Q':
case '4':
{

printf("\nsum is %f",(float)n/m);
break;

}
default:
{

}

getch();
}

printf("\n wrong selection");
goto start;

}

Assignment
1. To find Area of a triangle, rectangle, square or circle asking required parameter
2. To print the value of angle of sine, cosine or tangent for input angle in degree

https://civinnovate.com/civil-engineering-notes/

break statement
The break statement is used to exit from a loop or from switch statement by transferring control out of entire
loop or switch. It can be used within for, while, do...while or switch control statement.

It can be simply called as,

break;

continue statement
The continue statement is used to bypass the remainder statements of current step of loop but it continues the
remaining steps of loop. So, it only skips the remaining statements of current step of loop.

It can also be used within for, while or do...while control statement as break statement.

/* To find sum of non negative integer numbers until negative number is entered*/
#include<stdio.h>
#include<conio.h>
void main()
{

int i,sum=0,x;
printf("\nEnter integer numbers");
for(i=0;i<10;i++)
{

scanf("%d",&x);

if(x<0)
break;

sum+=x;
}
printf("\n Total is: %d",sum);

}

/* To find sum of non negative integer numbers among 10 input integer numbers*/
#include<stdio.h>

void main()
{

int i,sum=0,x;
printf("\nEnter integer numbers");
for(i=0;i<10;i++)
{

scanf("%d",&x);
if(x<0)

continue;
sum+=x;

}
printf("\n Total is: %d",sum);

}

The comma operator
The comma operator is used to permit two expressions where generally one expression is used. Such as:

for(expn1a,expn1b;expn2;expn3a,expn3b)

where, expn1a and expn1b are the two expressions which initializes two counters(index); expn2 checks
whether the loop is to be continued or not; and finally, expn3a & expn3b modifies the counters.

https://civinnovate.com/civil-engineering-notes/

/* To check whether the input string is palindrome or not */

#include<stdio.h>
#include<conio.h>
#define EOL '\n'
#define TRUE 1
#define FALSE 0
void main()
{

char x[80];
int tag,i, k,flag;
flag=TRUE;
printf("\nPlease enter a word, phrase or sentence");

for(i=0;(x[i]=getchar())!=EOL;i++)

;
tag=i-2;

for((i=0,k=tag);i<=tag/2;(i++,k--))
{

if(x[i]!=x[k])
{

flag=FALSE;
break;

}
}
for(i=0;i<=tag;i++)
{

putchar(x[i]);
}

if(flag)

else

}

printf(" is a palindrome");

printf(" is not a palindrom");

Modify the previous program so that it checks words or phrases for palindrome or not as long as user
wishes.

WAP to print specified number of characters starting from specified character position of an input string

https://civinnovate.com/civil-engineering-notes/

Functions
As we know that one of the important feature of c is its modularity. A
program can be broken into small and self contained components
modules(pieces), such a small module is known as function. In other
words, a function is a self-contained program segment that carries
out some specific, well-defined task.

Some modules which are already defined in C library files, are known
as library function. Such function can be accessed in any program by
including its respective library/header file and they have their own
predefined meaning and syntax to use.

C also allows defining a programmer his/her own function, which is
known as user-defined function. Such functions can also be stored
into a file as library file so that they can be accessed in any program
whenever it is required.

Advantages of function:
Redundancy: While programming, it may require executing some
instructions repeatedly. Such instructions can be defined as a
function, which can be accessed easily by calling its name in any
portion of program which reduces repetition of same instructions.

Clarity: It makes a program logically clear and easy to debug. Each
function is well defined for a particular problem and it will have
particular name which can be accessed by its name. So in main
module, from which the particular function is being called, will have
only function name. If any error found in the function, we need to
debug only in the particular body of function definition.

https://civinnovate.com/civil-engineering-notes/

Customized library: After defining a well-defined function, user may
store into a library file. Hence, a function can be accessed in many
programs which avoid repetition.

Every C program contains one or more functions. One is must, which
is called main function and it always starts to execute from this
function however there are more than one function in any order.

One function definition can not be embedded within another function
i.e. functions can not be nested.

As a function is being called at any portion of program, the control will
be transferred to the calling function with identifiers called arguments
(parameters) and return back to the point from which the function
was accessed.

/*To find sum of any two integer numbers using user defined
function */
#include<stdio.h>
#include<conio.h>

/* fx definition */
int sum(int x,int y)
{

int z;
z=x+y;
return(z);

}

https://civinnovate.com/civil-engineering-notes/

void main()
{

int a,b,c;

int sum(int x,int y); /*Declaration of fx*/

printf("\nEnter any two numbers");
scanf("%d%d",&a,&b);

c=sum(a,b); /* fx call */
printf("\n Total is %d",c);
getch();

}

/*To convert an input character into uppercase using user
defined function */
#include<stdio.h>
#include<conio.h>

char toup(char x)
{

char y;
y=(x>='a'&&x<='z')?x-32:x;
return(y);

}

void main()
{

char x,y;

https://civinnovate.com/civil-engineering-notes/

char toup(char x);

printf("\nEnter any character");
x=getchar();

y=toup(x);
printf("\n Total is %c",y);
getch();

}

Defining a function
A function definition contains major components: first line/heading,
and the body of the function. The first line of function definition
contains function type, name of function and arguments separated
with commas, enclosed in a pair of parentheses. Here,
arguments/parameters are optional but a pair of parentheses must be
included however non of arguments are to be passed to the function.

The general form of first line of function definition:
data_type name(formal arg1, formal arg2,. formal argN)

Here,
 data_type represents data type of return value
 name represents the function name

and, number of formal arguments which represents the different
data are to be passed into the function with their individual data
types.

The arguments following the function name in function definition

are known as formal arguments and they get data from calling
program to the function.

https://civinnovate.com/civil-engineering-notes/

The identifiers used within a function, have scope within the
current function only. Hence there may be same identifier at different
functions. Such type of identifier is called local identifiers.

The remainder of function definition is a compound statement

that defines the action to be taken by the function which is known as
body of function. At the end of body of function may consist of return
statement which shows the output of the function. Hence, the data
type of function depends upon the data type of value that returns.

The general form of return statement as:

return expression;
The value of expression is returned to the calling portion of the
program. The expression is optional, however, a return statement can
be written without it. If the expression is omitted, the return statement
simply causes control to revert back to the calling portion of the
program, without any information transfer. Only one expression can
be included in the return statement. Hence one function can return
only one value to the calling portion of the program via return
statement.

Accessing a function

A well defined function can be accessed by specifying its name
following a list of arguments separated by commas, enclosed in a pair
of parentheses. If there is no argument is to be passed, an empty pair
of parentheses must follow the function name.

The corresponding argument in the function reference (function

call) from where the function is being called, is known as actual
argument.

https://civinnovate.com/civil-engineering-notes/

Passing arguments to a function
A value from a function can be passed via actual argument to a

function. The value of corresponding formal argument can be altered
within the function but it doesn't change the value of actual argument
of calling function. This process of passing value of argument to a
function is known as passing by value.

#include<stdio.h>
modify(int a)
{

a=0;
printf("\n Value of a within fx is: %d",a);

}

void main()
{

int a=5;
printf("\n Value of a before fx is: %d",a);
modify(a);
printf("\n Value of a after fx is: %d",a);

}

Function Prototypes
A function should be declared in the main function as other data

items, if the function is defined below the main function. But function
declaration is optional if the function is defined before the main
function.
The general form of function declaration which is also known as
function prototype, is as follows:

data_type name(type1 arg1, type2 arg2, ... type n arg n);

https://civinnovate.com/civil-engineering-notes/

Recursive
Sometime, a function may be called within itself repeatedly,
until some specified condition is satisfied. Such a method of
calling a function within the body of own function is known as
RECURSION.

While writing an iterative (repetitive) function, we should
take care of two things.

1) the fx should be called within the body of fx definition.
2) there should be a stopping condition in order to stop

the execution of fx.

/* To find factorial of an input number using recursive
function*/
#include<stdio.h>
#include<conio.h>

double fact(double a)
{

if(a<=1)
return 1;

else
return(a*fact(a-1));

}

void main()
{

clrscr();
double a=6,x;

https://civinnovate.com/civil-engineering-notes/

x=fact(a);

printf("\n %f",x);

getch();
}

/* To reverse an input string*/
#include<stdio.h>
#include<conio.h>

void reverse()
{

char c;
if((c=getchar())!='\n')

reverse();

putchar(c);
}

void main()
{
clrscr();

printf("Please enter a line of text\n");
reverse();

getch();
}

https://civinnovate.com/civil-engineering-notes/

Assignments(Use user defined functions):
1. To find product of two numbers
2. To determine the larger number of two integer numbers
3.To calculate the factorial of N
4.To find real roots of a quadratic equation.
5.To determine value of xn.
6. To find square root of x.
7. To check an input number is prime or composite.
8.To determine largest number among 4 numbers.

https://civinnovate.com/civil-engineering-notes/

Program Structure
In earlier chapters, we've used local variables, which have scope within

the single function in which the variable is defined. Such variable is not
recognized in other functions. However, the same name is used in other
functions; it is required to re-define the variable. In other words, it reserves
different memory for both the variables however same name is used.

But, in some situations, it may require to define a variable in such a way
so that the scope of variable remains more than one function or throughout the
program from the point of its definition.

So, permanence of a variable and its scope within the program is

characterized with Storage Class. It shows the portion of program over which the
variable is recognized.

Hence, we can say that a variable has two characteristics, one data type
and another storage class.

The four types of storage class are –
automatic, external, static and register which can be defined using

keywords auto, extern, static and register respectively. Some typical variables
can be declared as follows:

auto int a,b,c;
extern char name[10];
static int x;

Automatic variable
Automatic variables are always declared within a function and its scope retains
within the function only in which they are declared. So, same name can be used
as variables in different functions and different memories are allocated for them.
Hence such variables are also known as local variables. While declaring
automatic variable within a function, it is not required to use auto keyword i.e.
auto is optional.

#include<stdio.h>
#include<conio.h>
#include<math.h>

float quad(int a, int b,int c, int i)
{

float x=(-b+i*(sqrt(pow(b,2)-4*a*c)))/(2*a);
return x;

}

void main()
{

clrscr();
auto int a=4,b=5,c=1;

https://civinnovate.com/civil-engineering-notes/

float x,y;

x=quad(a,b,c,1);
y=quad(a,b,c,-1);

printf("\n %f",x);
printf("\n %f",y);

getch();
}

External variables
The scope of external variable extends from the point of definition throughout the
remainder of program. Since the variable is recognized throughout the program
from the point of declaration, it retains its values. Hence, external variable can be
assigned a value within a function and can be used within another function. It
provides a convenient way for transferring information back and forth between
functions without using arguments. One more, it can return more than one data
items from a function without using RETURN statement.

/* To find real roots of quadratic equation */
#include<stdio.h>
#include<conio.h>
#include<math.h>

int a=4,b=5,c=1;

float quad(int i)
{

float x=(-b+i*(sqrt(pow(b,2)-4*a*c)))/(2*a);
return x;

}

void main()
{

clrscr();

float x,y;

x=quad(1);
y=quad(-1);

printf("\n %f",x);
printf("\n %f",y);

getch();
}

https://civinnovate.com/civil-engineering-notes/

/* To find real root of quadratic equation */

#include<stdio.h>
#include<conio.h>
#include<math.h>

extern int a=4,b=5,c=1;

float x,y;

void quad()
{

x=(-b+(sqrt(pow(b,2)-4*a*c)))/(2*a);
y=(-b-(sqrt(pow(b,2)-4*a*c)))/(2*a);

}

void main()
{

clrscr();
quad();

printf("\n %f",x);
printf("\n %f",y);

getch();
}

Static Variable
Static variable is defined within individual functions and therefore has the

same scope as automatic variable. So, it is similar to automatic variable i.e. local
to the current function in which it is defined. But, Static variable retains its
previous values throughout the life of program however the function (in which
static variables are defined) is re-called after exit.

Static variable is defined in the same way as automatic variable with
keyword static before data type of variables which shows static storage class.

#include<stdio.h>
#include<conio.h>
long int fact(int i)
{

static long int x=1;
return(x*=i);

https://civinnovate.com/civil-engineering-notes/

}

void main()
{

long int y;
int a=6;
for(int i=1;i<=a;i++)

y=fact(i);

printf("\n %ld",y);
}

It's unusual to define automatic or static variable having the same names as
external variables. If happened, local variables will take precedence over the
external variables. But it doesn't affect the values of external variables.

Here is one skeletal structure of a C program showing various storage class.

float a,b,c;

main()
{

}

static float a;
void dummy(void);
....

void dummy(void)
{

static int a;
int b;
........

}

Write programs using UDF(user defined function) different storage class.
1. to convert a character to uppercase using UDF.
2. to determine the greater number between two input integer numbers.
3. To check an input number is prime or composite
4. to find factorial of N.

https://civinnovate.com/civil-engineering-notes/

Array
Some programs may need to handle same type of different number of data having same
characteristics. In such situation, it will be easier to handle such data in Array, where
same name is shared for all data with different subscripts. In an array, all the data items
must be of same type and same storage class. Eg. either int, floating point or characters

Each array element (individual array element) is denoted with a name followed by one or
more subscripts (where each subscript must be non negative integers within a pair of
square bracket).

The number of subscript depends on the dimensionality of the array. Eg. a[i] refers to an
element of one dimensional array. Whereas b[i][j] refers to an array element of two
dimensional array. In the same manner c[i][j][k] for three dimensional array.

Defining an array
Array is also defined in the same manner as ordinary variables, but it should also include
the size of specification that shows the maximum size of elements in that array. The size
must be defined with a constant ie. cannot be used any variable as subscript while
defining an array. But it can be a symbolic constant while defining size of an array.

It is defined such as follows:

Storage_class data_type array[expression];

e.g. int x [5];

float y[3][4];
char name [MAX]; where MAX is symbolic constant.

Prog 1:
To store integer nos in an array and print them (1 dim)

#include<stdio.h>

void main()
{

int i, x[10]={4,5,2,8,4,7,9,6,5};

printf("\n The stored numbers in the array are:");

for(i=0;i<10;i++)
{

printf("\n %d", x [i]);

https://civinnovate.com/civil-engineering-notes/

}
}

Prog 2:
Modify prog 1 so that it allows to enter integer nos. those are to be stored in an array.

Prog 3:
Modify prog 2 so that it could find out sum, average & deviation of data with average
value.
Note: deviation = No. - average

Prog 4:
To sort a list of integer numbers in ascending order.

#include<stdio.h>

void main()
{

int i,k, temp, x[10];

printf("\n Enter numbers to be sorted :");

for(i=0; i<10; i++)
{

scanf("%d", &x [i]);
}

for(i=0;i<9;i++)
{

for(k=i+1;k<10;k++)
{

if(x [i] > x [k])
{

temp = x [i];
x [i]= x [k];
x [k]= temp;

}
}

}

printf("\n The sorted numbers are:");

for(i=0;i<10;i++)

https://civinnovate.com/civil-engineering-notes/

{
printf("\n %d", x [i]);

}
}

Two dimensional array
Prog 5:
To store numbers in a two dimensional array and print them
#include<stdio.h>
#include<conio.h>

void main()
{

int i,k,x[2][3]={1,2,3,4,5,6};
for(i=0;i<4;i++)
{

for(k=0;k<4;k++)
{

printf("%d\t",x[i][k]);
}
printf("\n");

}
}

Prog 6:
Modify prog 5 so that it allows to enter numbers.

Prog 7:
Write a program to find out sum of two matrices of size 2x3

#include<stdio.h>
#include<conio.h>

void main()
{

int i,k,x[2][3],y[2][3],z[2][3];

for(i=0;i<4;i++)
{

for(k=0;k<4;k++)
{

scanf("%d",&x[i]);

https://civinnovate.com/civil-engineering-notes/

}
}

for(i=0;i<4;i++)
{

for(k=0;k<4;k++)
{

scanf("%d",&y[i]);
}

}

void modify (int x[])
{

int i;
for(i=0;i<3;i++)
{

x [i]=9;
}

}

https://civinnovate.com/civil-engineering-notes/

void main()
{

int i, x[10];

printf("\n Enter numbers to be stored in the array :");
for(i=0;i<3;i++)
{

scanf("%d", &x [i]);
}

modify(x);
printf("\n The stored numbers in the array are:");

for(i=0;i<3;i++)
{

printf("\n %d", x [i]);
}

}

Prog 10:
Modify prog 4 to sort a list of numbers passing to a function.

1. To search a number in a list of numbers.
2. Modify Problem 1 using UDF.
3. To search a character in an input string.
4. Modify Problem 1 using UDF.
5. To convert a line of text from lowercase to uppercase.
6. Modify Problem 1 using UDF.
7. To search a district whether it is present in Bagmati Zone or not.
8. Modify Problem 1 using UDF.
9. To sort a list of of districts in Bagmati Zone in ascending order.

10. To input a list of words & print them.
11. To sort a list of names in ascending order.
12. To search name of a student, if found, display the name using UDF

https://civinnovate.com/civil-engineering-notes/

Structure
Sometime, it may require to process multiple data stucture whose individual data elements can be
differ in type. In a single structure may contain integer element, floating point element and
character element. It may consist of arrays, pointers and other structures as element of the
structure.

So, a combination of data structure with various type of elements within the same storage class, is
known as structure in C.

Defining a structure
It is a little bit difficult to define a structure with comparing to an array. Since in a structure, it
may consist of various data elements and each data element is to be defined separately within the
structure such as:
struct tag {

member 1;
member 2;
member 3;
…………..
………….
member m;

};

where struct is a keyword which defines the following combination is a structure.
tag represents the name of structure of combined members included within compound statement.
and, member 1,member 2, member 3,… member m are the individual declaration of elements
of current structure.

• The individual member can be ordinary variable, array, pointer or other structure.
• The name must be distinct from another structure.
• But the member name of the structure and outside the structure may be same but refers to

different identity.
• Storage class can not be defined for individual members and also cannot be initialized

individual members within the structure.

Once the composition of structure has been defined, individual structure type variables can be
declared as follows:

storage_class struct tag variable 1, variable 2, variable 3, , variable n;

where, storage class is optional.
struct is required keyword to declare following variables as structures.
tag is the name of the structure
and variable 1, variable 2, variable 3 are the structure variables.
e.g.
struct account {

int acctno;
char acct_type;
char name[80];
float balance;

};

1
https://civinnovate.com/civil-engineering-notes/

struct account oldcustomer, newcustomer;

It is also possible to combine the declaration of structure with structure variables as follows:

storage_class struct tag {
member 1;
member 2;
member 3;
…………..
………….
member m;

}variable 1, variable 2, variable 3, ……., variable n;

Note : tag is optional in this case.

struct account {
int acctno;
char acct_type;
char name[80];
float balance;

} oldcustomer, newcustomer;

A structure may also consist of another structure as a member of structure but the embedded
structure must be declared before the outer structure.
eg.
struct date {

int month;
int day;
int year;

};

struct account {
int acctno;
char acct_type;
char name[80];
float balance;
struct date lastpayment;

} oldcustomer, newcustomer;

The member of a structure can not be initialized within the structure. It can be initialized in the
same order as they are defined within the structure as follows:

storage_class struct tag variable={value 1, value 2, value 3. , value m};

e.g.
struct date {

int month;
int day;
int year;

};

2
https://civinnovate.com/civil-engineering-notes/

struct account {
int acctno;
char acct_type;
char name[80];
float balance;
struct date lastpayment;

};

static struct account customer = {101,’S’, “Anup”, 10000.50, 5, 15, 04};

array of structure
It can also be defined an array of structures upon which each element of the array represents a
structure.

e.g.
struct date {

int month;
int day;
int year;

};

struct account {
int acctno;
char acct_type;
char name[80];
float balance;
struct date lastpayment;

}customer[100];

In this declaration, each element of array represents a structure of a customer. So, we have 100
structures for 100 customers. That means, we can store 100 records of customer in this data
structure.

Processing a structure
The members of a structure are usually processed individually, as separate entities. So, each
member of a structure can be accessed individually as follows:

variable.member
where variable refers to name of a structure type variable
and, member refers to name of a member of the structure.

e.g.
customer.acctno

where, customer refers to name of structure
and accno refer to member of the structure
similarly,

3
https://civinnovate.com/civil-engineering-notes/

customer.name
customer.balance
etc.....

let’s see some expressions

++customer.balance
customer.balance++
&customer.balance

Similarly, it can also be accessed sub-member of a structure as follows:

variable.member.submember
where variable refers to name of a structure type variable
member refers to name of a member within outer structure
and, submember refers to name of the member within the embedded structure.
e.g.

customer.lastpayment.month

/* to read input of a customer and write out it’s information again */

#include<stdio.h>
struct date {

int month;
int day;
int year;

};

struct account {
int acctno;
char acct_type;
char name[80];
int balance;
struct date lastpayment;

}customer[100];

main()
{

}

int i,n;
printf(“\n How many no. of cusstomer?”);
scanf(“%d”,&n);
for(i=0;i<n;i++)

readinput();

for(i=0;i<n;i++)

writeoutput();

4
https://civinnovate.com/civil-engineering-notes/

void writeoutput(int i)
{

printf(“\n Customer No.: %d”,i+1);
printf(“Name : %s”,customer[i].name);
printf(“Account Number : %d “,customer[i].acctno);
printf(“Account Type : %c “,customer[i].acct_type);
printf(“Balance : %d “,customer[i].balance);
printf(“Payment Date : %d/%d/%d “,customer[i].lastpayment.month,
customer[i].lastpayment.day, customer[i].lastpayment.year);

}

void readinput(int i)
{

printf(“\n Customer No.: %d”,i+1);
printf(“Name : “);
scanf(“%[^n] “,customer[i].name);
printf(“Account Number : “);
scanf(“%d “,&customer[i].acctno);
printf(“Account Type : “);
scanf(“%c “,&customer[i].acct_type);

printf(“Balance : “);
scanf(“%d “,&customer[i].balance);

printf(“Payment Date : “);
scanf(“%d/%d/%d“,&customer[i].lastpayment.month, &customer.lastpayment.day,

&customer.lastpayment.year);
}

User Defined data types(typedef)
In c, the data type of any identity can be customized by the user. i.e. new data type can also be
made so that such type can be used to define any identities. typedef is the keyword, which enables
users to define new data type equivalent to existing data types. Such user defined data types can
be used any new variables, arrays, structures. New data type can be defined as follows:
typedef type new_type;

e.g.
typedef int age;
age male female;

and, is equivalent to
int male, female;

Similarly,
typedef float cust[100];
cust newcust,oldcust;

or,
typedef float cust;
cust newcust[100],oldcust[100];

By the same way, it can also be used to define a structure too. It removes the repeatition of struct
tag.
In general,

5

https://civinnovate.com/civil-engineering-notes/

typdef struct{
member 1;
member 2;
...............
member m;

}new_type;

e.g.
typedef struct{

int acctno;
char acct_type;
name[80];
float balance;

}record;
record oldcustomer,newcustomer;

Here, record is defined as new structure data type and newly define data type is used to define
structure variables oldcustomer and newcustomer.

Different ways of declaration of structures

typedef struct {
int month;
int day;
int year;

}date;

typedef struct {
int acctno;
char acct_type;
char name[80];
float balance;
date lastpayment;

}record;
record customer[100];

typedef struct {

int month;
int day;
int year;

}date;
typedef struct {

int acctno;
char acct_type;
char name[80];
float balance;
date lastpayment;

}record[100];
record customer;

typedef struct {
int month;
int day;
int year;

}date;

struct {
int acctno;
char acct_type;
char name[80];
float balance;
date lastpayment;

}customer[100];

Structures and Pointers
The beginning address of a structure can also be accessed in the same manner as other address,
using &(address) operator. So, a variable represents a structure, it can also be represented its
address as &variable and pointer to the structure can be denoted as *variable.
such as
type *ptvar;

A pointer to a structure can be defined as follows:

6
https://civinnovate.com/civil-engineering-notes/

e.g.
typedef struct {

int acctno;
char acct_type;
char name[80];
float balance;
date lastpayment;

}account;
account customer, *pc=&customer;

typedef struct {
int acctno;
char acct_type;
char name[80];
float balance;
date lastpayment;

} customer, *pc=&customer;

Here, customer is a structure variable of type account and pc is a pointer variable whose object is account type
structure. The beginning address of the structure can be accessed as
pc=&customer;

Generally, each member of structure can be accessed by using selection operator as

ptvar -> member
which is equivalent to
variable.member

The -> operator can be combined to period (.) operator and their associativity is left to right. Similarly, it can be used
for array too.
ptvar ->member[expn]

typedef struct {

int month;
int day;
int year;

}date;

struct {
int acctno;
char acct_type;
char name[80];
float balance;
date lastpayment;

} customer, *pc=&customer;

So, if we want to access customer’s account number, then we can write any one of these
customer.acctno pc->acctno (*pc).acct_no

Similary, for month of last payment,

customer.lastpayment.month
pc->lastpayment.month
(*pc).lastpayment.month

If the structure is defined as:
struct {

int *acctno;
char *acct_type;
char *name;

7
https://civinnovate.com/civil-engineering-notes/

float *balance;
date lastpayment;

} customer, *pc=&customer;

So, if we want to access customer’s account number, then we can write any one of these

*customer.acctno *pc->acctno *(*pc).acct_no

struct2.cpp
/* To access data items from members of structure */
#include<stdio.h>
#include<conio.h>

void main()
{
int n=111;
char t='c';
float b=99.99;
char name[20]="srijan";
int d=25;

typedef struct {

int *month;
int *day;
int *year;

}date;

struct {
int *acctno;
char *acct_type;
char *name;
float *balance;
date lastpayment;

}customer,*pc=&customer;

pc->acctno=&n;
customer.acct_type=&t;
customer.name=name;
customer.balance=&b;
*customer.lastpayment.day=25;
clrscr();

printf("\n%d %c %s %.2f %d", *customer.acctno, *customer.acct_type, customer.name,
*customer.balance, *customer.lastpayment.day);

printf("\n%d %c %s %.2f %d",*(*pc).acctno,*pc->acct_type,

pc->name,*pc->balance,*pc->lastpayment.day);

getch();
}

8
https://civinnovate.com/civil-engineering-notes/

struct3.cpp

/* To determine the size of a structure and it's address */

#include<stdio.h>
#include<conio.h>

void main()
{

clrscr();

typedef struct {
int month;
int day;
int year;

}date;

struct {
int acctno;
char acct_type;
char name[80];
float balance;
date lastpayment;

}customer, *pc=&customer;

printf("\nNumber of bytes %d",sizeof *pc);
printf("\nstarting address : %d",pc);
printf("\nstarting address : %d",++pc);

getch();
}

Passing structure to a function
A structure can generally be passed to a function by two ways. Either, individual members can be passed to a function
or entire structure can be passed to a function. By the same way a single member can be returned back to the function
reference or entire structure.

In general,
void main()
{
typedef struct {

int month;
int day;
int year;

}date;

struct {
int acctno;
char acct_type;
char name[80];
float balance;
date lastpayment;

}customer;

9
https://civinnovate.com/civil-engineering-notes/

float modify(char name[], int acctno, float balance);

....................
customer.balance = modify(name, acctno, balance);
....................
}

float modify(char name[], int acctno, float balance)
{

float newbalance;
....................
newbalance = ;
return(newbalance);

}

In this example, individual member is passed to a function and the new value is returned back to a member of a
structure.

struct4.cpp

/* To pass an entire structure to a function*/

#include<stdio.h>
#include<conio.h>

typedef struct {

int acctno;
char acct_type;
char *name;
float balance;

}record;

void main()
{
void modify(record *pc);
record customer={101,'c',"Anup",5000.00};

printf("\n%d %c %s %.2f",customer.acctno,customer.acct_type,customer.name,customer.balance);

modify(&customer);

printf("\n\n%d %c %s %.2f", customer.acctno, customer.acct_type, customer.name, customer.balance);

getch();
}

void modify(record *pc)
{

pc->acctno=999;
pc->acct_type='d';
pc->name="Sabin";
pc->balance=99999.99;

}

10
https://civinnovate.com/civil-engineering-notes/

In this example, it passes entire structure to the function with it's address, then modifies values of member
of the structure and finally returns back to the function reference with modified values of the structure.

struct5.cpp

/*to illustrate how an array of structure is passed to a function, and how a
pointer to a particular structure is returned */

#include<stdio.h>
#include<conio.h>
#define N 3

typedef struct {

int acctno;
char acct_type;
char *name;
float balance;

}record;

void main()
{

static record customer[N]={

};

{101,'c',"Anup",5000.00},
{102,'d',"Anil",9000.00},
{103,'o',"Sabina",7000.00}

int ano;
record *pc;
record *search(record table[N], int ano);

do{
printf("\n Enter the record no. to be searched, type 0 to end");
scanf("%d",&ano);
pc=search(customer,ano);

if(pc!=0)
{

}
else

printf("\n Name : %s",pc->name);
printf("\n Account No. : %d",pc->acctno);
printf("\n Account type : %c",pc->acct_type);
printf("\n Balance : %.2f",pc->balance);

printf("\n Error - Record not found");

} while(ano!=0)
}

record *search(record table[N], int ano)
{

int i;
for(i=0;i<N;i++)

if(table[i].acctno==ano)

return(&table[i]);

11
https://civinnovate.com/civil-engineering-notes/

return(0);
}

Unions
It is similar to a structure which may contain individual data item may be different data types of same storage class.
Each member of the structure is assigned its own unique storage area in memory whereas all members of a union share
the same storage area in memory. It reserves the space equivalent to that of member which requires highest memory.
So, it is used to conserve memory. It is useful to such applications, where all members need not to be assigned value at
the same time. If assigned, it will produce meaningless result.

In general,
union tag {

member 1;
member 2;
...............
member m;
};

storage-class union tag variable1, variable2, variable n;

or, combined form,
storage-class union tag {

member 1;
member 2;
...............
member m;
}variable1, variable2, variable n;

e.g.
union id{

char color[12];
int size;

}shirt, blouse;

Here we've two union variables, shirt and blouse of type id and occupies 12 bytes in memory, however value is
assigned to any union variable.

e.g.
union id{

};

char color[12];
int size;

struct clothes{
char manufacturer[20];
float cost;
union id description;
}shirt, blouse;

Here, shirt and blouse are structure clothes type variables. Each variable contains manufacturer, cost and either

of color or size.
Each individual member can be accessed in the same way as structure using . and -> operators.

12

https://civinnovate.com/civil-engineering-notes/

struct6.cpp

/* a program using union */
include <stdio.h>
#include<conio.h>
void main()
{
clrscr();
union id{

};

struct clothes{
char manufacturer[20];
float cost;
union id description;
}shirt, blouse;

char color[12];
int size;

printf("%d",sizeof(union id));

scanf("%s",shirt.description.color);
printf("\n %s %d ", shirt.description.color, shirt.description.size);

shirt.description.size=12;
printf("\n %s %d ", shirt.description.color, shirt.description.size);
getch();
}

struct7.cpp

#include<stdio.h>
#include<conio.h>
#include<math.h>

typedef union {

float fexp; // floating point exponent
int nexp; // integer exponent

}nvals;

typedef struct{
float x;
char flag;
nvals exp;

}values;

void main()
{

values a;
float power(values a);
int i;
float n,y;

printf("y=x^n\n enter value of x:");
scanf("%f",&a.x);

13
https://civinnovate.com/civil-engineering-notes/

printf("enter value for n: ");
scanf("%f",&n);

i=(int) n;
a.flag=(i==n) ?'i' : 'f';
if(a.flag == 'i')

else

a.exp.nexp = i;

a.exp.fexp=n;

if(a.flag=='f' && a.x<=0.0)
{

}
else
{

}
getch();
}

float power(values a)
{

printf("ERROR cannot raise negative no. to a");
printf("floating point power");

y=power(a);
printf("\n y=%.4f",y);

int i;
float y=a.x;
if(a.flag=='i')
{

if(a.exp.nexp==0)

else
{

y=1.0;

for(i=1;i<abs(a.exp.nexp);i++)
{

}
else

y*=a.x;
if(a.exp.nexp<0)

y=1.0/y;
}

}

return(y);

}

y=exp(a.exp.fexp*log(a.x)); //y=exp(n(log(x)))

What is a structure? How does a structure differ from an array?
What is member? Write down the relation between member and structure?
What is the purpose of the typedef feature? How is this feature used in conjuction with structures?
What is a union? How does a union differ from a structure?

14
https://civinnovate.com/civil-engineering-notes/

15

https://civinnovate.com/civil-engineering-notes/

Self Referential Structures
It is sometimes desirable to include within a structure one member that is a pointer to the parent structure type.

Generally,

struct tag {
member 1;
member 2;
...........
struct tag *name;
};

where name refers to the name of a pointer variable. Thus the structure of type tag will have a member that

points to another structure of type tag. Such structure is known as Self-referential structure.

eg.
struct list{

char item[40];
struct list *name;
};

16
https://civinnovate.com/civil-engineering-notes/

array
Some programs may need to handle same type of different number of data having same
characteristics. In such situation, it will be easier to handle such data in Array, where
same name is shared for all data with different subscripts. In an array, all the data items
must be of same type and same storage class. Eg. either int, floating point or characters

Each array element (individual array element) is denoted with a name followed by one or
more subscripts (where each subscript must be non negative integers within a pair of
square bracket).

The number of subscript depends on the dimensionality of the array. Eg. a[i] refers to an
element of one dimensional array. Whereas b[i][j] refers to an array element of two
dimensional array. In the same manner c[i][j][k] for three dimensional arry.

Defining an array
Array is also defined in the same manner as ordinary variables, but it should also include
the size of specification that shows the maximum size of elements in that array.
It is defined such as follows:

Storage_class data_type array[expression];

Prog 1:
To store integer nos in an array and print them (1 dim)

#include<stdio.h>

void main()
{

int i, x[10]={4,5,2,8,4,7,9,6,5};

printf("\n The stored numbers in the array are:");

for(i=0;i<10;i++)
{

printf("\n %d", x [i]);
}

}

Prog 2:
Modify prog 1 so that it allows to enter integer nos. those are to be stored in an array.

Prog 3:
Modify prog 2 so that it could find out sum, average & deviation of data with average
value.

https://civinnovate.com/civil-engineering-notes/

Prog 4:
To sort a list of integer numbers in ascending order.

#include<stdio.h>

void main()
{

int i, x[10];

printf("\n Enter numbers to be sorted :");

for(i=0;i<10;i++)
{

scanf("%d", &x [i]);
}

for(i=0;i<9;i++)
{

for(k=i+1;k<10;k++)
{

if(x [i] > x [k])
{

temp = x [i];
x [i]= x [k];
x [k]= temp;

}
}

}

printf("\n The sorted numbers are:");

for(i=0;i<10;i++)
{

printf("\n %d", x [i]);
}

}

Processing an array
Lllllllll

Two dimensional array
Prog 5:

https://civinnovate.com/civil-engineering-notes/

To store numbers in a two dimensional array and print them

Prog 6:
Modify prog 5 so that it allows to enter numbers.

Prog 7:
Write a program to find out sum of two matrices of size 2x2
Modify it for any size.

Prog 8:
To find out product of two matrices of size 3x2 & 2x1.

Passing array to a function

Prog 9:
To pass a list of numbers into an user defined function to change values of the array.

#include<stdio.h>

void modify (int x[])
{

int i;
for(i=0;i<3;i++)
{

x [i]=9;
}

}

void main()
{

int i, x[10];

printf("\n Enter numbers to be stored in the array :");
for(i=0;i<3;i++)
{

scanf("%d", &x [i]);
}

modify(x);
printf("\n The stored numbers in the array are:");

for(i=0;i<3;i++)
{

printf("\n %d", x [i]);

https://civinnovate.com/civil-engineering-notes/

}
}

Prog 10:
Modify prog 4 to sort a list of numbers passing to a function.

https://civinnovate.com/civil-engineering-notes/

Pointers
Let us assume x is variable of data type int and

it's value is 5 then, &x represents its address/location
of variable x. If, &x (Here, & is called as address
operator) is assigned to another variable px then px is
known as pointer of x.

So, a pointer is a variable which represents the
location of a data item, such as a variable or an array
element.
ie.
int x=5;
px=&x;

Here, px is known as pointer variable.
The data item represented by x (data item stored in
x's memory) can be accessed by the expression *pv
where * is a unary operator, called the indirection
operator that operates upon a pointer variable. So, x
represents its direct value and *px represents its
value indirectly.

Advantages of pointers

- can be used to pass information to & fro
between a function & its reference point.

- multiple data items can be returned from a
function

- requires less memory while using multiple
function. So, it makes program execution
faster.

- One less subscript can be used to represent
multi dimensional array. ie. it permits one less
dimension to multi dimensional array.

https://civinnovate.com/civil-engineering-notes/

/* A program using pointer*/

/* point1.prg*/
#include<stdio.h>

/* point2.prg: direct & indirect expression */

#include<stdio.h>

void main()
{

https://civinnovate.com/civil-engineering-notes/

int x=5,y;
int *px;

y=3*(x+2);

printf("\n %d",y);

px=&x;

y=3*(*px+2);

printf("\n %d",y);
}

/* point3.prg : indirectly changing value*/

include<stdio.h>

void main()
{

int v=3;
int *pv;

pv=&v;
printf("\n v = %d, *pv = %d", *pv,v);
*pv=0;
printf("\n v = %d, *pv = %d", *pv,v);

}

https://civinnovate.com/civil-engineering-notes/

Passing pointer to a function
Pointers can also be passed to a function as
arguments as other data items. It allows to access
any data item to a calling function, then alter within
the function and finally returned back to the calling
portion of reference function. But the pointer is
passed to the function by its address and this method
of passing address to a function is known as passing
by reference. When pointers are used as formal
argument to a function, it should be preceded with
indirection operator (asterisk symbol) in each data
item.

But the earlier method to pass the value of a data
item to a calling function then alter within the function
and finally return back the result to the calling portion
of the function reference. This method of passing
value to a function is known as passing by value.

In this method, it can only be returned a single data
item to a calling function using RETURN statement.
While passing values to a function, it copies it’s value
to different location in memory. Whereas by passing
reference, it uses same memory allocation and the
change of value of any data item, changes to function
reference too from that calling portion.

https://civinnovate.com/civil-engineering-notes/

/* point4.prg : Difference of passing by value &
passing by reference */

#include<stdio.h>
#include<conio.h>

void fxbyvalue(int x,int y)
{

x=0,y=0;
printf("\n wt1: %d\t%d",x,y);

}

void fxbyreference(int *x,int *y)
{

*x=0,*y=0;
printf("\n wt2: %d\t%d",*x,*y);

}

void main()
{

int x=3,y=5;

clrscr();

printf("\n bf1: %d\t%d",x,y);
fxbyvalue(x,y);
printf("\n af1: %d\t%d",x,y);

printf("\n\n bf2: %d\t%d",x,y);
fxbyreference(&x,&y);
printf("\n af2: %d\t%d",x,y);

getch();
}

https://civinnovate.com/civil-engineering-notes/

/* point5.prg : To count number of different types of
characters in a line */

#include<stdio.h>
#include<conio.h>
#include<ctype.h>

void main()
{
clrscr();

char x[80];
int vow=0,con=0,dig=0,whi=0,oth=0;
void analyse(char x[],int *vow,int *con,int *dig,int *whi,int *oth);

printf("\n enter a line of text");
scanf("%[^\n]",x);

analyse(x,&vow,&con,&dig,&whi,&oth);
printf("\n vow : %d \n con = %d \n dig=%d\nwhi=%d \n oth=%d",

vow,con,dig,whi,oth);
}

void analyse(char x[],int *vow,int *con,int *dig,int *whi,int *oth)
{

char c;
int i=0;
while((c=toupper(x[i]))!='\0')
{

if(c=='A'||c=='E'||c=='I'||c=='O'||c=='U')
++*vow;

else if (c>='A'&&c<='Z')
++*con;

else if (c>='0'&&c<='9')
++*dig;

else if (c==' '||c=='\t')
++*whi;

else

https://civinnovate.com/civil-engineering-notes/

++*oth;
i++;

}
}

Pointer and one dim array
If x is a one dimensional array, then first element of
array is represented with x[0] and it’s address as
&x[0]. By the same way i+1th element is represented
as x[i] and it’s address as &x[i]. But it can be
represented as x+i and it's value as *(x+i) in pointer.

/* point6.prg*/

https://civinnovate.com/civil-engineering-notes/

#include<stdio.h>
#include<conio.h>

void main()
{
int x[5]={5,4,6,3,1};
int i;

for(i=0;i<5;i++)
{

printf("\n %d x[i]=%d *(x+i)=%d &x[i]=%x
(x+i)=%x",i,x[i],*(x+i),&x[i],(x+i));

}
getch();
}

Suppose that x is to be defined as a one-dimension,
10 element array of integers. It is possible to define x
as a pointer variable rather than as an array. Thus,
we can write

int *x;
instead of
int x[10];
instead of
#define SIZE 10
int x[SIZE];

Dynamic Memory Allocation

https://civinnovate.com/civil-engineering-notes/

However, x is not automatically assigned a memory
block when it is defined as a pointer variable, though
a block of memory large enough to store 10 integer
quantities will be reserved in advance when x is
defined as an array. To assign sufficient memory for
x, we can make use of the library function malloc, as
follows:

x= (int *) malloc(n*sizeof(int));

This function reserves a block of memory whose size
in bytes is equivalent to the sizeof an integer quantity.
It returns a pointer to x.

The allocation of memory in this manner, as it is
required, is known as dynamic memory allocation.

/*reorder a one dim integer array in ascending order using
pointer notation*/

#include<stdio.h>
#include<conio.h>
#include<alloc.h>

void main()
{
clrscr();
int i,n,*x;
void sort(int n,int *x);

printf("Enter how many nos. ");
scanf("%d",&n);

https://civinnovate.com/civil-engineering-notes/

x=(int *)malloc(n*sizeof(int));

for(i=0;i<n;i++)
scanf("%d",x+i);

sort(n,x);

for(i=0;i<n;i++)
printf("\n%d",*(x+i));

getch();
}

void sort(int n,int *x)
{

int i,j,temp;
for(i=0;i<n-1;i++)
{

for(j=i+1;j<n;j++)
{

if(*(x+i)>*(x+j))
{

temp=*(x+i);
(x+i)=(x+j);
*(x+j)=temp;

}
}

}
}

Pointers and Multidimensional arrays

https://civinnovate.com/civil-engineering-notes/

A two dimensional array is actually a collection of one
dimensional arrays. So, we can define two
dimensional arrays as a pointer to a group of
continuous one dim array. It can be written as follows:

Data_type (*ptvar)[experession 2];
In stead of
Data_type array [expression 1][expression 2];

And, same for more

Data_type (*ptvar)[expn 2][expn 3]……….[expn n];
In stead of
Data_type array [expn 1][expn 2][expn 3]……….[expn n];

e.g.
int (*x)[20] for int x[10][20];

int (*y)[20][30] for int y[10][20][30];

Suppose that x is a 2 dim integer array have 10 rows
and 20 columns, the item in row 2 and column 5 can
be access as follows:

X[2][5]
Or *(*(x+2)+5)

Here, (x+2) is a pointer to the row 2, so the object of
this pointer is *(x+2). If 5 is added to this pointer,
(*(x+2)+5) points the address of 5th element of 2nd row

https://civinnovate.com/civil-engineering-notes/

and *(*(x+2)+5) points to object/value of 5th element of
2nd row.

Pstrsort.cpp

#include<stdio.h>
#include<conio.h>
#include<string.h>

void reorder(int n, char (*x)[20])
{

int i,j;
char *temp;
for(i=0;i<n-1;i++)
{

for(j=i+1;j<n;j++)
{

if(strcmpi(*(x+i),*(x+j))>0)
{

strcpy(temp,*(x+i));
strcpy(*(x+i),*(x+j));
strcpy(*(x+j),temp);

}
}

}
}

void main()
{
clrscr();
int n=0,i;

https://civinnovate.com/civil-engineering-notes/

char (*x)[20];
do{

printf("string %d: ",n+1);
scanf("%s",x+n);

}while(strcmpi(*(x+n++),"End")!=0);

reorder(--n,x);

printf("\n\n Reordered list\n");
for(i=0;i<n;i++)
{

printf("\n string %d : %s",i+1,*(x+i));
}

getch();
}

Arrays of Pointers
A multidimensional array can be expressed in terms
of an array of pointers rather than as a pointer to a
group of contiguous arrays. In such situations the
newly defined array will have one less dimension than
the original multidimensional array. Each pointer will
indicate the beginning of a separate (n-1) dimensional
array.

In general terms, a two dimensional array can be
defined as one dim array of pointers by writing
Data_type *array[expn1];
In stead of

https://civinnovate.com/civil-engineering-notes/

Data_type array [expression 1][expression 2];

And, same for more

Data_type *ptvar[expn 1][expn 2]……….[expn n-1];
In stead of
Data_type array [expn 1][expn 2][expn 3]……….[expn n];

e.g.
int *x[10] for int x[10][20];

int *y[10][20] for int y[10][20][30];

Suppose that x is a 2 dim integer array having 10
rows and 20 columns, the item in row 2 and column 5
can be access as follows:

X[2][5]
Or *(*(x+2)+5)

Program :To find sum of two matrices using array
of pointers.

#include<stdio.h>
#include<conio.h>
#include<alloc.h>
#define row 20

void readinput(int *x[row],int m,int n)
{

int r,c;

https://civinnovate.com/civil-engineering-notes/

for(r=0;r<m;r++)
{

printf("\n Enter data for row no. %d",r+1);
for(c=0;c<n;c++)

scanf("%d",(*(x+r)+c));
}

}

void computesum(int *x[row],int *y[row],int *z[row],int
m,int n)
{

int r,c;
for(r=0;r<m;r++)
{

for(c=0;c<n;c++)
((z+r)+c)=*(*(x+r)+c)+*(*(y+r)+c);

}
}

void writeout(int *x[row],int m,int n)
{

int r,c;
for(r=0;r<m;r++)
{

for(c=0;c<n;c++)
printf("%d\t",*(*(x+r)+c));

printf("\n");
}

}

https://civinnovate.com/civil-engineering-notes/

void main()
{
clrscr();
int nrows,ncols,r;
int *x[row],*y[row],*z[row];
printf("How many rows?");
scanf("%d",&nrows);
printf("How many cols?");
scanf("%d",&ncols);
for(r=0;r<=nrows;r++)
{
x[r]=(int *) malloc(ncols*sizeof(int));
y[r]=(int *) malloc(ncols*sizeof(int));
z[r]=(int *) malloc(ncols*sizeof(int));
}

printf("\n First table\n");
readinput(x,nrows,ncols);

printf("\n second table\n");
readinput(y,nrows,ncols);
computesum(x,y,z,nrows,ncols);

printf("\n Sum of elements\n");
writeout(z,nrows,ncols);
getch();
}

https://civinnovate.com/civil-engineering-notes/

More about pointer declarations
A pointer can be declared in different ways and there
is difficulty of dual use of parentheses. Generally,
parentheses are used to indicate function, and they
are used for nesting purpose for precedence within
more complicated declarations.
Thus, the declaration
(int *)p(int a);

Indicates a function that accepts an integer
argument, and returns a pointer to an integer.

Whereas,
int (*p)(int a);

Indicates a pointer to a function that accepts an
integer argument and returns an integer. In this case,
the first pair of parentheses is used for nesting and
the second pair is used to indicate function.

A pointer can be declared more complex too. Such
as,
Int (*p)(int (*a)[]);

It can be interpreted as follows. In this
declaration, (*p) (….) indicates a pointer to a function.
So, int (*p) (….) indicates pointer to a function that
returns an integer quantity.

Within the last pair of parentheses, (*a)[] indicates a
pointer to an array.
As a result, int (*a)[] represents a pointer to an array
of integers.

https://civinnovate.com/civil-engineering-notes/

Keeping the pieces together, (*p) (int (*a)[])
represents a pointer to a function whose argument is
a pointer to an array of integers. And finally, the entire
declaration
int (*p) (int (*a)[]);

int *p;
int *p[10];
int (*p)[10];
int *p(void);
int p(char *a);
(int *) p(char *a);
int p(char (*a)[]);

Write program to solve following problems with
function with pointer
1. to find real root of a quadratic equation
2. to calculate the factorial of N
3. to determine value of xn
4. to find square root of x
5. to find product of two matrices
6. to sort a list of numbers in ascending order
7. What is a pointer? What is the relationship

between the address of a variable v and
corresponding variable pv? Write down the
advantages of using pointer.

https://civinnovate.com/civil-engineering-notes/

Introduction of Computer
Computer is an electronic device. It

takes raw data as input, processes it and
gives information as output, all under
instruction given to it.
e.g. a =5, b=8

c=a+b
whereas, a and b are data those we
input and value of c is
information/result.

Weakness:
It's a dull machine. That means, it cannot
do anything of its own because of lack of
intelligence.

Software:
A computer contains two basic parts: (i)
Hardware and (ii) Software. Without
software a computer will remain just a
metal. With software, a computer can
store, retrieve, solve different types of
problems.

https://civinnovate.com/civil-engineering-notes/

A software can be defined as : It's a set
of instructions, arranged in a such a way
to do some useful work.

There are mainly two types of Software:

1) System Software :
This type of software deals with
system/hardware. It enables the system
to operate, translates the codes in
different computer language to machine
understandable codes, or utilities for
various systems. There are further
classification of system software, such
as

a) Operating System
An operating system (OS) is the most
important system software and is a must
to operate a computer system. An
operating system manages a computer's
resources very effectively, takes care of
scheduling multiple jobs for execution
and manages the flow of data and

https://civinnovate.com/civil-engineering-notes/

instructions between the input/output
units and the main memory. Operating
system became a part of computer
software with the second generation
computers. Since then operating
systems have undergone several
revisions and modifications in order to
achieve a better utilisation of computer
resources. Advancement in the field of
computer hardware, have also helped in
the development of more efficient
operating systems.

Some important features of operating
systems are:
(1) It interacts with the user.
(2) It controls the system including

peripherals.
(3) It manages user files and other

applications.

e.g. MSDOS, PCDOS, Windows95,
windows98, windowsme, windows xp,
linux, unix etc.

https://civinnovate.com/civil-engineering-notes/

Operating System Commands : Apart
from system calls, users may interact
with operating system directly by means
of operating system commands. For
example, if you want to list files or sub-
directories in MS-DOS, you invoke dir
command. In either case, the operating
system acts as an interface between
users and the hardware of a computer
system lie fundamental goal of computer
systems is to solve user problems.
Towards this goal, computer hardware is
designed. Since the bare hardware alone
is not very easy to use programs
(software) are developed. These
programs require certain common
operations, such as controlling
peripheral devices. The command
function of controlling and allocating
resources are then brought together into
one piece of software; the operating
system.

https://civinnovate.com/civil-engineering-notes/

https://civinnovate.com/civil-engineering-notes/

	Introduction to Computer
	Lecture 1
	Types of programming language
	Introduction to C
	History of C
	Structure of a C program
	C Fundamentals
	The C character set
	Identifiers
	Keywords
	Constant
	Variables
	Array
	Data types
	Declaration
	Expression
	Statement
	Symbolic Constant
	OPERATOR
	Program 1.
	Program 2.
	Program 3.
	Program 5.
	Program 6.
	Program 7.
	/* Program to check whether user can or cannot vote using conditional operator*/
	Program 8.
	Program 9.
	Program 10.
	Input data using Scanf Function
	scanf(control string, arg1,arg2,...argn)
	Program 11.
	Program 12.
	Program 13.
	goto statement

	do... while statement
	Nested loops

	Switch Statement
	Program Structure
	Automatic variable
	External variables
	Static Variable

	Pointers
	Let us assume x is variable of data type int and it's value is 5 then, &x represents its address/location of variable x. If, &x (Here, & is called as address operator) is assigned to another variable px then px is known as pointer of x.

	Computer is an electronic device. It takes raw data as input, processes it and gives information as output, all under instruction given to it.
	Weakness:

	A computer contains two basic parts: (i) Hardware and (ii) Software. Without software a computer will remain just a metal. With software, a computer can store, retrieve, solve different types of problems.

